add a conjugate gradient solver

This commit is contained in:
Gael Guennebaud 2011-07-26 09:04:10 +02:00
parent 8fa7e92e77
commit 80b1d1371d
4 changed files with 505 additions and 0 deletions

View File

@ -43,6 +43,7 @@ namespace Eigen {
#include "src/IterativeSolvers/IterationController.h"
#include "src/IterativeSolvers/ConstrainedConjGrad.h"
#include "src/IterativeSolvers/ConjugateGradient.h"
//@}

View File

@ -0,0 +1,429 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_CONJUGATE_GRADIENT_H
#define EIGEN_CONJUGATE_GRADIENT_H
namespace internal {
/** \internal Low-level conjugate gradient algorithm
* \param mat The matrix A
* \param rhs The right hand side vector b
* \param x On input and initial solution, on output the computed solution.
* \param precond A preconditioner being able to efficiently solve for an
* approximation of Ax=b (regardless of b)
* \param iters On input the max number of iteration, on output the number of performed iterations.
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
*/
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
const Preconditioner& precond, int& iters,
typename Dest::RealScalar& tol_error)
{
using std::sqrt;
using std::abs;
typedef typename Dest::RealScalar RealScalar;
typedef typename Dest::Scalar Scalar;
typedef Dest VectorType;
RealScalar tol = tol_error;
int maxIters = iters;
int n = mat.cols();
VectorType residual = rhs - mat * x; //initial residual
VectorType p(n);
p = precond.solve(residual); //initial search direction
VectorType z(n), tmp(n);
RealScalar absNew = internal::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
RealScalar absInit = absNew; // the initial absolute value
int i = 0;
while ((i < maxIters) && (absNew > tol*tol*absInit))
{
tmp.noalias() = mat * p; // the bottleneck of the algorithm
Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
x += alpha * p; // update solution
residual -= alpha * tmp; // update residue
z = precond.solve(residual); // approximately solve for "A z = residual"
RealScalar absOld = absNew;
absNew = internal::real(residual.dot(z)); // update the absolute value of r
RealScalar beta = absNew / absOld; // calculate the Gram-Schmidit value used to create the new search direction
p = z + beta * p; // update search direction
i++;
}
tol_error = sqrt(abs(absNew / absInit));
iters = i;
}
}
/** \brief A preconditioner based on the digonal entries
*
* This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
* In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
* \code
* A.diagonal().asDiagonal() . x = b
* \endcode
*
* \tparam _Scalar the type of the scalar.
*
* This preconditioner is suitable for both selfadjoint and general problems.
* The diagonal entries are pre-inverted and stored into a dense vector.
*
* \note A variant that has yet to be implemented would attempt to preserve the norm of each column.
*
*/
template <typename _Scalar>
class DiagonalPreconditioner
{
typedef _Scalar Scalar;
typedef Matrix<Scalar,Dynamic,1> Vector;
typedef typename Vector::Index Index;
public:
typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
DiagonalPreconditioner() : m_isInitialized(false) {}
template<typename MatrixType>
DiagonalPreconditioner(const MatrixType& mat) : m_invdiag(mat.cols())
{
compute(mat);
}
Index rows() const { return m_invdiag.size(); }
Index cols() const { return m_invdiag.size(); }
template<typename MatrixType>
DiagonalPreconditioner& compute(const MatrixType& mat)
{
m_invdiag.resize(mat.cols());
for(int j=0; j<mat.outerSize(); ++j)
{
typename MatrixType::InnerIterator it(mat,j);
while(it && it.index()!=j) ++it;
if(it.index()==j)
m_invdiag(j) = Scalar(1)/it.value();
else
m_invdiag(j) = 0;
}
m_isInitialized = true;
return *this;
}
template<typename Rhs, typename Dest>
void _solve(const Rhs& b, Dest& x) const
{
x = m_invdiag.array() * b.array() ;
}
template<typename Rhs> inline const internal::solve_retval<DiagonalPreconditioner, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized.");
eigen_assert(m_invdiag.size()==b.rows()
&& "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<DiagonalPreconditioner, Rhs>(*this, b.derived());
}
protected:
Vector m_invdiag;
bool m_isInitialized;
};
namespace internal {
template<typename _MatrixType, typename Rhs>
struct solve_retval<DiagonalPreconditioner<_MatrixType>, Rhs>
: solve_retval_base<DiagonalPreconditioner<_MatrixType>, Rhs>
{
typedef DiagonalPreconditioner<_MatrixType> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
}
};
template<typename CG, typename Rhs, typename Guess>
class conjugate_gradient_solve_retval_with_guess;
}
/** \brief A conjugate gradient solver for sparse self-adjoint problems
*
* This class allows to solve for A.x = b sparse linear problems using a conjugate gradient algorithm.
* The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
*
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
* and setTolerance() methods. The default are 1000 max iterations and NumTraits<Scalar>::epsilon()
* for the tolerance.
*
* This class can be used as the direct solver classes. Here is a typical usage example:
* \code
* int n = 10000;
* VectorXd x(n), b(n);
