mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-23 01:59:38 +08:00
add a conjugate gradient solver
This commit is contained in:
parent
8fa7e92e77
commit
80b1d1371d
@ -43,6 +43,7 @@ namespace Eigen {
|
||||
|
||||
#include "src/IterativeSolvers/IterationController.h"
|
||||
#include "src/IterativeSolvers/ConstrainedConjGrad.h"
|
||||
#include "src/IterativeSolvers/ConjugateGradient.h"
|
||||
|
||||
//@}
|
||||
|
||||
|
429
unsupported/Eigen/src/IterativeSolvers/ConjugateGradient.h
Normal file
429
unsupported/Eigen/src/IterativeSolvers/ConjugateGradient.h
Normal file
@ -0,0 +1,429 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_CONJUGATE_GRADIENT_H
|
||||
#define EIGEN_CONJUGATE_GRADIENT_H
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \internal Low-level conjugate gradient algorithm
|
||||
* \param mat The matrix A
|
||||
* \param rhs The right hand side vector b
|
||||
* \param x On input and initial solution, on output the computed solution.
|
||||
* \param precond A preconditioner being able to efficiently solve for an
|
||||
* approximation of Ax=b (regardless of b)
|
||||
* \param iters On input the max number of iteration, on output the number of performed iterations.
|
||||
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
|
||||
*/
|
||||
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
||||
void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
||||
const Preconditioner& precond, int& iters,
|
||||
typename Dest::RealScalar& tol_error)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
typedef typename Dest::RealScalar RealScalar;
|
||||
typedef typename Dest::Scalar Scalar;
|
||||
typedef Dest VectorType;
|
||||
|
||||
RealScalar tol = tol_error;
|
||||
int maxIters = iters;
|
||||
|
||||
int n = mat.cols();
|
||||
VectorType residual = rhs - mat * x; //initial residual
|
||||
VectorType p(n);
|
||||
|
||||
p = precond.solve(residual); //initial search direction
|
||||
|
||||
VectorType z(n), tmp(n);
|
||||
RealScalar absNew = internal::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
|
||||
RealScalar absInit = absNew; // the initial absolute value
|
||||
|
||||
int i = 0;
|
||||
while ((i < maxIters) && (absNew > tol*tol*absInit))
|
||||
{
|
||||
tmp.noalias() = mat * p; // the bottleneck of the algorithm
|
||||
|
||||
Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
|
||||
x += alpha * p; // update solution
|
||||
residual -= alpha * tmp; // update residue
|
||||
z = precond.solve(residual); // approximately solve for "A z = residual"
|
||||
|
||||
RealScalar absOld = absNew;
|
||||
absNew = internal::real(residual.dot(z)); // update the absolute value of r
|
||||
RealScalar beta = absNew / absOld; // calculate the Gram-Schmidit value used to create the new search direction
|
||||
p = z + beta * p; // update search direction
|
||||
i++;
|
||||
}
|
||||
|
||||
tol_error = sqrt(abs(absNew / absInit));
|
||||
iters = i;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/** \brief A preconditioner based on the digonal entries
|
||||
*
|
||||
* This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
|
||||
* In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
|
||||
* \code
|
||||
* A.diagonal().asDiagonal() . x = b
|
||||
* \endcode
|
||||
*
|
||||
* \tparam _Scalar the type of the scalar.
|
||||
*
|
||||
* This preconditioner is suitable for both selfadjoint and general problems.
|
||||
* The diagonal entries are pre-inverted and stored into a dense vector.
|
||||
*
|
||||
* \note A variant that has yet to be implemented would attempt to preserve the norm of each column.
