mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-11 19:29:02 +08:00
new unsupported and not finished SVD, using a divide and conquert algorithm, with tests and benchmark
This commit is contained in:
parent
ba79e39c5c
commit
8105b5ed3f
39
unsupported/Eigen/SVD
Normal file
39
unsupported/Eigen/SVD
Normal file
@ -0,0 +1,39 @@
|
||||
#ifndef EIGEN_SVD_MODULE_H
|
||||
#define EIGEN_SVD_MODULE_H
|
||||
|
||||
#include <Eigen/QR>
|
||||
#include <Eigen/Householder>
|
||||
#include <Eigen/Jacobi>
|
||||
|
||||
#include "../../Eigen/src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
/** \defgroup SVD_Module SVD module
|
||||
*
|
||||
*
|
||||
*
|
||||
* This module provides SVD decomposition for matrices (both real and complex).
|
||||
* This decomposition is accessible via the following MatrixBase method:
|
||||
* - MatrixBase::jacobiSvd()
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/SVD>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "../../Eigen/src/misc/Solve.h"
|
||||
#include "../../Eigen/src/SVD/UpperBidiagonalization.h"
|
||||
#include "src/SVD/SVDBase.h"
|
||||
#include "src/SVD/JacobiSVD.h"
|
||||
#include "src/SVD/BDCSVD.h"
|
||||
#if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT)
|
||||
#include "../../Eigen/src/SVD/JacobiSVD_MKL.h"
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
#include "../../Eigen/src/Eigen2Support/SVD.h"
|
||||
#endif
|
||||
|
||||
#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_SVD_MODULE_H
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
744
unsupported/Eigen/src/SVD/BDCSVD.h
Normal file
744
unsupported/Eigen/src/SVD/BDCSVD.h
Normal file
@ -0,0 +1,744 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD"
|
||||
// research report written by Ming Gu and Stanley C.Eisenstat
|
||||
// The code variable names correspond to the names they used in their
|
||||
// report
|
||||
//
|
||||
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
|
||||
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
|
||||
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
|
||||
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
|
||||
//
|
||||
// Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_BDCSVD_H
|
||||
#define EIGEN_BDCSVD_H
|
||||
|
||||
#define EPSILON 0.0000000000000001
|
||||
|
||||
#define ALGOSWAP 32
|
||||
|
||||
namespace Eigen {
|
||||
/** \ingroup SVD_Module
|
||||
*
|
||||
*
|
||||
* \class BDCSVD
|
||||
*
|
||||
* \brief class Bidiagonal Divide and Conquer SVD
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
|
||||
* We plan to have a very similar interface to JacobiSVD on this class.
|
||||
* It should be used to speed up the calcul of SVD for big matrices.
|
||||
*/
|
||||
template<typename _MatrixType>
|
||||
class BDCSVD : public SVDBase<_MatrixType>
|
||||
{
|
||||
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename SVDBase<_MatrixType>::MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime),
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime),
|
||||
MatrixOptions = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
|
||||
MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
|
||||
MatrixUType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
|
||||
MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
|
||||
MatrixVType;
|
||||
typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
|
||||
typedef typename internal::plain_row_type<MatrixType>::type RowType;
|
||||
typedef typename internal::plain_col_type<MatrixType>::type ColType;
|
||||
typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
|
||||
typedef Matrix<RealScalar, Dynamic, Dynamic> MatrixXr;
|
||||
typedef Matrix<RealScalar, Dynamic, 1> VectorType;
|
||||
|
||||
/** \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via BDCSVD::compute(const MatrixType&).
|
||||
*/
|
||||
BDCSVD()
|
||||
: SVDBase<_MatrixType>::SVDBase(),
|
||||
algoswap(ALGOSWAP)
|
||||
{}
|
||||
|
||||
|
||||
/** \brief Default Constructor with memory preallocation
|
||||
*
|
||||
* Like the default constructor but with preallocation of the internal data
|
||||
* according to the specified problem size.
|
||||
* \sa BDCSVD()
|
||||
*/
|
||||
BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
|
||||
: SVDBase<_MatrixType>::SVDBase(),
|
||||
algoswap(ALGOSWAP)
|
||||
{
|
||||
allocate(rows, cols, computationOptions);
|
||||
}
|
||||
|
||||
/** \brief Constructor performing the decomposition of given matrix.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
||||
* By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
|
||||
* #ComputeFullV, #ComputeThinV.
|
||||
*
|
||||
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
||||
* available with the (non - default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
|
||||
: SVDBase<_MatrixType>::SVDBase(),
|
||||
algoswap(ALGOSWAP)
|
||||
{
|
||||
compute(matrix, computationOptions);
|
||||
}
|
||||
|
||||
~BDCSVD()
|
||||
{
|
||||
}
|
||||
/** \brief Method performing the decomposition of given matrix using custom options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
||||
* By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
|
||||
* #ComputeFullV, #ComputeThinV.
|
||||
*
|
||||
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
||||
* available with the (non - default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions);
|
||||
|
||||
/** \brief Method performing the decomposition of given matrix using current options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
*
|
||||
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
|
||||
*/
|
||||
SVDBase<MatrixType>& compute(const MatrixType& matrix)
|
||||
{
|
||||
return compute(matrix, this->m_computationOptions);
|
||||
}
|
||||
|
||||
void setSwitchSize(int s)
|
||||
{
|
||||
eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 4");
|
||||
algoswap = s;
|
||||
}
|
||||
|
||||
|
||||
/** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
|
||||
*
|
||||
* \param b the right - hand - side of the equation to solve.
|
||||
*
|
||||
* \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
|
||||
*
|
||||
* \note SVD solving is implicitly least - squares. Thus, this method serves both purposes of exact solving and least - squares solving.
|
||||
* In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
|
||||
*/
|
||||
template<typename Rhs>
|
||||
inline const internal::solve_retval<BDCSVD, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(this->m_isInitialized && "BDCSVD is not initialized.");
|
||||
eigen_assert(SVDBase<_MatrixType>::computeU() && SVDBase<_MatrixType>::computeV() &&
|
||||
"BDCSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
|
||||
return internal::solve_retval<BDCSVD, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
|
||||
const MatrixUType& matrixU() const
|
||||
{
|
||||
eigen_assert(this->m_isInitialized && "SVD is not initialized.");
|
||||
if (isTranspose){
|
||||
eigen_assert(this->computeV() && "This SVD decomposition didn't compute U. Did you ask for it?");
|
||||
return this->m_matrixV;
|
||||
}
|
||||
else
|
||||
{
|
||||
eigen_assert(this->computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
|
||||
return this->m_matrixU;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
const MatrixVType& matrixV() const
|
||||
{
|
||||
eigen_assert(this->m_isInitialized && "SVD is not initialized.");
|
||||
if (isTranspose){
|
||||
eigen_assert(this->computeU() && "This SVD decomposition didn't compute V. Did you ask for it?");
|
||||
return this->m_matrixU;
|
||||
}
|
||||
else
|
||||
{
|
||||
eigen_assert(this->computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
|
||||
return this->m_matrixV;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
void allocate(Index rows, Index cols, unsigned int computationOptions);
|
||||
void divide (Index firstCol, Index lastCol, Index firstRowW,
|
||||
Index firstColW, Index shift);
|
||||
void deflation43(Index firstCol, Index shift, Index i, Index size);
|
||||
void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
|
||||
void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
|
||||
void copyUV(MatrixXr naiveU, MatrixXr naiveV, MatrixX householderU, MatrixX houseHolderV);
|
||||
|
||||
protected:
|
||||
MatrixXr m_naiveU, m_naiveV;
|
||||
MatrixXr m_computed;
|
||||
Index nRec;
|
||||
int algoswap;
|
||||
bool isTranspose, compU, compV;
|
||||
|
||||
}; //end class BDCSVD
|
||||
|
||||
|
||||
// Methode to allocate ans initialize matrix and attributs
|
||||
template<typename MatrixType>
|
||||
void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
|
||||
{
|
||||
isTranspose = (cols > rows);
|
||||
if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return;
|
||||
m_computed = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize );
|
||||
if (isTranspose){
|
||||
compU = this->computeU();
|
||||
compV = this->computeV();
|
||||
}
|
||||
else
|
||||
{
|
||||
compV = this->computeU();
|
||||
compU = this->computeV();
|
||||
}
|
||||
if (compU) m_naiveU = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize + 1 );
|
||||
else m_naiveU = MatrixXr::Zero(2, this->m_diagSize + 1 );
|
||||
|
||||
if (compV) m_naiveV = MatrixXr::Zero(this->m_diagSize, this->m_diagSize);
|
||||
|
||||
|
||||
//should be changed for a cleaner implementation
|
||||
if (isTranspose){
|
||||
bool aux;
|
||||
if (this->computeU()||this->computeV()){
|
||||
aux = this->m_computeFullU;
|
||||
this->m_computeFullU = this->m_computeFullV;
|
||||
this->m_computeFullV = aux;
|
||||
aux = this->m_computeThinU;
|
||||
this->m_computeThinU = this->m_computeThinV;
|
||||
this->m_computeThinV = aux;
|
||||
}
|
||||
}
|
||||
}// end allocate
|
||||
|
||||
// Methode which compute the BDCSVD for the int
|
||||
template<>
|
||||
SVDBase<Matrix<int, Dynamic, Dynamic> >&
|
||||
BDCSVD<Matrix<int, Dynamic, Dynamic> >::compute(const MatrixType& matrix, unsigned int computationOptions) {
|
||||
allocate(matrix.rows(), matrix.cols(), computationOptions);
|
||||
this->m_nonzeroSingularValues = 0;
|
||||
m_computed = Matrix<int, Dynamic, Dynamic>::Zero(rows(), cols());
|
||||
for (int i=0; i<this->m_diagSize; i++) {
|
||||
this->m_singularValues.coeffRef(i) = 0;
|
||||
}
|
||||
if (this->m_computeFullU) this->m_matrixU = Matrix<int, Dynamic, Dynamic>::Zero(rows(), rows());
|
||||
if (this->m_computeFullV) this->m_matrixV = Matrix<int, Dynamic, Dynamic>::Zero(cols(), cols());
|
||||
this->m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
// Methode which compute the BDCSVD
|
||||
template<typename MatrixType>
|
||||
SVDBase<MatrixType>&
|
||||
BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
|
||||
{
|
||||
allocate(matrix.rows(), matrix.cols(), computationOptions);
|
||||
using std::abs;
|
||||
|
||||
//**** step 1 Bidiagonalization isTranspose = (matrix.cols()>matrix.rows()) ;
|
||||
MatrixType copy;
|
||||
if (isTranspose) copy = matrix.adjoint();
|
||||
else copy = matrix;
|
||||
|
||||
internal::UpperBidiagonalization<MatrixX > bid(copy);
|
||||
|
||||
//**** step 2 Divide
|
||||
// this is ugly and has to be redone (care of complex cast)
|
||||
MatrixXr temp;
|
||||
temp = bid.bidiagonal().toDenseMatrix().transpose();
|
||||
m_computed.setZero();
|
||||
for (int i=0; i<this->m_diagSize - 1; i++) {
|
||||
m_computed(i, i) = temp(i, i);
|
||||
m_computed(i + 1, i) = temp(i + 1, i);
|
||||
}
|
||||
m_computed(this->m_diagSize - 1, this->m_diagSize - 1) = temp(this->m_diagSize - 1, this->m_diagSize - 1);
|
||||
divide(0, this->m_diagSize - 1, 0, 0, 0);
|
||||
|
||||
//**** step 3 copy
|
||||
for (int i=0; i<this->m_diagSize; i++) {
|
||||
RealScalar a = abs(m_computed.coeff(i, i));
|
||||
this->m_singularValues.coeffRef(i) = a;
|
||||
if (a == 0){
|
||||
this->m_nonzeroSingularValues = i;
|
||||
break;
|
||||
}
|
||||
else if (i == this->m_diagSize - 1)
|
||||
{
|
||||
this->m_nonzeroSingularValues = i + 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
copyUV(m_naiveV, m_naiveU, bid.householderU(), bid.householderV());
|
||||
this->m_isInitialized = true;
|
||||
return *this;
|
||||
}// end compute
|
||||
|
||||
|
||||
template<typename MatrixType>
|
||||
void BDCSVD<MatrixType>::copyUV(MatrixXr naiveU, MatrixXr naiveV, MatrixX householderU, MatrixX householderV){
|
||||
if (this->computeU()){
|
||||
MatrixX temp = MatrixX::Zero(naiveU.rows(), naiveU.cols());
|
||||
temp.real() = naiveU;
|
||||
if (this->m_computeThinU){
|
||||
this->m_matrixU = MatrixX::Identity(householderU.cols(), this->m_nonzeroSingularValues );
|
||||
this->m_matrixU.block(0, 0, this->m_diagSize, this->m_nonzeroSingularValues) =
|
||||
temp.block(0, 0, this->m_diagSize, this->m_nonzeroSingularValues);
|
||||
this->m_matrixU = householderU * this->m_matrixU ;
|
||||
}
|
||||
else
|
||||
{
|
||||
this->m_matrixU = MatrixX::Identity(householderU.cols(), householderU.cols());
|
||||
this->m_matrixU.block(0, 0, this->m_diagSize, this->m_diagSize) = temp.block(0, 0, this->m_diagSize, this->m_diagSize);
|
||||
this->m_matrixU = householderU * this->m_matrixU ;
|
||||
}
|
||||
}
|
||||
if (this->computeV()){
|
||||
MatrixX temp = MatrixX::Zero(naiveV.rows(), naiveV.cols());
|
||||
temp.real() = naiveV;
|
||||
if (this->m_computeThinV){
|
||||
this->m_matrixV = MatrixX::Identity(householderV.cols(),this->m_nonzeroSingularValues );
|
||||
this->m_matrixV.block(0, 0, this->m_nonzeroSingularValues, this->m_nonzeroSingularValues) =
|
||||
temp.block(0, 0, this->m_nonzeroSingularValues, this->m_nonzeroSingularValues);
|
||||
this->m_matrixV = householderV * this->m_matrixV ;
|
||||
}
|
||||
else
|
||||
{
|
||||
this->m_matrixV = MatrixX::Identity(householderV.cols(), householderV.cols());
|
||||
this->m_matrixV.block(0, 0, this->m_diagSize, this->m_diagSize) = temp.block(0, 0, this->m_diagSize, this->m_diagSize);
|
||||
this->m_matrixV = householderV * this->m_matrixV;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the
|
||||
// place of the submatrix we are currently working on.