* SparseMatrix<double> A(n,n);
* // fill A and b
* ConjugateGradient<SparseMatrix<double> > cg;
* cg(A);
* x = cg.solve(b);
* std::cout << "#iterations: " << cg.iterations() << std::endl;
* std::cout << "estimated error: " << cg.error() << std::endl;
* // update b, and solve again
* x = cg.solve(b);
* \endcode
*
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method. Here is a step by
* step execution example starting with a random guess and printing the evolution
* of the estimated error:
* * \code
* x = VectorXd::Random(n);
* cg.setMaxIterations(1);
* int i = 0;
* do {
* x = cg.solveWithGuess(b,x);
* std::cout << i << " : " << cg.error() << std::endl;
* ++i;
* } while (cg.info()!=Success && i<100);
* \endcode
* Note that such a step by step excution is slightly slower.
*
*/
template< typename _MatrixType, int _UpLo=Lower,
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
class ConjugateGradient
{
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef typename MatrixType::RealScalar RealScalar;
typedef _Preconditioner Preconditioner;
enum {
UpLo = _UpLo
};
public:
/** Default constructor. */
ConjugateGradient()
: mp_matrix(0)
{
init();
}
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
ConjugateGradient(const MatrixType& A)
{
init();
compute(A);
}
~ConjugateGradient() {}
/** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems.
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
ConjugateGradient& compute(const MatrixType& A)
{
mp_matrix = &A;
m_preconditioner.compute(A);
m_isInitialized = true;
return *this;
}
/** \internal */
Index rows() const { return mp_matrix->rows(); }
/** \internal */
Index cols() const { return mp_matrix->cols(); }
/** \returns the tolerance threshold used by the stopping criteria */
RealScalar tolerance() const { return m_tolerance; }
/** Sets the tolerance threshold used by the stopping criteria */
ConjugateGradient& setTolerance(RealScalar tolerance)
{
m_tolerance = tolerance;
return *this;
}
/** \returns the max number of iterations */
int maxIterations() const { return m_maxIterations; }
/** Sets the max number of iterations */
ConjugateGradient& setMaxIterations(int maxIters)
{
m_maxIterations = maxIters;
return *this;
}
/** \returns the number of iterations performed during the last solve */
int iterations() const
{
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
return m_iterations;
}
/** \returns the tolerance error reached during the last solve */
RealScalar error() const
{
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
return m_error;
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs> inline const internal::solve_retval<ConjugateGradient, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
eigen_assert(rows()==b.rows()
&& "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<ConjugateGradient, Rhs>(*this, b.derived());
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
* \a x0 as an initial solution.
*
* \sa compute()
*/
template<typename Rhs,typename Guess>
inline const internal::conjugate_gradient_solve_retval_with_guess<ConjugateGradient, Rhs, Guess>
solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
{
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
eigen_assert(rows()==b.rows()
&& "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
return internal::conjugate_gradient_solve_retval_with_guess
<ConjugateGradient, Rhs, Guess>(*this, b.derived(), x0);
}
/** \returns Success if the iterations converged, and NoConvergence otherwise. */
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
return m_info;
}
/** \internal */
template<typename Rhs,typename Dest>
void _solve(const Rhs& b, Dest& x) const
{
m_iterations = m_maxIterations;
m_error = m_tolerance;
internal::conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(), b, x,
m_preconditioner, m_iterations, m_error);
m_isInitialized = true;
m_info = m_error <= m_tolerance ? Success : NoConvergence;
}
protected:
void init()
{
m_isInitialized = false;
m_maxIterations = 1000;
m_tolerance = NumTraits<Scalar>::epsilon();
}
const MatrixType* mp_matrix;
Preconditioner m_preconditioner;
int m_maxIterations;
RealScalar m_tolerance;
mutable RealScalar m_error;
mutable int m_iterations;
mutable ComputationInfo m_info;
mutable bool m_isInitialized;
};
namespace internal {
template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs>
struct solve_retval<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
: solve_retval_base<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
{
typedef ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dst.setZero();
dec()._solve(rhs(),dst);
}
};
template<typename CG, typename Rhs, typename Guess>
class conjugate_gradient_solve_retval_with_guess
: solve_retval_base<CG, Rhs>
{
typedef Eigen::internal::solve_retval_base<CG,Rhs> Base;
using Base::dec;
using Base::rhs;
conjugate_gradient_solve_retval_with_guess(const CG& cg, const Rhs& rhs, const Guess guess)
: Base(cg, rhs), m_guess(guess)
{}
template<typename Dest> void evalTo(Dest& dst) const
{
dst = m_guess;
dec()._solve(rhs(), dst);
}
protected:
const Guess& m_guess;
};
}
#endif // EIGEN_CONJUGATE_GRADIENT_H