|
||||
*
|
||||
*/
|
||||
template <typename _Scalar>
|
||||
class DiagonalPreconditioner
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,1> Vector;
|
||||
typedef typename Vector::Index Index;
|
||||
|
||||
public:
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
|
||||
|
||||
DiagonalPreconditioner() : m_isInitialized(false) {}
|
||||
|
||||
template<typename MatrixType>
|
||||
DiagonalPreconditioner(const MatrixType& mat) : m_invdiag(mat.cols())
|
||||
{
|
||||
compute(mat);
|
||||
}
|
||||
|
||||
Index rows() const { return m_invdiag.size(); }
|
||||
Index cols() const { return m_invdiag.size(); }
|
||||
|
||||
template<typename MatrixType>
|
||||
DiagonalPreconditioner& compute(const MatrixType& mat)
|
||||
{
|
||||
m_invdiag.resize(mat.cols());
|
||||
for(int j=0; j<mat.outerSize(); ++j)
|
||||
{
|
||||
typename MatrixType::InnerIterator it(mat,j);
|
||||
while(it && it.index()!=j) ++it;
|
||||
if(it.index()==j)
|
||||
m_invdiag(j) = Scalar(1)/it.value();
|
||||
else
|
||||
m_invdiag(j) = 0;
|
||||
}
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename Rhs, typename Dest>
|
||||
void _solve(const Rhs& b, Dest& x) const
|
||||
{
|
||||
x = m_invdiag.array() * b.array() ;
|
||||
}
|
||||
|
||||
template<typename Rhs> inline const internal::solve_retval<DiagonalPreconditioner, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized.");
|
||||
eigen_assert(m_invdiag.size()==b.rows()
|
||||
&& "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b");
|
||||
return internal::solve_retval<DiagonalPreconditioner, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
protected:
|
||||
Vector m_invdiag;
|
||||
bool m_isInitialized;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _MatrixType, typename Rhs>
|
||||
struct solve_retval<DiagonalPreconditioner<_MatrixType>, Rhs>
|
||||
: solve_retval_base<DiagonalPreconditioner<_MatrixType>, Rhs>
|
||||
{
|
||||
typedef DiagonalPreconditioner<_MatrixType> Dec;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
dec()._solve(rhs(),dst);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename CG, typename Rhs, typename Guess>
|
||||
class conjugate_gradient_solve_retval_with_guess;
|
||||
|
||||
}
|
||||
|
||||
/** \brief A conjugate gradient solver for sparse self-adjoint problems
|
||||
*
|
||||
* This class allows to solve for A.x = b sparse linear problems using a conjugate gradient algorithm.
|
||||
* The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
|
||||
*
|
||||
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
|
||||
* and setTolerance() methods. The default are 1000 max iterations and NumTraits<Scalar>::epsilon()
|
||||
* for the tolerance.
|
||||
*
|
||||
* This class can be used as the direct solver classes. Here is a typical usage example:
|
||||
* \code
|
||||
* int n = 10000;
|
||||
* VectorXd x(n), b(n);
|
||||
* SparseMatrix<double> A(n,n);
|
||||
* // fill A and b
|
||||
* ConjugateGradient<SparseMatrix<double> > cg;
|
||||
* cg(A);
|
||||
* x = cg.solve(b);
|
||||
* std::cout << "#iterations: " << cg.iterations() << std::endl;
|
||||
* std::cout << "estimated error: " << cg.error() << std::endl;
|
||||
* // update b, and solve again
|
||||
* x = cg.solve(b);
|
||||
* \endcode
|
||||
*
|
||||
* By default the iterations start with x=0 as an initial guess of the solution.
|
||||
* One can control the start using the solveWithGuess() method. Here is a step by
|
||||
* step execution example starting with a random guess and printing the evolution
|
||||
* of the estimated error:
|
||||
* * \code
|
||||
* x = VectorXd::Random(n);
|
||||
* cg.setMaxIterations(1);
|
||||
* int i = 0;
|
||||
* do {
|
||||
* x = cg.solveWithGuess(b,x);
|
||||
* std::cout << i << " : " << cg.error() << std::endl;
|
||||
* ++i;
|
||||
* } while (cg.info()!=Success && i<100);
|
||||
* \endcode
|
||||
* Note that such a step by step excution is slightly slower.