|
||||
|
||||
//@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
|
||||
//@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU;
|
||||
// lastCol + 1 - firstCol is the size of the submatrix.
|
||||
//@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W)
|
||||
//@param firstRowW : Same as firstRowW with the column.
|
||||
//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
|
||||
// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
|
||||
template<typename MatrixType>
|
||||
void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
|
||||
Index firstColW, Index shift)
|
||||
{
|
||||
// requires nbRows = nbCols + 1;
|
||||
using std::pow;
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
const Index n = lastCol - firstCol + 1;
|
||||
const Index k = n/2;
|
||||
RealScalar alphaK;
|
||||
RealScalar betaK;
|
||||
RealScalar r0;
|
||||
RealScalar lambda, phi, c0, s0;
|
||||
MatrixXr l, f;
|
||||
// We use the other algorithm which is more efficient for small
|
||||
// matrices.
|
||||
if (n < algoswap){
|
||||
JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n),
|
||||
ComputeFullU | (ComputeFullV * compV)) ;
|
||||
if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() << b.matrixU();
|
||||
else
|
||||
{
|
||||
m_naiveU.row(0).segment(firstCol, n + 1).real() << b.matrixU().row(0);
|
||||
m_naiveU.row(1).segment(firstCol, n + 1).real() << b.matrixU().row(n);
|
||||
}
|
||||
if (compV) m_naiveV.block(firstRowW, firstColW, n, n).real() << b.matrixV();
|
||||
m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
|
||||
for (int i=0; i<n; i++)
|
||||
{
|
||||
m_computed(firstCol + shift + i, firstCol + shift +i) = b.singularValues().coeffRef(i);
|
||||
}
|
||||
return;
|
||||
}
|
||||
// We use the divide and conquer algorithm
|
||||
alphaK = m_computed(firstCol + k, firstCol + k);
|
||||
betaK = m_computed(firstCol + k + 1, firstCol + k);
|
||||
// The divide must be done in that order in order to have good results. Divide change the data inside the submatrices
|
||||
// and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the
|
||||
// right submatrix before the left one.
|
||||
divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
|
||||
divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
|
||||
if (compU)
|
||||
{
|
||||
lambda = m_naiveU(firstCol + k, firstCol + k);
|
||||
phi = m_naiveU(firstCol + k + 1, lastCol + 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
lambda = m_naiveU(1, firstCol + k);
|
||||
phi = m_naiveU(0, lastCol + 1);
|
||||
}
|
||||
r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda))
|
||||
+ abs(betaK * phi) * abs(betaK * phi));
|
||||
if (compU)
|
||||
{
|
||||
l = m_naiveU.row(firstCol + k).segment(firstCol, k);
|
||||
f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
l = m_naiveU.row(1).segment(firstCol, k);
|
||||
f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
|
||||
}
|
||||
if (compV) m_naiveV(firstRowW+k, firstColW) = 1;
|
||||
if (r0 == 0)
|
||||
{
|
||||
c0 = 1;
|
||||
s0 = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
c0 = alphaK * lambda / r0;
|
||||
s0 = betaK * phi / r0;
|
||||
}
|
||||
if (compU)
|
||||
{
|
||||
MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));
|
||||
// we shiftW Q1 to the right
|
||||
for (Index i = firstCol + k - 1; i >= firstCol; i--)
|
||||
{
|
||||
m_naiveU.col(i + 1).segment(firstCol, k + 1) << m_naiveU.col(i).segment(firstCol, k + 1);
|
||||
}
|
||||
// we shift q1 at the left with a factor c0
|
||||
m_naiveU.col(firstCol).segment( firstCol, k + 1) << (q1 * c0);
|
||||
// last column = q1 * - s0
|
||||
m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) << (q1 * ( - s0));
|
||||
// first column = q2 * s0
|
||||
m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) <<
|
||||
m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *s0;
|
||||
// q2 *= c0
|
||||
m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
|
||||
}
|
||||
else
|
||||
{
|
||||
RealScalar q1 = (m_naiveU(0, firstCol + k));
|
||||
// we shift Q1 to the right
|
||||
for (Index i = firstCol + k - 1; i >= firstCol; i--)
|
||||
{
|
||||
m_naiveU(0, i + 1) = m_naiveU(0, i);
|
||||
}
|
||||
// we shift q1 at the left with a factor c0
|
||||
m_naiveU(0, firstCol) = (q1 * c0);
|
||||
// last column = q1 * - s0
|
||||
m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
|
||||
// first column = q2 * s0
|
||||
m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0;
|
||||
// q2 *= c0
|
||||
m_naiveU(1, lastCol + 1) *= c0;
|
||||
m_naiveU.row(1).segment(firstCol + 1, k).setZero();
|
||||
m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
|
||||
}
|
||||
m_computed(firstCol + shift, firstCol + shift) = r0;
|
||||
m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) << alphaK * l.transpose().real();
|
||||
m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) << betaK * f.transpose().real();
|
||||
|
||||
|
||||
// the line below do the deflation of the matrix for the third part of the algorithm
|
||||
// Here the deflation is commented because the third part of the algorithm is not implemented
|
||||
// the third part of the algorithm is a fast SVD on the matrix m_computed which works thanks to the deflation
|
||||
|
||||
deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
|
||||
|
||||
// Third part of the algorithm, since the real third part of the algorithm is not implemeted we use a JacobiSVD
|
||||
JacobiSVD<MatrixXr> res= JacobiSVD<MatrixXr>(m_computed.block(firstCol + shift, firstCol +shift, n + 1, n),
|
||||
ComputeFullU | (ComputeFullV * compV)) ;
|
||||
if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1) *= res.matrixU();
|
||||
else m_naiveU.block(0, firstCol, 2, n + 1) *= res.matrixU();
|
||||
|
||||
if (compV) m_naiveV.block(firstRowW, firstColW, n, n) *= res.matrixV();
|
||||
m_computed.block(firstCol + shift, firstCol + shift, n, n) << MatrixXr::Zero(n, n);
|
||||
for (int i=0; i<n; i++)
|
||||
m_computed(firstCol + shift + i, firstCol + shift +i) = res.singularValues().coeffRef(i);
|
||||
// end of the third part
|
||||
|
||||
|
||||
}// end divide
|
||||
|
||||
|
||||
// page 12_13
|
||||
// i >= 1, di almost null and zi non null.