View File

@ -139,3 +139,4 @@ endif(GSL_FOUND)
ei_add_test(polynomialsolver " " "${GSL_LIBRARIES}" )
ei_add_test(polynomialutils)
ei_add_test(kronecker_product)
ei_add_test(cg)

74
unsupported/test/cg.cpp Normal file
View File

@ -0,0 +1,74 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "sparse.h"
#include <Eigen/IterativeSolvers>
template<typename Scalar,typename Index> void cg(int size)
{
double density = std::max(8./(size*size), 0.01);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
typedef SparseMatrix<Scalar,ColMajor,Index> SparseMatrixType;
SparseMatrixType m2(size,size);
DenseMatrix refMat2(size,size);
DenseVector b = DenseVector::Random(size);
DenseVector ref_x(size), x(size);
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, 0, 0);
// for(int i=0; i<rows; ++i)
// m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i)));
SparseMatrixType m3 = m2 * m2.adjoint(), m3_lo(size,size), m3_up(size,size);
DenseMatrix refMat3 = refMat2 * refMat2.adjoint();
m3_lo.template selfadjointView<Lower>().rankUpdate(m2,0);
m3_up.template selfadjointView<Upper>().rankUpdate(m2,0);
ref_x = refMat3.template selfadjointView<Lower>().llt().solve(b);
x = ConjugateGradient<SparseMatrixType, Lower>().compute(m3).solve(b);
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "ConjugateGradient: solve, full storage, lower");
x = ConjugateGradient<SparseMatrixType, Upper>().compute(m3).solve(b);
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "ConjugateGradient: solve, full storage, upper, single dense rhs");
x = ConjugateGradient<SparseMatrixType, Lower>(m3_lo).solve(b);
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, lower only, single dense rhs");
x = ConjugateGradient<SparseMatrixType, Upper>(m3_up).solve(b);
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, upper only, single dense rhs");
}
void test_cg()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( (cg<double,int>(8)) );
CALL_SUBTEST_1( (cg<double,long int>(8)) );
CALL_SUBTEST_2( (cg<std::complex<double>,int>(internal::random<int>(1,300))) );
CALL_SUBTEST_1( (cg<double,int>(internal::random<int>(1,300))) );
}
}