|
||||
*
|
||||
*/
|
||||
template< typename _MatrixType, int _UpLo=Lower,
|
||||
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
|
||||
class ConjugateGradient
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef _Preconditioner Preconditioner;
|
||||
|
||||
enum {
|
||||
UpLo = _UpLo
|
||||
};
|
||||
|
||||
public:
|
||||
|
||||
/** Default constructor. */
|
||||
ConjugateGradient()
|
||||
: mp_matrix(0)
|
||||
{
|
||||
init();
|
||||
}
|
||||
|
||||
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
||||
*
|
||||
* \warning this class stores a reference to the matrix A as well as some
|
||||
* precomputed values that depend on it. Therefore, if \a A is changed
|
||||
* this class becomes invalid. Call compute() to update it with the new
|
||||
* matrix A, or modify a copy of A.
|
||||
*/
|
||||
ConjugateGradient(const MatrixType& A)
|
||||
{
|
||||
init();
|
||||
compute(A);
|
||||
}
|
||||
|
||||
~ConjugateGradient() {}
|
||||
|
||||
/** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems.
|
||||
*
|
||||
* \warning this class stores a reference to the matrix A as well as some
|
||||
* precomputed values that depend on it. Therefore, if \a A is changed
|
||||
* this class becomes invalid. Call compute() to update it with the new
|
||||
* matrix A, or modify a copy of A.
|
||||
*/
|
||||
ConjugateGradient& compute(const MatrixType& A)
|
||||
{
|
||||
mp_matrix = &A;
|
||||
m_preconditioner.compute(A);
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
Index rows() const { return mp_matrix->rows(); }
|
||||
/** \internal */
|
||||
Index cols() const { return mp_matrix->cols(); }
|
||||
|
||||
/** \returns the tolerance threshold used by the stopping criteria */
|
||||
RealScalar tolerance() const { return m_tolerance; }
|
||||
|
||||
/** Sets the tolerance threshold used by the stopping criteria */
|
||||
ConjugateGradient& setTolerance(RealScalar tolerance)
|
||||
{
|
||||
m_tolerance = tolerance;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \returns the max number of iterations */
|
||||
int maxIterations() const { return m_maxIterations; }
|
||||
|
||||
/** Sets the max number of iterations */
|
||||
ConjugateGradient& setMaxIterations(int maxIters)
|
||||
{
|
||||
m_maxIterations = maxIters;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \returns the number of iterations performed during the last solve */
|
||||
int iterations() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
||||
return m_iterations;
|
||||
}
|
||||
|
||||
/** \returns the tolerance error reached during the last solve */
|
||||
RealScalar error() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
||||
return m_error;
|
||||
}
|
||||
|
||||
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||||
*
|
||||
* \sa compute()
|
||||
*/
|
||||
template<typename Rhs> inline const internal::solve_retval<ConjugateGradient, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
||||
eigen_assert(rows()==b.rows()
|
||||
&& "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
|
||||
return internal::solve_retval<ConjugateGradient, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
|
||||
* \a x0 as an initial solution.
|
||||
*
|
||||
* \sa compute()
|
||||
*/
|
||||
template<typename Rhs,typename Guess>
|
||||
inline const internal::conjugate_gradient_solve_retval_with_guess<ConjugateGradient, Rhs, Guess>
|
||||
solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
||||
eigen_assert(rows()==b.rows()
|
||||
&& "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
|
||||
return internal::conjugate_gradient_solve_retval_with_guess
|
||||
<ConjugateGradient, Rhs, Guess>(*this, b.derived(), x0);
|
||||
}
|
||||
|
||||
/** \returns Success if the iterations converged, and NoConvergence otherwise. */
|
||||
ComputationInfo info() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
||||
return m_info;
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve(const Rhs& b, Dest& x) const
|
||||
{
|
||||
m_iterations = m_maxIterations;
|
||||
m_error = m_tolerance;
|
||||
|
||||
internal::conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(), b, x,
|
||||
m_preconditioner, m_iterations, m_error);