|
||||
// We use a rotation to zero out zi applied to the left of M
|
||||
template <typename MatrixType>
|
||||
void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size){
|
||||
using std::abs;
|
||||
using std::sqrt;
|
||||
using std::pow;
|
||||
RealScalar c = m_computed(firstCol + shift, firstCol + shift);
|
||||
RealScalar s = m_computed(i, firstCol + shift);
|
||||
RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
|
||||
if (r == 0){
|
||||
m_computed(i, i)=0;
|
||||
return;
|
||||
}
|
||||
c/=r;
|
||||
s/=r;
|
||||
m_computed(firstCol + shift, firstCol + shift) = r;
|
||||
m_computed(i, firstCol + shift) = 0;
|
||||
m_computed(i, i) = 0;
|
||||
if (compU){
|
||||
m_naiveU.col(firstCol).segment(firstCol,size) =
|
||||
c * m_naiveU.col(firstCol).segment(firstCol, size) -
|
||||
s * m_naiveU.col(i).segment(firstCol, size) ;
|
||||
|
||||
m_naiveU.col(i).segment(firstCol, size) =
|
||||
(c + s*s/c) * m_naiveU.col(i).segment(firstCol, size) +
|
||||
(s/c) * m_naiveU.col(firstCol).segment(firstCol,size);
|
||||
}
|
||||
}// end deflation 43
|
||||
|
||||
|
||||
// page 13
|
||||
// i,j >= 1, i != j and |di - dj| < epsilon * norm2(M)
|
||||
// We apply two rotations to have zj = 0;
|
||||
template <typename MatrixType>
|
||||
void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size){
|
||||
using std::abs;
|
||||
using std::sqrt;
|
||||
using std::conj;
|
||||
using std::pow;
|
||||
RealScalar c = m_computed(firstColm, firstColm + j - 1);
|
||||
RealScalar s = m_computed(firstColm, firstColm + i - 1);
|
||||
RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
|
||||
if (r==0){
|
||||
m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
|
||||
return;
|
||||
}
|
||||
c/=r;
|
||||
s/=r;
|
||||
m_computed(firstColm + i, firstColm) = r;
|
||||
m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
|
||||
m_computed(firstColm + j, firstColm) = 0;
|
||||
if (compU){
|
||||
m_naiveU.col(firstColu + i).segment(firstColu, size) =
|
||||
c * m_naiveU.col(firstColu + i).segment(firstColu, size) -
|
||||
s * m_naiveU.col(firstColu + j).segment(firstColu, size) ;
|
||||
|
||||
m_naiveU.col(firstColu + j).segment(firstColu, size) =
|
||||
(c + s*s/c) * m_naiveU.col(firstColu + j).segment(firstColu, size) +
|
||||
(s/c) * m_naiveU.col(firstColu + i).segment(firstColu, size);
|
||||
}
|
||||
if (compV){
|
||||
m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) =
|
||||
c * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) +
|
||||
s * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) ;
|
||||
|
||||
m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) =
|
||||
(c + s*s/c) * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) -
|
||||
(s/c) * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1);
|
||||
}
|
||||
}// end deflation 44
|
||||
|
||||
|
||||
|
||||
template <typename MatrixType>
|
||||
void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift){
|
||||
//condition 4.1
|
||||
RealScalar EPS = EPSILON * (std::max<RealScalar>(m_computed(firstCol + shift + 1, firstCol + shift + 1), m_computed(firstCol + k, firstCol + k)));
|
||||
const Index length = lastCol + 1 - firstCol;
|
||||
if (m_computed(firstCol + shift, firstCol + shift) < EPS){
|
||||
m_computed(firstCol + shift, firstCol + shift) = EPS;
|
||||
}
|
||||
//condition 4.2
|
||||
for (Index i=firstCol + shift + 1;i<=lastCol + shift;i++){
|
||||
if (std::abs(m_computed(i, firstCol + shift)) < EPS){
|
||||
m_computed(i, firstCol + shift) = 0;
|
||||
}
|
||||
}
|
||||
|
||||
//condition 4.3
|
||||
for (Index i=firstCol + shift + 1;i<=lastCol + shift; i++){
|
||||
if (m_computed(i, i) < EPS){
|
||||
deflation43(firstCol, shift, i, length);
|
||||
}
|
||||
}
|
||||
|
||||
//condition 4.4
|
||||
|
||||
Index i=firstCol + shift + 1, j=firstCol + shift + k + 1;
|
||||
//we stock the final place of each line
|
||||
Index *permutation = new Index[length];
|
||||
|
||||
for (Index p =1; p < length; p++) {
|
||||
if (i> firstCol + shift + k){
|
||||
permutation[p] = j;
|
||||
j++;
|
||||
} else if (j> lastCol + shift)
|
||||
{
|
||||
permutation[p] = i;
|
||||
i++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (m_computed(i, i) < m_computed(j, j)){
|
||||
permutation[p] = j;
|
||||
j++;
|
||||
}
|
||||
else
|
||||
{
|
||||
permutation[p] = i;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
//we do the permutation
|
||||
RealScalar aux;
|
||||
//we stock the current index of each col
|
||||
//and the column of each index
|
||||
Index *realInd = new Index[length];
|
||||
Index *realCol = new Index[length];
|
||||
for (int pos = 0; pos< length; pos++){
|
||||
realCol[pos] = pos + firstCol + shift;
|
||||
realInd[pos] = pos;
|
||||
}
|
||||
const Index Zero = firstCol + shift;
|
||||
VectorType temp;
|
||||
for (int i = 1; i < length - 1; i++){
|
||||
const Index I = i + Zero;
|
||||
const Index realI = realInd[i];
|
||||
const Index j = permutation[length - i] - Zero;
|
||||
const Index J = realCol[j];
|
||||
|
||||
//diag displace
|
||||
aux = m_computed(I, I);
|
||||
m_computed(I, I) = m_computed(J, J);
|
||||
m_computed(J, J) = aux;
|
||||
|
||||
//firstrow displace
|
||||
aux = m_computed(I, Zero);
|
||||
m_computed(I, Zero) = m_computed(J, Zero);
|
||||
m_computed(J, Zero) = aux;
|
||||
|
||||
// change columns
|
||||
if (compU) {
|
||||
temp = m_naiveU.col(I - shift).segment(firstCol, length + 1);
|
||||
m_naiveU.col(I - shift).segment(firstCol, length + 1) <<
|
||||
m_naiveU.col(J - shift).segment(firstCol, length + 1);
|
||||
m_naiveU.col(J - shift).segment(firstCol, length + 1) << temp;
|
||||
}
|
||||
else
|
||||
{
|
||||
temp = m_naiveU.col(I - shift).segment(0, 2);
|
||||
m_naiveU.col(I - shift).segment(0, 2) <<
|
||||
m_naiveU.col(J - shift).segment(0, 2);
|
||||
m_naiveU.col(J - shift).segment(0, 2) << temp;
|
||||
}
|
||||
if (compV) {
|
||||
const Index CWI = I + firstColW - Zero;
|
||||
const Index CWJ = J + firstColW - Zero;
|
||||
temp = m_naiveV.col(CWI).segment(firstRowW, length);
|
||||
m_naiveV.col(CWI).segment(firstRowW, length) << m_naiveV.col(CWJ).segment(firstRowW, length);
|
||||
m_naiveV.col(CWJ).segment(firstRowW, length) << temp;
|
||||
}
|
||||
|
||||
//update real pos
|
||||
realCol[realI] = J;
|
||||
realCol[j] = I;
|
||||
realInd[J - Zero] = realI;
|
||||
realInd[I - Zero] = j;
|
||||
}
|
||||
for (Index i = firstCol + shift + 1; i<lastCol + shift;i++){
|
||||
if ((m_computed(i + 1, i + 1) - m_computed(i, i)) < EPS){
|
||||
deflation44(firstCol ,
|
||||
firstCol + shift,
|
||||
firstRowW,
|
||||
firstColW,
|
||||
i - Zero,
|
||||
i + 1 - Zero,
|
||||
length);
|
||||
}
|
||||
}
|
||||
delete [] permutation;
|
||||
delete [] realInd;
|
||||
delete [] realCol;
|
||||
|
||||
}//end deflation
|
||||
|
||||
|
||||
namespace internal{
|
||||
|
||||
template<typename _MatrixType, typename Rhs>
|
||||
struct solve_retval<BDCSVD<_MatrixType>, Rhs>
|
||||
: solve_retval_base<BDCSVD<_MatrixType>, Rhs>
|
||||
{
|
||||
typedef BDCSVD<_MatrixType> BDCSVDType;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(BDCSVDType, Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
eigen_assert(rhs().rows() == dec().rows());
|
||||
// A = U S V^*
|
||||
// So A^{ - 1} = V S^{ - 1} U^*
|
||||
Index diagSize = (std::min)(dec().rows(), dec().cols());
|
||||
typename BDCSVDType::SingularValuesType invertedSingVals(diagSize);
|
||||
Index nonzeroSingVals = dec().nonzeroSingularValues();
|
||||
invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
|
||||
invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
|
||||
|
||||
dst = dec().matrixV().leftCols(diagSize)
|
||||
* invertedSingVals.asDiagonal()
|
||||
* dec().matrixU().leftCols(diagSize).adjoint()
|
||||
* rhs();
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
} //end namespace internal
|
||||
|
||||
/** \svd_module
|
||||
*
|
||||
* \return the singular value decomposition of \c *this computed by
|
||||
* BDC Algorithm
|
||||
*
|
||||
* \sa class BDCSVD
|
||||
*/
|
||||
/*
|
||||
template<typename Derived>
|
||||
BDCSVD<typename MatrixBase<Derived>::PlainObject>
|
||||
MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
|
||||
{
|
||||
return BDCSVD<PlainObject>(*this, computationOptions);
|
||||
}
|
||||
*/
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif
|
6
unsupported/Eigen/src/SVD/CMakeLists.txt
Normal file
6
unsupported/Eigen/src/SVD/CMakeLists.txt
Normal file
@ -0,0 +1,6 @@
|
||||
FILE(GLOB Eigen_SVD_SRCS "*.h")
|
||||
|
||||
INSTALL(FILES
|
||||
${Eigen_SVD_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}unsupported/Eigen/src/SVD COMPONENT Devel
|
||||
)
|
782
unsupported/Eigen/src/SVD/JacobiSVD.h
Normal file
782
unsupported/Eigen/src/SVD/JacobiSVD.h
Normal file
@ -0,0 +1,782 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_JACOBISVD_H
|
||||
#define EIGEN_JACOBISVD_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
// forward declaration (needed by ICC)
|
||||
// the empty body is required by MSVC
|
||||
template<typename MatrixType, int QRPreconditioner,
|
||||
bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
|
||||
struct svd_precondition_2x2_block_to_be_real {};
|
||||
|
||||
/*** QR preconditioners (R-SVD)
|
||||
***
|
||||
*** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
|
||||
*** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
|
||||
*** JacobiSVD which by itself is only able to work on square matrices.
|
||||
***/
|
||||
|
||||
enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner, int Case>
|
||||
struct qr_preconditioner_should_do_anything
|
||||
{
|
||||
enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
|
||||
MatrixType::ColsAtCompileTime != Dynamic &&
|
||||
MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
|
||||
b = MatrixType::RowsAtCompileTime != Dynamic &&
|
||||
MatrixType::ColsAtCompileTime != Dynamic &&
|
||||
MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
|
||||
ret = !( (QRPreconditioner == NoQRPreconditioner) ||
|
||||
(Case == PreconditionIfMoreColsThanRows && bool(a)) ||
|
||||
(Case == PreconditionIfMoreRowsThanCols && bool(b)) )
|
||||
};
|
||||
};
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner, int Case,
|
||||
bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
|
||||
> struct qr_preconditioner_impl {};
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner, int Case>
|
||||
class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Index Index;
|
||||
void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
|
||||
bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
/*** preconditioner using FullPivHouseholderQR ***/
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
enum
|
||||
{
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
|
||||
};
|
||||
typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.rows(), svd.cols());
|
||||
}
|
||||
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.rows() > matrix.cols())
|
||||
{
|
||||
m_qr.compute(matrix);
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
|
||||
if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
|
||||
if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
private:
|
||||
typedef FullPivHouseholderQR<MatrixType> QRType;
|
||||
QRType m_qr;
|
||||
WorkspaceType m_workspace;
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
enum
|
||||
{
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
Options = MatrixType::Options
|
||||
};
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
|
||||
TransposeTypeWithSameStorageOrder;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.cols(), svd.rows());
|
||||
}
|
||||
m_adjoint.resize(svd.cols(), svd.rows());
|
||||
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.cols() > matrix.rows())
|
||||
{
|
||||
m_adjoint = matrix.adjoint();
|
||||
m_qr.compute(m_adjoint);
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
|
||||
if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
|
||||
if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
}
|
||||
private:
|
||||
typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
|
||||
QRType m_qr;
|
||||
TransposeTypeWithSameStorageOrder m_adjoint;
|
||||
typename internal::plain_row_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
/*** preconditioner using ColPivHouseholderQR ***/
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.rows(), svd.cols());
|
||||
}
|
||||
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
|
||||
else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.rows() > matrix.cols())
|
||||
{
|
||||
m_qr.compute(matrix);
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
|
||||
if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
|
||||
else if(svd.m_computeThinU)
|
||||
{
|
||||
svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
|
||||
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
|
||||
}
|
||||
if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
private:
|
||||
typedef ColPivHouseholderQR<MatrixType> QRType;
|
||||
QRType m_qr;
|
||||
typename internal::plain_col_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
enum
|
||||
{
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
Options = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
|
||||
TransposeTypeWithSameStorageOrder;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.cols(), svd.rows());
|
||||
}
|
||||
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
|
||||
else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
|
||||
m_adjoint.resize(svd.cols(), svd.rows());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.cols() > matrix.rows())
|
||||
{
|
||||
m_adjoint = matrix.adjoint();
|
||||
m_qr.compute(m_adjoint);
|
||||
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
|
||||
if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
|
||||
else if(svd.m_computeThinV)
|
||||
{
|
||||
svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
|
||||
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
|
||||
}
|
||||
if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
}
|
||||
|
||||
private:
|
||||
typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
|
||||
QRType m_qr;
|
||||
TransposeTypeWithSameStorageOrder m_adjoint;
|
||||
typename internal::plain_row_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
/*** preconditioner using HouseholderQR ***/
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.rows(), svd.cols());
|
||||
}
|
||||
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
|
||||
else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.rows() > matrix.cols())
|
||||
{
|
||||
m_qr.compute(matrix);
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
|
||||
if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
|
||||
else if(svd.m_computeThinU)
|
||||
{
|
||||
svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
|
||||
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
|
||||
}
|
||||
if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
private:
|
||||
typedef HouseholderQR<MatrixType> QRType;
|
||||
QRType m_qr;
|
||||
typename internal::plain_col_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
enum
|
||||
{
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
Options = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
|
||||
TransposeTypeWithSameStorageOrder;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.cols(), svd.rows());
|
||||
}
|
||||
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
|
||||
else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
|
||||
m_adjoint.resize(svd.cols(), svd.rows());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.cols() > matrix.rows())
|
||||
{
|
||||
m_adjoint = matrix.adjoint();
|
||||
m_qr.compute(m_adjoint);
|
||||
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
|
||||
if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
|
||||
else if(svd.m_computeThinV)
|
||||
{
|
||||
svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
|
||||
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
|
||||
}
|
||||
if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
}
|
||||
|
||||
private:
|
||||
typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
|
||||
QRType m_qr;
|
||||
TransposeTypeWithSameStorageOrder m_adjoint;
|
||||
typename internal::plain_row_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
/*** 2x2 SVD implementation
|
||||
***
|
||||
*** JacobiSVD consists in performing a series of 2x2 SVD subproblems
|
||||
***/
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
|
||||
{
|
||||
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
|
||||
typedef typename SVD::Index Index;
|
||||
static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
|
||||
};
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
|
||||
{
|
||||
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename SVD::Index Index;
|
||||
static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
|
||||
{
|
||||
using std::sqrt;
|
||||
Scalar z;
|
||||
JacobiRotation<Scalar> rot;
|
||||
RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
|
||||
if(n==0)
|
||||
{
|
||||
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
||||
work_matrix.row(p) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
|
||||
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
|
||||
work_matrix.row(q) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
|
||||
}
|
||||
else
|
||||
{
|
||||
rot.c() = conj(work_matrix.coeff(p,p)) / n;
|
||||
rot.s() = work_matrix.coeff(q,p) / n;
|
||||
work_matrix.applyOnTheLeft(p,q,rot);
|
||||
if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
|
||||
if(work_matrix.coeff(p,q) != Scalar(0))
|
||||
{
|
||||
Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
||||
work_matrix.col(q) *= z;
|
||||
if(svd.computeV()) svd.m_matrixV.col(q) *= z;
|
||||
}
|
||||
if(work_matrix.coeff(q,q) != Scalar(0))
|
||||
{
|
||||
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
|
||||
work_matrix.row(q) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixType, typename RealScalar, typename Index>
|
||||
void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
|
||||
JacobiRotation<RealScalar> *j_left,
|
||||
JacobiRotation<RealScalar> *j_right)
|
||||
{
|
||||
using std::sqrt;
|
||||
Matrix<RealScalar,2,2> m;
|
||||
m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
|
||||
numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
|
||||
JacobiRotation<RealScalar> rot1;
|
||||
RealScalar t = m.coeff(0,0) + m.coeff(1,1);
|
||||
RealScalar d = m.coeff(1,0) - m.coeff(0,1);
|
||||
if(t == RealScalar(0))
|
||||
{
|
||||
rot1.c() = RealScalar(0);
|
||||
rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
|
||||
}
|
||||
else
|
||||
{
|
||||
RealScalar u = d / t;
|
||||
rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + numext::abs2(u));
|
||||
rot1.s() = rot1.c() * u;
|
||||
}
|
||||
m.applyOnTheLeft(0,1,rot1);
|
||||
j_right->makeJacobi(m,0,1);
|
||||
*j_left = rot1 * j_right->transpose();
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \ingroup SVD_Module
|
||||
*
|
||||
*
|
||||
* \class JacobiSVD
|
||||
*
|
||||
* \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
|
||||
* \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
|
||||
* for the R-SVD step for non-square matrices. See discussion of possible values below.
|
||||
*
|
||||
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
|
||||
* \f[ A = U S V^* \f]
|
||||
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
|
||||
* the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
|
||||
* and right \em singular \em vectors of \a A respectively.
|
||||
*
|
||||
* Singular values are always sorted in decreasing order.
|
||||
*
|
||||
* This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly.
|
||||
*
|
||||
* You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
|
||||
* smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
|
||||
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
|
||||
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
|
||||
*
|
||||
* Here's an example demonstrating basic usage:
|
||||
* \include JacobiSVD_basic.cpp
|
||||
* Output: \verbinclude JacobiSVD_basic.out
|
||||
*
|
||||
* This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than
|
||||
* bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and
|
||||
* \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms.
|
||||
* In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
|
||||
*
|
||||
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
|
||||
* terminate in finite (and reasonable) time.
|
||||
*
|
||||
* The possible values for QRPreconditioner are:
|
||||
* \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
|
||||
* \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
|
||||
* Contrary to other QRs, it doesn't allow computing thin unitaries.
|
||||
* \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
|
||||
* This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
|
||||
* is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive
|
||||
* process is more reliable than the optimized bidiagonal SVD iterations.
|
||||
* \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing
|
||||
* JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
|
||||
* faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
|
||||
* if QR preconditioning is needed before applying it anyway.
|
||||
*
|
||||
* \sa MatrixBase::jacobiSvd()
|
||||
*/
|
||||
template<typename _MatrixType, int QRPreconditioner>
|
||||
class JacobiSVD : public SVDBase<_MatrixType>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
|
||||
MatrixOptions = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
|
||||
MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
|
||||
MatrixUType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
|
||||
MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
|
||||
MatrixVType;
|
||||
typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
|
||||
typedef typename internal::plain_row_type<MatrixType>::type RowType;
|
||||
typedef typename internal::plain_col_type<MatrixType>::type ColType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
|
||||
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
|
||||
WorkMatrixType;
|
||||
|
||||
/** \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via JacobiSVD::compute(const MatrixType&).
|
||||
*/
|
||||
JacobiSVD()
|
||||
: SVDBase<_MatrixType>::SVDBase()
|
||||
{}
|
||||
|
||||
|
||||
/** \brief Default Constructor with memory preallocation
|
||||
*
|
||||
* Like the default constructor but with preallocation of the internal data
|
||||
* according to the specified problem size.
|
||||
* \sa JacobiSVD()
|
||||
*/
|
||||
JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
|
||||
: SVDBase<_MatrixType>::SVDBase()
|
||||
{
|
||||
allocate(rows, cols, computationOptions);
|
||||
}
|
||||
|
||||
/** \brief Constructor performing the decomposition of given matrix.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
||||
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
|
||||
* #ComputeFullV, #ComputeThinV.
|
||||
*
|
||||
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
||||
* available with the (non-default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
|
||||
: SVDBase<_MatrixType>::SVDBase()
|
||||
{
|
||||
compute(matrix, computationOptions);
|
||||
}
|
||||
|
||||
/** \brief Method performing the decomposition of given matrix using custom options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
||||
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
|
||||
* #ComputeFullV, #ComputeThinV.
|
||||
*
|
||||
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
||||
* available with the (non-default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions);
|
||||
|
||||
/** \brief Method performing the decomposition of given matrix using current options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
*
|
||||
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
|
||||
*/
|
||||
SVDBase<MatrixType>& compute(const MatrixType& matrix)
|
||||
{
|
||||
return compute(matrix, this->m_computationOptions);
|
||||
}
|
||||
|
||||
/** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
|
||||
*
|
||||
* \param b the right-hand-side of the equation to solve.
|
||||
*
|
||||
* \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
|
||||
*
|
||||
* \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
|
||||
* In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
|
||||
*/
|
||||
template<typename Rhs>
|
||||
inline const internal::solve_retval<JacobiSVD, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(this->m_isInitialized && "JacobiSVD is not initialized.");
|
||||
eigen_assert(SVDBase<MatrixType>::computeU() && SVDBase<MatrixType>::computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
|
||||
return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
|
||||
|
||||
private:
|
||||
void allocate(Index rows, Index cols, unsigned int computationOptions);
|
||||
|
||||
protected:
|
||||
WorkMatrixType m_workMatrix;
|
||||
|
||||
template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
|
||||
friend struct internal::svd_precondition_2x2_block_to_be_real;
|
||||
template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
|
||||
friend struct internal::qr_preconditioner_impl;
|
||||
|
||||
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
|
||||
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
|
||||
};
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
|
||||
{
|
||||
if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return;
|
||||
|
||||
if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
|
||||
{
|
||||
eigen_assert(!(this->m_computeThinU || this->m_computeThinV) &&
|
||||
"JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
|
||||
"Use the ColPivHouseholderQR preconditioner instead.");
|
||||
}
|
||||
|
||||
m_workMatrix.resize(this->m_diagSize, this->m_diagSize);
|
||||
|
||||
if(this->m_cols>this->m_rows) m_qr_precond_morecols.allocate(*this);
|
||||
if(this->m_rows>this->m_cols) m_qr_precond_morerows.allocate(*this);
|
||||
}
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
SVDBase<MatrixType>&
|
||||
JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
|
||||
{
|
||||
using std::abs;
|
||||
allocate(matrix.rows(), matrix.cols(), computationOptions);
|
||||
|
||||
// currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
|
||||
// only worsening the precision of U and V as we accumulate more rotations
|
||||
const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();
|
||||
|
||||
// limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
|
||||
const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min();
|
||||
|
||||
/*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
|
||||
|
||||
if(!m_qr_precond_morecols.run(*this, matrix) && !m_qr_precond_morerows.run(*this, matrix))
|
||||
{
|
||||
m_workMatrix = matrix.block(0,0,this->m_diagSize,this->m_diagSize);
|
||||
if(this->m_computeFullU) this->m_matrixU.setIdentity(this->m_rows,this->m_rows);
|
||||
if(this->m_computeThinU) this->m_matrixU.setIdentity(this->m_rows,this->m_diagSize);
|
||||
if(this->m_computeFullV) this->m_matrixV.setIdentity(this->m_cols,this->m_cols);
|
||||
if(this->m_computeThinV) this->m_matrixV.setIdentity(this->m_cols, this->m_diagSize);
|
||||
}
|
||||
|
||||
/*** step 2. The main Jacobi SVD iteration. ***/
|
||||
|
||||
bool finished = false;
|
||||
while(!finished)
|
||||
{
|
||||
finished = true;
|
||||
|
||||
// do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix
|
||||
|
||||
for(Index p = 1; p < this->m_diagSize; ++p)
|
||||
{
|
||||
for(Index q = 0; q < p; ++q)
|
||||
{
|
||||
// if this 2x2 sub-matrix is not diagonal already...
|
||||
// notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
|
||||
// keep us iterating forever. Similarly, small denormal numbers are considered zero.