|
||||
|
||||
m_isInitialized = true;
|
||||
m_info = m_error <= m_tolerance ? Success : NoConvergence;
|
||||
}
|
||||
|
||||
protected:
|
||||
void init()
|
||||
{
|
||||
m_isInitialized = false;
|
||||
m_maxIterations = 1000;
|
||||
m_tolerance = NumTraits<Scalar>::epsilon();
|
||||
}
|
||||
const MatrixType* mp_matrix;
|
||||
Preconditioner m_preconditioner;
|
||||
|
||||
int m_maxIterations;
|
||||
RealScalar m_tolerance;
|
||||
|
||||
mutable RealScalar m_error;
|
||||
mutable int m_iterations;
|
||||
mutable ComputationInfo m_info;
|
||||
mutable bool m_isInitialized;
|
||||
};
|
||||
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs>
|
||||
struct solve_retval<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
|
||||
: solve_retval_base<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
|
||||
{
|
||||
typedef ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> Dec;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
dst.setZero();
|
||||
dec()._solve(rhs(),dst);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename CG, typename Rhs, typename Guess>
|
||||
class conjugate_gradient_solve_retval_with_guess
|
||||
: solve_retval_base<CG, Rhs>
|
||||
{
|
||||
typedef Eigen::internal::solve_retval_base<CG,Rhs> Base;
|
||||
using Base::dec;
|
||||
using Base::rhs;
|
||||
|
||||
conjugate_gradient_solve_retval_with_guess(const CG& cg, const Rhs& rhs, const Guess guess)
|
||||
: Base(cg, rhs), m_guess(guess)
|
||||
{}
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
dst = m_guess;
|
||||
dec()._solve(rhs(), dst);
|
||||
}
|
||||
protected:
|
||||
const Guess& m_guess;
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // EIGEN_CONJUGATE_GRADIENT_H
|
@ -139,3 +139,4 @@ endif(GSL_FOUND)
|
||||
ei_add_test(polynomialsolver " " "${GSL_LIBRARIES}" )
|
||||
ei_add_test(polynomialutils)
|
||||
ei_add_test(kronecker_product)
|
||||
ei_add_test(cg)
|
||||
|
74
unsupported/test/cg.cpp
Normal file
74
unsupported/test/cg.cpp
Normal file
@ -0,0 +1,74 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "sparse.h"
|
||||
#include <Eigen/IterativeSolvers>
|
||||
|
||||
template<typename Scalar,typename Index> void cg(int size)
|
||||
{
|
||||
double density = std::max(8./(size*size), 0.01);
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
typedef SparseMatrix<Scalar,ColMajor,Index> SparseMatrixType;
|
||||
|
||||
SparseMatrixType m2(size,size);
|
||||
DenseMatrix refMat2(size,size);
|
||||
|
||||
DenseVector b = DenseVector::Random(size);
|
||||
DenseVector ref_x(size), x(size);
|
||||
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, 0, 0);
|
||||
// for(int i=0; i<rows; ++i)
|
||||
// m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i)));
|
||||
|
||||
SparseMatrixType m3 = m2 * m2.adjoint(), m3_lo(size,size), m3_up(size,size);
|
||||
DenseMatrix refMat3 = refMat2 * refMat2.adjoint();
|
||||
|
||||
m3_lo.template selfadjointView<Lower>().rankUpdate(m2,0);
|
||||
m3_up.template selfadjointView<Upper>().rankUpdate(m2,0);
|
||||
|
||||
ref_x = refMat3.template selfadjointView<Lower>().llt().solve(b);
|
||||
|
||||
x = ConjugateGradient<SparseMatrixType, Lower>().compute(m3).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "ConjugateGradient: solve, full storage, lower");
|
||||
|
||||
x = ConjugateGradient<SparseMatrixType, Upper>().compute(m3).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "ConjugateGradient: solve, full storage, upper, single dense rhs");
|
||||
|
||||
x = ConjugateGradient<SparseMatrixType, Lower>(m3_lo).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, lower only, single dense rhs");
|
||||
|
||||
x = ConjugateGradient<SparseMatrixType, Upper>(m3_up).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, upper only, single dense rhs");
|
||||
}
|
||||
|
||||
void test_cg()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1( (cg<double,int>(8)) );
|
||||
CALL_SUBTEST_1( (cg<double,long int>(8)) );
|
||||
CALL_SUBTEST_2( (cg<std::complex<double>,int>(internal::random<int>(1,300))) );
|
||||
CALL_SUBTEST_1( (cg<double,int>(internal::random<int>(1,300))) );
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user