|
||||
using std::max;
|
||||
RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)),
|
||||
abs(m_workMatrix.coeff(q,q))));
|
||||
if((max)(abs(m_workMatrix.coeff(p,q)),abs(m_workMatrix.coeff(q,p))) > threshold)
|
||||
{
|
||||
finished = false;
|
||||
|
||||
// perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
|
||||
internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
|
||||
JacobiRotation<RealScalar> j_left, j_right;
|
||||
internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
|
||||
|
||||
// accumulate resulting Jacobi rotations
|
||||
m_workMatrix.applyOnTheLeft(p,q,j_left);
|
||||
if(SVDBase<MatrixType>::computeU()) this->m_matrixU.applyOnTheRight(p,q,j_left.transpose());
|
||||
|
||||
m_workMatrix.applyOnTheRight(p,q,j_right);
|
||||
if(SVDBase<MatrixType>::computeV()) this->m_matrixV.applyOnTheRight(p,q,j_right);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/
|
||||
|
||||
for(Index i = 0; i < this->m_diagSize; ++i)
|
||||
{
|
||||
RealScalar a = abs(m_workMatrix.coeff(i,i));
|
||||
this->m_singularValues.coeffRef(i) = a;
|
||||
if(SVDBase<MatrixType>::computeU() && (a!=RealScalar(0))) this->m_matrixU.col(i) *= this->m_workMatrix.coeff(i,i)/a;
|
||||
}
|
||||
|
||||
/*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/
|
||||
|
||||
this->m_nonzeroSingularValues = this->m_diagSize;
|
||||
for(Index i = 0; i < this->m_diagSize; i++)
|
||||
{
|
||||
Index pos;
|
||||
RealScalar maxRemainingSingularValue = this->m_singularValues.tail(this->m_diagSize-i).maxCoeff(&pos);
|
||||
if(maxRemainingSingularValue == RealScalar(0))
|
||||
{
|
||||
this->m_nonzeroSingularValues = i;
|
||||
break;
|
||||
}
|
||||
if(pos)
|
||||
{
|
||||
pos += i;
|
||||
std::swap(this->m_singularValues.coeffRef(i), this->m_singularValues.coeffRef(pos));
|
||||
if(SVDBase<MatrixType>::computeU()) this->m_matrixU.col(pos).swap(this->m_matrixU.col(i));
|
||||
if(SVDBase<MatrixType>::computeV()) this->m_matrixV.col(pos).swap(this->m_matrixV.col(i));
|
||||
}
|
||||
}
|
||||
|
||||
this->m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
template<typename _MatrixType, int QRPreconditioner, typename Rhs>
|
||||
struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
||||
: solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
||||
{
|
||||
typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
eigen_assert(rhs().rows() == dec().rows());
|
||||
|
||||
// A = U S V^*
|
||||
// So A^{-1} = V S^{-1} U^*
|
||||
|
||||
Index diagSize = (std::min)(dec().rows(), dec().cols());
|
||||
typename JacobiSVDType::SingularValuesType invertedSingVals(diagSize);
|
||||
|
||||
Index nonzeroSingVals = dec().nonzeroSingularValues();
|
||||
invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
|
||||
invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
|
||||
|
||||
dst = dec().matrixV().leftCols(diagSize)
|
||||
* invertedSingVals.asDiagonal()
|
||||
* dec().matrixU().leftCols(diagSize).adjoint()
|
||||
* rhs();
|
||||
}
|
||||
};
|
||||
} // end namespace internal
|
||||
|
||||
/** \svd_module
|
||||
*
|
||||
* \return the singular value decomposition of \c *this computed by two-sided
|
||||
* Jacobi transformations.
|
||||
*
|
||||
* \sa class JacobiSVD
|
||||
*/
|
||||
template<typename Derived>
|
||||
JacobiSVD<typename MatrixBase<Derived>::PlainObject>
|
||||
MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
|
||||
{
|
||||
return JacobiSVD<PlainObject>(*this, computationOptions);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_JACOBISVD_H
|
236
unsupported/Eigen/src/SVD/SVDBase.h
Normal file
236
unsupported/Eigen/src/SVD/SVDBase.h
Normal file
@ -0,0 +1,236 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
|
||||
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
|
||||
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
|
||||
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SVD_H
|
||||
#define EIGEN_SVD_H
|
||||
|
||||
namespace Eigen {
|
||||
/** \ingroup SVD_Module
|
||||
*
|
||||
*
|
||||
* \class SVDBase
|
||||
*
|
||||
* \brief Mother class of SVD classes algorithms
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
|
||||
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
|
||||
* \f[ A = U S V^* \f]
|
||||
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
|
||||
* the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
|
||||
* and right \em singular \em vectors of \a A respectively.
|
||||
*
|
||||
* Singular values are always sorted in decreasing order.
|
||||
*
|
||||
*
|
||||
* You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
|
||||
* smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
|
||||
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
|
||||
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
|
||||
*
|
||||
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
|
||||
* terminate in finite (and reasonable) time.
|
||||
* \sa MatrixBase::genericSvd()
|
||||
*/
|
||||
template<typename _MatrixType>
|
||||
class SVDBase
|
||||
{
|
||||
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
|
||||
MatrixOptions = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
|
||||
MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
|
||||
MatrixUType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
|
||||
MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
|
||||
MatrixVType;
|
||||
typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
|
||||
typedef typename internal::plain_row_type<MatrixType>::type RowType;
|
||||
typedef typename internal::plain_col_type<MatrixType>::type ColType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
|
||||
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
|
||||
WorkMatrixType;
|
||||
|
||||
|
||||
|
||||
|
||||
/** \brief Method performing the decomposition of given matrix using custom options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
||||
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
|
||||
* #ComputeFullV, #ComputeThinV.
|
||||
*
|
||||
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
||||
* available with the (non-default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
SVDBase& compute(const MatrixType& matrix, unsigned int computationOptions);
|
||||
|
||||
/** \brief Method performing the decomposition of given matrix using current options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
*
|
||||
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
|
||||
*/
|
||||
//virtual SVDBase& compute(const MatrixType& matrix) = 0;
|
||||
SVDBase& compute(const MatrixType& matrix);
|
||||
|
||||
/** \returns the \a U matrix.
|
||||
*
|
||||
* For the SVDBase decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
|
||||
* the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU.
|
||||
*
|
||||
* The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
|
||||
*
|
||||
* This method asserts that you asked for \a U to be computed.
|
||||
*/
|
||||
const MatrixUType& matrixU() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
||||
eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
|
||||
return m_matrixU;
|
||||
}
|
||||
|
||||
/** \returns the \a V matrix.
|
||||
*
|
||||
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
|
||||
* the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV.
|
||||
*
|
||||
* The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
|
||||
*
|
||||
* This method asserts that you asked for \a V to be computed.
|
||||
*/
|
||||
const MatrixVType& matrixV() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
||||
eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
|
||||
return m_matrixV;
|
||||
}
|
||||
|
||||
/** \returns the vector of singular values.
|
||||
*
|
||||
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
|
||||
* returned vector has size \a m. Singular values are always sorted in decreasing order.
|
||||
*/
|
||||
const SingularValuesType& singularValues() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
||||
return m_singularValues;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** \returns the number of singular values that are not exactly 0 */
|
||||
Index nonzeroSingularValues() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
||||
return m_nonzeroSingularValues;
|
||||
}
|
||||
|
||||
|
||||
/** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
|
||||
inline bool computeU() const { return m_computeFullU || m_computeThinU; }
|
||||
/** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
|
||||
inline bool computeV() const { return m_computeFullV || m_computeThinV; }
|
||||
|
||||
|
||||
inline Index rows() const { return m_rows; }
|
||||
inline Index cols() const { return m_cols; }
|
||||
|
||||
|
||||
protected:
|
||||
// return true if already allocated
|
||||
bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
|
||||
|
||||
MatrixUType m_matrixU;
|
||||
MatrixVType m_matrixV;
|
||||
SingularValuesType m_singularValues;
|
||||
bool m_isInitialized, m_isAllocated;
|
||||
bool m_computeFullU, m_computeThinU;
|
||||
bool m_computeFullV, m_computeThinV;
|
||||
unsigned int m_computationOptions;
|
||||
Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
|
||||
|
||||
|
||||
/** \brief Default Constructor.
|
||||
*
|
||||
* Default constructor of SVDBase
|
||||
*/
|
||||
SVDBase()
|
||||
: m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1)
|
||||
{}
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
||||
template<typename MatrixType>
|
||||
bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
|
||||
{
|
||||
eigen_assert(rows >= 0 && cols >= 0);
|
||||
|
||||
if (m_isAllocated &&
|
||||
rows == m_rows &&
|
||||
cols == m_cols &&
|
||||
computationOptions == m_computationOptions)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
m_isInitialized = false;
|
||||
m_isAllocated = true;
|
||||
m_computationOptions = computationOptions;
|
||||
m_computeFullU = (computationOptions & ComputeFullU) != 0;
|
||||
m_computeThinU = (computationOptions & ComputeThinU) != 0;
|
||||
m_computeFullV = (computationOptions & ComputeFullV) != 0;
|
||||
m_computeThinV = (computationOptions & ComputeThinV) != 0;
|
||||
eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
|
||||
eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
|
||||
eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
|
||||
"SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
|
||||
|
||||
m_diagSize = (std::min)(m_rows, m_cols);
|
||||
m_singularValues.resize(m_diagSize);
|
||||
if(RowsAtCompileTime==Dynamic)
|
||||
m_matrixU.resize(m_rows, m_computeFullU ? m_rows
|
||||
: m_computeThinU ? m_diagSize
|
||||
: 0);
|
||||
if(ColsAtCompileTime==Dynamic)
|
||||
m_matrixV.resize(m_cols, m_computeFullV ? m_cols
|
||||
: m_computeThinV ? m_diagSize
|
||||
: 0);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
}// end namespace
|
||||
|
||||
#endif // EIGEN_SVD_H
|
29
unsupported/Eigen/src/SVD/TODOBdcsvd.txt
Normal file
29
unsupported/Eigen/src/SVD/TODOBdcsvd.txt
Normal file
@ -0,0 +1,29 @@
|
||||
TO DO LIST
|
||||
|
||||
|
||||
|
||||
(optional optimization) - do all the allocations in the allocate part
|
||||
- support static matrices
|
||||
- return a error at compilation time when using integer matrices (int, long, std::complex<int>, ...)
|
||||
|
||||
to finish the algorithm :
|
||||
-implement the last part of the algorithm as described on the reference paper.
|
||||
You may find more information on that part on this paper
|
||||
|
||||
-to replace the call to JacobiSVD at the end of the divide algorithm, just after the call to
|
||||
deflation.
|
||||
|
||||
(suggested step by step resolution)
|
||||
0) comment the call to Jacobi in the last part of the divide method and everything right after
|
||||
until the end of the method. What is commented can be a guideline to steps 3) 4) and 6)
|
||||
1) solve the secular equation (Characteristic equation) on the values that are not null (zi!=0 and di!=0), after the deflation
|
||||
wich should be uncommented in the divide method
|
||||
2) remember the values of the singular values that are already computed (zi=0)
|
||||
3) assign the singular values found in m_computed at the right places (with the ones found in step 2) )
|
||||
in decreasing order
|
||||
4) set the firstcol to zero (except the first element) in m_computed
|
||||
5) compute all the singular vectors when CompV is set to true and only the left vectors when
|
||||
CompV is set to false
|
||||
6) multiply naiveU and naiveV to the right by the matrices found, only naiveU when CompV is set to
|
||||
false, /!\ if CompU is false NaiveU has only 2 rows
|
||||
7) delete everything commented in step 0)
|
21
unsupported/Eigen/src/SVD/doneInBDCSVD.txt
Normal file
21
unsupported/Eigen/src/SVD/doneInBDCSVD.txt
Normal file
@ -0,0 +1,21 @@
|
||||
This unsupported package is about a divide and conquer algorithm to compute SVD.
|
||||
|
||||
The implementation follows as closely as possible the following reference paper :
|
||||
www.cs.yale.edu/publications/techreports/tr933.pdf
|
||||
|
||||
The code documentation uses the same names for variables as the reference paper. The code, deflation included, is
|
||||
working but there are a few things that could be optimised as explained in the TODOBdsvd.
|
||||
|
||||
In the code comments were put at the line where would be the third step of the algorithm so one could simply add the call
|
||||
of a function doing the last part of the algorithm and that would not require any knowledge of the part we implemented.
|
||||
|
||||
In the TODOBdcsvd we explain what is the main difficulty of the last part and suggest a reference paper to help solve it.
|
||||
|
||||
The implemented has trouble with fixed size matrices.
|
||||
|
||||
In the actual implementation, it returns matrices of zero when ask to do a svd on an int matrix.
|
||||
|
||||
|
||||
Paper for the third part:
|
||||
http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf
|
||||
|
123
unsupported/bench/bench_svd.cpp
Normal file
123
unsupported/bench/bench_svd.cpp
Normal file
@ -0,0 +1,123 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
|
||||
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
|
||||
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
|
||||
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/
|
||||
|
||||
// Bench to compare the efficiency of SVD algorithms
|
||||
|
||||
#include <iostream>
|
||||
#include <bench/BenchTimer.h>
|
||||
#include <unsupported/Eigen/SVD>
|
||||
|
||||
|
||||
using namespace Eigen;
|
||||
using namespace std;
|
||||
|
||||
// number of computations of each algorithm before the print of the time
|
||||
#ifndef REPEAT
|
||||
#define REPEAT 10
|
||||
#endif
|
||||
|
||||
// number of tests of the same type
|
||||
#ifndef NUMBER_SAMPLE
|
||||
#define NUMBER_SAMPLE 2
|
||||
#endif
|
||||
|
||||
template<typename MatrixType>
|
||||
void bench_svd(const MatrixType& a = MatrixType())
|
||||
{
|
||||
MatrixType m = MatrixType::Random(a.rows(), a.cols());
|
||||
BenchTimer timerJacobi;
|
||||
BenchTimer timerBDC;
|
||||
timerJacobi.reset();
|
||||
timerBDC.reset();
|
||||
|
||||
cout << " Only compute Singular Values" <<endl;
|
||||
for (int k=1; k<=NUMBER_SAMPLE; ++k)
|
||||
{
|
||||
timerBDC.start();
|
||||
for (int i=0; i<REPEAT; ++i)
|
||||
{
|
||||
BDCSVD<MatrixType> bdc_matrix(m);
|
||||
}
|
||||
timerBDC.stop();
|
||||
|
||||
timerJacobi.start();
|
||||
for (int i=0; i<REPEAT; ++i)
|
||||
{
|
||||
JacobiSVD<MatrixType> jacobi_matrix(m);
|
||||
}
|
||||
timerJacobi.stop();
|
||||
|
||||
|
||||
cout << "Sample " << k << " : " << REPEAT << " computations : Jacobi : " << fixed << timerJacobi.value() << "s ";
|
||||
cout << " || " << " BDC : " << timerBDC.value() << "s " <<endl <<endl;
|
||||
|
||||
if (timerBDC.value() >= timerJacobi.value())
|
||||
cout << "KO : BDC is " << timerJacobi.value() / timerBDC.value() << " times faster than Jacobi" <<endl;
|
||||
else
|
||||
cout << "OK : BDC is " << timerJacobi.value() / timerBDC.value() << " times faster than Jacobi" <<endl;
|
||||
|
||||
}
|
||||
cout << " =================" <<endl;
|
||||
std::cout<< std::endl;
|
||||
timerJacobi.reset();
|
||||
timerBDC.reset();
|
||||
cout << " Computes rotaion matrix" <<endl;
|
||||
for (int k=1; k<=NUMBER_SAMPLE; ++k)
|
||||
{
|
||||
timerBDC.start();
|
||||
for (int i=0; i<REPEAT; ++i)
|
||||
{
|
||||
BDCSVD<MatrixType> bdc_matrix(m, ComputeFullU|ComputeFullV);
|
||||
}
|
||||
timerBDC.stop();
|
||||
|
||||
timerJacobi.start();
|
||||
for (int i=0; i<REPEAT; ++i)
|
||||
{
|
||||
JacobiSVD<MatrixType> jacobi_matrix(m, ComputeFullU|ComputeFullV);
|
||||
}
|
||||
timerJacobi.stop();
|
||||
|
||||
|
||||
cout << "Sample " << k << " : " << REPEAT << " computations : Jacobi : " << fixed << timerJacobi.value() << "s ";
|
||||
cout << " || " << " BDC : " << timerBDC.value() << "s " <<endl <<endl;
|
||||
|
||||
if (timerBDC.value() >= timerJacobi.value())
|
||||
cout << "KO : BDC is " << timerJacobi.value() / timerBDC.value() << " times faster than Jacobi" <<endl;
|
||||
else
|
||||
cout << "OK : BDC is " << timerJacobi.value() / timerBDC.value() << " times faster than Jacobi" <<endl;
|
||||
|
||||
}
|
||||
std::cout<< std::endl;
|
||||
}
|
||||
|
||||
|
||||
|
||||
int main(int argc, char* argv[])
|
||||
{
|
||||
std::cout<< std::endl;
|
||||
|
||||
std::cout<<"On a (Dynamic, Dynamic) (6, 6) Matrix" <<std::endl;
|
||||
bench_svd<Matrix<double,Dynamic,Dynamic> >(Matrix<double,Dynamic,Dynamic>(6, 6));
|
||||
|
||||
std::cout<<"On a (Dynamic, Dynamic) (32, 32) Matrix" <<std::endl;
|
||||
bench_svd<Matrix<double,Dynamic,Dynamic> >(Matrix<double,Dynamic,Dynamic>(32, 32));
|
||||
|
||||
//std::cout<<"On a (Dynamic, Dynamic) (128, 128) Matrix" <<std::endl;
|
||||
//bench_svd<Matrix<double,Dynamic,Dynamic> >(Matrix<double,Dynamic,Dynamic>(128, 128));
|
||||
|
||||
std::cout<<"On a (Dynamic, Dynamic) (160, 160) Matrix" <<std::endl;
|
||||
bench_svd<Matrix<double,Dynamic,Dynamic> >(Matrix<double,Dynamic,Dynamic>(160, 160));
|
||||
|
||||
std::cout<< "--------------------------------------------------------------------"<< std::endl;
|
||||
|
||||
}
|
213
unsupported/test/bdcsvd.cpp
Normal file
213
unsupported/test/bdcsvd.cpp
Normal file
@ -0,0 +1,213 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
|
||||
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
|
||||
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
|
||||
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/
|
||||
|
||||
#include "svd_common.h"
|
||||
#include <iostream>
|
||||
#include <Eigen/LU>
|
||||
|
||||
// check if "svd" is the good image of "m"
|
||||
template<typename MatrixType>
|
||||
void bdcsvd_check_full(const MatrixType& m, const BDCSVD<MatrixType>& svd)
|
||||
{
|
||||
svd_check_full< MatrixType, BDCSVD< MatrixType > >(m, svd);
|
||||
}
|
||||
|
||||
// Compare to a reference value
|
||||
template<typename MatrixType>
|
||||
void bdcsvd_compare_to_full(const MatrixType& m,
|
||||
unsigned int computationOptions,
|
||||
const BDCSVD<MatrixType>& referenceSvd)
|
||||
{
|
||||
svd_compare_to_full< MatrixType, BDCSVD< MatrixType > >(m, computationOptions, referenceSvd);
|
||||
} // end bdcsvd_compare_to_full
|
||||
|
||||
|
||||
template<typename MatrixType>
|
||||
void bdcsvd_solve(const MatrixType& m, unsigned int computationOptions)
|
||||
{
|
||||
svd_solve< MatrixType, BDCSVD< MatrixType > >(m, computationOptions);
|
||||
} // end template bdcsvd_solve
|
||||
|
||||
|
||||
// test the computations options
|
||||
template<typename MatrixType>
|
||||
void bdcsvd_test_all_computation_options(const MatrixType& m)
|
||||
{
|
||||
BDCSVD<MatrixType> fullSvd(m, ComputeFullU|ComputeFullV);
|
||||
svd_test_computation_options_1< MatrixType, BDCSVD< MatrixType > >(m, fullSvd);
|
||||
svd_test_computation_options_2< MatrixType, BDCSVD< MatrixType > >(m, fullSvd);
|
||||
} // end bdcsvd_test_all_computation_options
|
||||
|
||||
|
||||
// Call a test with all the computations options
|
||||
template<typename MatrixType>
|
||||
void bdcsvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
|
||||
{
|
||||
MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a;
|
||||
bdcsvd_test_all_computation_options<MatrixType>(m);
|
||||
} // end template bdcsvd
|
||||
|
||||
|
||||
// verify assert
|
||||
template<typename MatrixType>
|
||||
void bdcsvd_verify_assert(const MatrixType& m)
|
||||
{
|
||||
svd_verify_assert< MatrixType, BDCSVD< MatrixType > >(m);
|
||||
}// end template bdcsvd_verify_assert
|
||||
|
||||
|
||||
// test weird values
|
||||
template<typename MatrixType>
|
||||
void bdcsvd_inf_nan()
|
||||
{
|
||||
svd_inf_nan< MatrixType, BDCSVD< MatrixType > >();
|
||||
}// end template bdcsvd_inf_nan
|
||||
|
||||
|
||||
|
||||
void bdcsvd_preallocate()
|
||||
{
|
||||
svd_preallocate< BDCSVD< MatrixXf > >();
|
||||
} // end bdcsvd_preallocate
|
||||
|
||||
|
||||
// compare the Singular values returned with Jacobi and Bdc
|
||||
template<typename MatrixType>
|
||||
void compare_bdc_jacobi(const MatrixType& a = MatrixType(), unsigned int computationOptions = 0)
|
||||
{
|
||||
std::cout << "debut compare" << std::endl;
|
||||
MatrixType m = MatrixType::Random(a.rows(), a.cols());
|
||||
BDCSVD<MatrixType> bdc_svd(m);
|
||||
JacobiSVD<MatrixType> jacobi_svd(m);
|
||||
VERIFY_IS_APPROX(bdc_svd.singularValues(), jacobi_svd.singularValues());
|
||||
if(computationOptions & ComputeFullU)
|
||||
VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU());
|
||||
if(computationOptions & ComputeThinU)
|
||||
VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU());
|
||||
if(computationOptions & ComputeFullV)
|
||||
VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV());
|
||||
if(computationOptions & ComputeThinV)
|
||||
VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV());
|
||||
std::cout << "fin compare" << std::endl;
|
||||
} // end template compare_bdc_jacobi
|
||||
|
||||
|
||||
// call the tests
|
||||
void test_bdcsvd()
|
||||
{
|
||||
// test of Dynamic defined Matrix (42, 42) of float
|
||||
CALL_SUBTEST_11(( bdcsvd_verify_assert<Matrix<float,Dynamic,Dynamic> >
|
||||
(Matrix<float,Dynamic,Dynamic>(42,42)) ));
|
||||
CALL_SUBTEST_11(( compare_bdc_jacobi<Matrix<float,Dynamic,Dynamic> >
|
||||
(Matrix<float,Dynamic,Dynamic>(42,42), 0) ));
|
||||
CALL_SUBTEST_11(( bdcsvd<Matrix<float,Dynamic,Dynamic> >
|
||||
(Matrix<float,Dynamic,Dynamic>(42,42)) ));
|
||||
|
||||
// test of Dynamic defined Matrix (50, 50) of double
|
||||
CALL_SUBTEST_13(( bdcsvd_verify_assert<Matrix<double,Dynamic,Dynamic> >
|
||||
(Matrix<double,Dynamic,Dynamic>(50,50)) ));
|
||||
CALL_SUBTEST_13(( compare_bdc_jacobi<Matrix<double,Dynamic,Dynamic> >
|
||||
(Matrix<double,Dynamic,Dynamic>(50,50), 0) ));
|
||||
CALL_SUBTEST_13(( bdcsvd<Matrix<double,Dynamic,Dynamic> >
|
||||
(Matrix<double,Dynamic,Dynamic>(50, 50)) ));
|
||||
|
||||
// test of Dynamic defined Matrix (22, 22) of complex double
|
||||
CALL_SUBTEST_14(( bdcsvd_verify_assert<Matrix<std::complex<double>,Dynamic,Dynamic> >
|
||||
(Matrix<std::complex<double>,Dynamic,Dynamic>(22,22)) ));
|
||||
CALL_SUBTEST_14(( compare_bdc_jacobi<Matrix<std::complex<double>,Dynamic,Dynamic> >
|
||||
(Matrix<std::complex<double>, Dynamic, Dynamic> (22,22), 0) ));
|
||||
CALL_SUBTEST_14(( bdcsvd<Matrix<std::complex<double>,Dynamic,Dynamic> >
|
||||
(Matrix<std::complex<double>,Dynamic,Dynamic>(22, 22)) ));
|
||||
|
||||
// test of Dynamic defined Matrix (10, 10) of int
|
||||
//CALL_SUBTEST_15(( bdcsvd_verify_assert<Matrix<int,Dynamic,Dynamic> >
|
||||
// (Matrix<int,Dynamic,Dynamic>(10,10)) ));
|
||||
//CALL_SUBTEST_15(( compare_bdc_jacobi<Matrix<int,Dynamic,Dynamic> >
|
||||
// (Matrix<int,Dynamic,Dynamic>(10,10), 0) ));
|
||||
//CALL_SUBTEST_15(( bdcsvd<Matrix<int,Dynamic,Dynamic> >
|
||||
// (Matrix<int,Dynamic,Dynamic>(10, 10)) ));
|
||||
|
||||
|
||||
// test of Dynamic defined Matrix (8, 6) of double
|
||||
|
||||
CALL_SUBTEST_16(( bdcsvd_verify_assert<Matrix<double,Dynamic,Dynamic> >
|
||||
(Matrix<double,Dynamic,Dynamic>(8,6)) ));
|
||||
CALL_SUBTEST_16(( compare_bdc_jacobi<Matrix<double,Dynamic,Dynamic> >
|
||||
(Matrix<double,Dynamic,Dynamic>(8, 6), 0) ));
|
||||
CALL_SUBTEST_16(( bdcsvd<Matrix<double,Dynamic,Dynamic> >
|
||||
(Matrix<double,Dynamic,Dynamic>(8, 6)) ));
|
||||
|
||||
|
||||
|
||||
// test of Dynamic defined Matrix (36, 12) of float
|
||||
CALL_SUBTEST_17(( compare_bdc_jacobi<Matrix<float,Dynamic,Dynamic> >
|
||||
(Matrix<float,Dynamic,Dynamic>(36, 12), 0) ));
|
||||
CALL_SUBTEST_17(( bdcsvd<Matrix<float,Dynamic,Dynamic> >
|
||||
(Matrix<float,Dynamic,Dynamic>(36, 12)) ));
|
||||
|
||||
// test of Dynamic defined Matrix (5, 8) of double
|
||||
CALL_SUBTEST_18(( compare_bdc_jacobi<Matrix<double,Dynamic,Dynamic> >
|
||||
(Matrix<double,Dynamic,Dynamic>(5, 8), 0) ));
|
||||
CALL_SUBTEST_18(( bdcsvd<Matrix<double,Dynamic,Dynamic> >
|
||||
(Matrix<double,Dynamic,Dynamic>(5, 8)) ));
|
||||
|
||||
|
||||
// non regression tests
|
||||
CALL_SUBTEST_3(( bdcsvd_verify_assert(Matrix3f()) ));
|
||||
CALL_SUBTEST_4(( bdcsvd_verify_assert(Matrix4d()) ));
|
||||
CALL_SUBTEST_7(( bdcsvd_verify_assert(MatrixXf(10,12)) ));
|
||||
CALL_SUBTEST_8(( bdcsvd_verify_assert(MatrixXcd(7,5)) ));
|
||||
|
||||
// SUBTESTS 1 and 2 on specifics matrix
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
Matrix2cd m;
|
||||
m << 0, 1,
|
||||
0, 1;
|
||||
CALL_SUBTEST_1(( bdcsvd(m, false) ));
|
||||
m << 1, 0,
|
||||
1, 0;
|
||||
CALL_SUBTEST_1(( bdcsvd(m, false) ));
|
||||
|
||||
Matrix2d n;
|
||||
n << 0, 0,
|
||||
0, 0;
|
||||
CALL_SUBTEST_2(( bdcsvd(n, false) ));
|
||||
n << 0, 0,
|
||||
0, 1;
|
||||
CALL_SUBTEST_2(( bdcsvd(n, false) ));
|
||||
|
||||
// Statics matrix don't work with BDSVD yet
|
||||
// bdc algo on a random 3x3 float matrix
|
||||
// CALL_SUBTEST_3(( bdcsvd<Matrix3f>() ));
|
||||
// bdc algo on a random 4x4 double matrix
|
||||
// CALL_SUBTEST_4(( bdcsvd<Matrix4d>() ));
|
||||
// bdc algo on a random 3x5 float matrix
|
||||
// CALL_SUBTEST_5(( bdcsvd<Matrix<float,3,5> >() ));
|
||||
|
||||
int r = internal::random<int>(1, 30),
|
||||
c = internal::random<int>(1, 30);
|
||||
CALL_SUBTEST_7(( bdcsvd<MatrixXf>(MatrixXf(r,c)) ));
|
||||
CALL_SUBTEST_8(( bdcsvd<MatrixXcd>(MatrixXcd(r,c)) ));
|
||||
(void) r;
|
||||
(void) c;
|
||||
|
||||
// Test on inf/nan matrix
|
||||
CALL_SUBTEST_7( bdcsvd_inf_nan<MatrixXf>() );
|
||||
}
|
||||
|
||||
CALL_SUBTEST_7(( bdcsvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
|
||||
CALL_SUBTEST_8(( bdcsvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));
|
||||
|
||||
// Test problem size constructors
|
||||
CALL_SUBTEST_7( BDCSVD<MatrixXf>(10,10) );
|
||||
|
||||
} // end test_bdcsvd
|
198
unsupported/test/jacobisvd.cpp
Normal file
198
unsupported/test/jacobisvd.cpp
Normal file
@ -0,0 +1,198 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "svd_common.h"
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd)
|
||||
{
|
||||
svd_check_full<MatrixType, JacobiSVD<MatrixType, QRPreconditioner > >(m, svd);
|
||||
}
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
void jacobisvd_compare_to_full(const MatrixType& m,
|
||||
unsigned int computationOptions,
|
||||
const JacobiSVD<MatrixType, QRPreconditioner>& referenceSvd)
|
||||
{
|
||||
svd_compare_to_full<MatrixType, JacobiSVD<MatrixType, QRPreconditioner> >(m, computationOptions, referenceSvd);
|
||||
}
|
||||
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions)
|
||||
{
|
||||
svd_solve< MatrixType, JacobiSVD< MatrixType, QRPreconditioner > >(m, computationOptions);
|
||||
}
|
||||
|
||||
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
void jacobisvd_test_all_computation_options(const MatrixType& m)
|
||||
{
|
||||
|
||||
if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
|
||||
return;
|
||||
|
||||
JacobiSVD< MatrixType, QRPreconditioner > fullSvd(m, ComputeFullU|ComputeFullV);
|
||||
svd_test_computation_options_1< MatrixType, JacobiSVD< MatrixType, QRPreconditioner > >(m, fullSvd);
|
||||
|
||||
if(QRPreconditioner == FullPivHouseholderQRPreconditioner)
|
||||
return;
|
||||
svd_test_computation_options_2< MatrixType, JacobiSVD< MatrixType, QRPreconditioner > >(m, fullSvd);
|
||||
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
|
||||
{
|
||||
MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a;
|
||||
|
||||
jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m);
|
||||
jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m);
|
||||
jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m);
|
||||
jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m);
|
||||
}
|
||||
|
||||
|
||||
template<typename MatrixType>
|
||||
void jacobisvd_verify_assert(const MatrixType& m)
|
||||
{
|
||||
|
||||
svd_verify_assert<MatrixType, JacobiSVD< MatrixType > >(m);
|
||||
|
||||
typedef typename MatrixType::Index Index;
|
||||
Index rows = m.rows();
|
||||
Index cols = m.cols();
|
||||
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime
|
||||
};
|
||||
|
||||
MatrixType a = MatrixType::Zero(rows, cols);
|
||||
a.setZero();
|
||||
|
||||
if (ColsAtCompileTime == Dynamic)
|
||||
{
|
||||
JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr;
|
||||
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV))
|
||||
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV))
|
||||
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV))
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void jacobisvd_method()
|
||||
{
|
||||
enum { Size = MatrixType::RowsAtCompileTime };
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef Matrix<RealScalar, Size, 1> RealVecType;
|
||||
MatrixType m = MatrixType::Identity();
|
||||
VERIFY_IS_APPROX(m.jacobiSvd().singularValues(), RealVecType::Ones());
|
||||
VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixU());
|
||||
VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixV());
|
||||
VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).solve(m), m);
|
||||
}
|
||||
|
||||
|
||||
|
||||
template<typename MatrixType>
|
||||
void jacobisvd_inf_nan()
|
||||
{
|
||||
svd_inf_nan<MatrixType, JacobiSVD< MatrixType > >();
|
||||
}
|
||||
|
||||
|
||||
// Regression test for bug 286: JacobiSVD loops indefinitely with some
|
||||
// matrices containing denormal numbers.
|
||||
void jacobisvd_bug286()
|
||||
{
|
||||
#if defined __INTEL_COMPILER
|
||||
// shut up warning #239: floating point underflow
|
||||
#pragma warning push
|
||||
#pragma warning disable 239
|
||||
#endif
|
||||
Matrix2d M;
|
||||
M << -7.90884e-313, -4.94e-324,
|
||||
0, 5.60844e-313;
|
||||
#if defined __INTEL_COMPILER
|
||||
#pragma warning pop
|
||||
#endif
|
||||
JacobiSVD<Matrix2d> svd;
|
||||
svd.compute(M); // just check we don't loop indefinitely
|
||||
}
|
||||
|
||||
|
||||
void jacobisvd_preallocate()
|
||||
{
|
||||
svd_preallocate< JacobiSVD <MatrixXf> >();
|
||||
}
|
||||
|
||||
void test_jacobisvd()
|
||||
{
|
||||
CALL_SUBTEST_11(( jacobisvd<Matrix<double,Dynamic,Dynamic> >
|
||||
(Matrix<double,Dynamic,Dynamic>(16, 6)) ));
|
||||
|
||||
CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) ));
|
||||
CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) ));
|
||||
CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) ));
|
||||
CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) ));
|
||||
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
Matrix2cd m;
|
||||
m << 0, 1,
|
||||
0, 1;
|
||||
CALL_SUBTEST_1(( jacobisvd(m, false) ));
|
||||
m << 1, 0,
|
||||
1, 0;
|
||||
CALL_SUBTEST_1(( jacobisvd(m, false) ));
|
||||
|
||||
Matrix2d n;
|
||||
n << 0, 0,
|
||||
0, 0;
|
||||
CALL_SUBTEST_2(( jacobisvd(n, false) ));
|
||||
n << 0, 0,
|
||||
0, 1;
|
||||
CALL_SUBTEST_2(( jacobisvd(n, false) ));
|
||||
|
||||
CALL_SUBTEST_3(( jacobisvd<Matrix3f>() ));
|
||||
CALL_SUBTEST_4(( jacobisvd<Matrix4d>() ));
|
||||
CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() ));
|
||||
CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) ));
|
||||
|
||||
int r = internal::random<int>(1, 30),
|
||||
c = internal::random<int>(1, 30);
|
||||
CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) ));
|
||||
CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) ));
|
||||
(void) r;
|
||||
(void) c;
|
||||
|
||||
// Test on inf/nan matrix
|
||||
CALL_SUBTEST_7( jacobisvd_inf_nan<MatrixXf>() );
|
||||
}
|
||||
|
||||
CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
|
||||
CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));
|
||||
|
||||
|
||||
// test matrixbase method
|
||||
CALL_SUBTEST_1(( jacobisvd_method<Matrix2cd>() ));
|
||||
CALL_SUBTEST_3(( jacobisvd_method<Matrix3f>() ));
|
||||
|
||||
|
||||
// Test problem size constructors
|
||||
CALL_SUBTEST_7( JacobiSVD<MatrixXf>(10,10) );
|
||||
|
||||
// Check that preallocation avoids subsequent mallocs
|
||||
CALL_SUBTEST_9( jacobisvd_preallocate() );
|
||||
|
||||
// Regression check for bug 286
|
||||
CALL_SUBTEST_2( jacobisvd_bug286() );
|
||||
}
|
261
unsupported/test/svd_common.h
Normal file
261
unsupported/test/svd_common.h
Normal file
@ -0,0 +1,261 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
|
||||
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
|
||||
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
|
||||
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
// discard stack allocation as that too bypasses malloc
|
||||
#define EIGEN_STACK_ALLOCATION_LIMIT 0
|
||||
#define EIGEN_RUNTIME_NO_MALLOC
|
||||
|
||||
#include "main.h"
|
||||
#include <unsupported/Eigen/SVD>
|
||||
#include <Eigen/LU>
|
||||
|
||||
|
||||
// check if "svd" is the good image of "m"
|
||||
template<typename MatrixType, typename SVD>
|
||||
void svd_check_full(const MatrixType& m, const SVD& svd)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
Index rows = m.rows();
|
||||
Index cols = m.cols();
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime
|
||||
};
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
|
||||
|
||||
|
||||
MatrixType sigma = MatrixType::Zero(rows, cols);
|
||||
sigma.diagonal() = svd.singularValues().template cast<Scalar>();
|
||||
MatrixUType u = svd.matrixU();
|
||||
MatrixVType v = svd.matrixV();
|
||||
VERIFY_IS_APPROX(m, u * sigma * v.adjoint());
|
||||
VERIFY_IS_UNITARY(u);
|
||||
VERIFY_IS_UNITARY(v);
|
||||
} // end svd_check_full
|
||||
|
||||
|
||||
|
||||
// Compare to a reference value
|
||||
template<typename MatrixType, typename SVD>
|
||||
void svd_compare_to_full(const MatrixType& m,
|
||||
unsigned int computationOptions,
|
||||
const SVD& referenceSvd)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
Index rows = m.rows();
|
||||
Index cols = m.cols();
|
||||
Index diagSize = (std::min)(rows, cols);
|
||||
|
||||
SVD svd(m, computationOptions);
|
||||
|
||||
VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
|
||||
if(computationOptions & ComputeFullU)
|
||||
VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
|
||||
if(computationOptions & ComputeThinU)
|
||||
VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
|
||||
if(computationOptions & ComputeFullV)
|
||||
VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV());
|
||||
if(computationOptions & ComputeThinV)
|
||||
VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
|
||||
} // end svd_compare_to_full
|
||||
|
||||
|
||||
|
||||
template<typename MatrixType, typename SVD>
|
||||
void svd_solve(const MatrixType& m, unsigned int computationOptions)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
Index rows = m.rows();
|
||||
Index cols = m.cols();
|
||||
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
|
||||
|
||||
RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
|
||||
SVD svd(m, computationOptions);
|
||||
SolutionType x = svd.solve(rhs);
|
||||
// evaluate normal equation which works also for least-squares solutions
|
||||
VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
|
||||
} // end svd_solve
|
||||
|
||||
|
||||
// test computations options
|
||||
// 2 functions because Jacobisvd can return before the second function
|
||||
template<typename MatrixType, typename SVD>
|
||||
void svd_test_computation_options_1(const MatrixType& m, const SVD& fullSvd)
|
||||
{
|
||||
svd_check_full< MatrixType, SVD >(m, fullSvd);
|
||||
svd_solve< MatrixType, SVD >(m, ComputeFullU | ComputeFullV);
|
||||
}
|
||||
|
||||
|
||||
template<typename MatrixType, typename SVD>
|
||||
void svd_test_computation_options_2(const MatrixType& m, const SVD& fullSvd)
|
||||
{
|
||||
svd_compare_to_full< MatrixType, SVD >(m, ComputeFullU, fullSvd);
|
||||
svd_compare_to_full< MatrixType, SVD >(m, ComputeFullV, fullSvd);
|
||||
svd_compare_to_full< MatrixType, SVD >(m, 0, fullSvd);
|
||||
|
||||
if (MatrixType::ColsAtCompileTime == Dynamic) {
|
||||
// thin U/V are only available with dynamic number of columns
|
||||
|
||||
svd_compare_to_full< MatrixType, SVD >(m, ComputeFullU|ComputeThinV, fullSvd);
|
||||
svd_compare_to_full< MatrixType, SVD >(m, ComputeThinV, fullSvd);
|
||||
svd_compare_to_full< MatrixType, SVD >(m, ComputeThinU|ComputeFullV, fullSvd);
|
||||
svd_compare_to_full< MatrixType, SVD >(m, ComputeThinU , fullSvd);
|
||||
svd_compare_to_full< MatrixType, SVD >(m, ComputeThinU|ComputeThinV, fullSvd);
|
||||
svd_solve<MatrixType, SVD>(m, ComputeFullU | ComputeThinV);
|
||||
svd_solve<MatrixType, SVD>(m, ComputeThinU | ComputeFullV);
|
||||
svd_solve<MatrixType, SVD>(m, ComputeThinU | ComputeThinV);
|
||||
|
||||
typedef typename MatrixType::Index Index;
|
||||
Index diagSize = (std::min)(m.rows(), m.cols());
|
||||
SVD svd(m, ComputeThinU | ComputeThinV);
|
||||
VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType, typename SVD>
|
||||
void svd_verify_assert(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
Index rows = m.rows();
|
||||
Index cols = m.cols();
|
||||
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
|
||||
RhsType rhs(rows);
|
||||
SVD svd;
|
||||
VERIFY_RAISES_ASSERT(svd.matrixU())
|
||||
VERIFY_RAISES_ASSERT(svd.singularValues())
|
||||
VERIFY_RAISES_ASSERT(svd.matrixV())
|
||||
VERIFY_RAISES_ASSERT(svd.solve(rhs))
|
||||
MatrixType a = MatrixType::Zero(rows, cols);
|
||||
a.setZero();
|
||||
svd.compute(a, 0);
|
||||
VERIFY_RAISES_ASSERT(svd.matrixU())
|
||||
VERIFY_RAISES_ASSERT(svd.matrixV())
|
||||
svd.singularValues();
|
||||
VERIFY_RAISES_ASSERT(svd.solve(rhs))
|
||||
|
||||
if (ColsAtCompileTime == Dynamic)
|
||||
{
|
||||
svd.compute(a, ComputeThinU);
|
||||
svd.matrixU();
|
||||
VERIFY_RAISES_ASSERT(svd.matrixV())
|
||||
VERIFY_RAISES_ASSERT(svd.solve(rhs))
|
||||
svd.compute(a, ComputeThinV);
|
||||
svd.matrixV();
|
||||
VERIFY_RAISES_ASSERT(svd.matrixU())
|
||||
VERIFY_RAISES_ASSERT(svd.solve(rhs))
|
||||
}
|
||||
else
|
||||
{
|
||||
VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
|
||||
VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
|
||||
}
|
||||
}
|
||||
|
||||
// work around stupid msvc error when constructing at compile time an expression that involves
|
||||
// a division by zero, even if the numeric type has floating point
|
||||
template<typename Scalar>
|
||||
EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }
|
||||
|
||||
// workaround aggressive optimization in ICC
|
||||
template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
|
||||
|
||||
|
||||
template<typename MatrixType, typename SVD>
|
||||
void svd_inf_nan()
|
||||
{
|
||||
// all this function does is verify we don't iterate infinitely on nan/inf values
|
||||
|
||||
SVD svd;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
Scalar some_inf = Scalar(1) / zero<Scalar>();
|
||||
VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
|
||||
svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
|
||||
|
||||
Scalar some_nan = zero<Scalar> () / zero<Scalar> ();
|
||||
VERIFY(some_nan != some_nan);
|
||||
svd.compute(MatrixType::Constant(10,10,some_nan), ComputeFullU | ComputeFullV);
|
||||
|
||||
MatrixType m = MatrixType::Zero(10,10);
|
||||
m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
|
||||
svd.compute(m, ComputeFullU | ComputeFullV);
|
||||
|
||||
m = MatrixType::Zero(10,10);
|
||||
m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_nan;
|
||||
svd.compute(m, ComputeFullU | ComputeFullV);
|
||||
}
|
||||
|
||||
|
||||
template<typename SVD>
|
||||
void svd_preallocate()
|
||||
{
|
||||
Vector3f v(3.f, 2.f, 1.f);
|
||||
MatrixXf m = v.asDiagonal();
|
||||
|
||||
internal::set_is_malloc_allowed(false);
|
||||
VERIFY_RAISES_ASSERT(VectorXf v(10);)
|
||||
SVD svd;
|
||||
internal::set_is_malloc_allowed(true);
|
||||
svd.compute(m);
|
||||
VERIFY_IS_APPROX(svd.singularValues(), v);
|
||||
|
||||
SVD svd2(3,3);
|
||||
internal::set_is_malloc_allowed(false);
|
||||
svd2.compute(m);
|
||||
internal::set_is_malloc_allowed(true);
|
||||
VERIFY_IS_APPROX(svd2.singularValues(), v);
|
||||
VERIFY_RAISES_ASSERT(svd2.matrixU());
|
||||
VERIFY_RAISES_ASSERT(svd2.matrixV());
|
||||
svd2.compute(m, ComputeFullU | ComputeFullV);
|
||||
VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
|
||||
VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
|
||||
internal::set_is_malloc_allowed(false);
|
||||
svd2.compute(m);
|
||||
internal::set_is_malloc_allowed(true);
|
||||
|
||||
SVD svd3(3,3,ComputeFullU|ComputeFullV);
|
||||
internal::set_is_malloc_allowed(false);
|
||||
svd2.compute(m);
|
||||
internal::set_is_malloc_allowed(true);
|
||||
VERIFY_IS_APPROX(svd2.singularValues(), v);
|
||||
VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
|
||||
VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
|
||||
internal::set_is_malloc_allowed(false);
|
||||
svd2.compute(m, ComputeFullU|ComputeFullV);
|
||||
internal::set_is_malloc_allowed(true);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user