new unsupported and not finished SVD, using a divide and conquert algorithm, with tests and benchmark

This commit is contained in:
Gauthier Brun 2013-06-19 00:03:27 +02:00
parent ba79e39c5c
commit 8105b5ed3f
11 changed files with 2652 additions and 0 deletions

39
unsupported/Eigen/SVD Normal file
View File

@ -0,0 +1,39 @@
#ifndef EIGEN_SVD_MODULE_H
#define EIGEN_SVD_MODULE_H
#include <Eigen/QR>
#include <Eigen/Householder>
#include <Eigen/Jacobi>
#include "../../Eigen/src/Core/util/DisableStupidWarnings.h"
/** \defgroup SVD_Module SVD module
*
*
*
* This module provides SVD decomposition for matrices (both real and complex).
* This decomposition is accessible via the following MatrixBase method:
* - MatrixBase::jacobiSvd()
*
* \code
* #include <Eigen/SVD>
* \endcode
*/
#include "../../Eigen/src/misc/Solve.h"
#include "../../Eigen/src/SVD/UpperBidiagonalization.h"
#include "src/SVD/SVDBase.h"
#include "src/SVD/JacobiSVD.h"
#include "src/SVD/BDCSVD.h"
#if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT)
#include "../../Eigen/src/SVD/JacobiSVD_MKL.h"
#endif
#ifdef EIGEN2_SUPPORT
#include "../../Eigen/src/Eigen2Support/SVD.h"
#endif
#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_SVD_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -0,0 +1,744 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD"
// research report written by Ming Gu and Stanley C.Eisenstat
// The code variable names correspond to the names they used in their
// report
//
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
//
// Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BDCSVD_H
#define EIGEN_BDCSVD_H
#define EPSILON 0.0000000000000001
#define ALGOSWAP 32
namespace Eigen {
/** \ingroup SVD_Module
*
*
* \class BDCSVD
*
* \brief class Bidiagonal Divide and Conquer SVD
*
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
* We plan to have a very similar interface to JacobiSVD on this class.
* It should be used to speed up the calcul of SVD for big matrices.
*/
template<typename _MatrixType>
class BDCSVD : public SVDBase<_MatrixType>
{
public:
typedef _MatrixType MatrixType;
typedef typename SVDBase<_MatrixType>::MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime),
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime),
MatrixOptions = MatrixType::Options
};
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
MatrixUType;
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
MatrixVType;
typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
typedef typename internal::plain_row_type<MatrixType>::type RowType;
typedef typename internal::plain_col_type<MatrixType>::type ColType;
typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
typedef Matrix<RealScalar, Dynamic, Dynamic> MatrixXr;
typedef Matrix<RealScalar, Dynamic, 1> VectorType;
/** \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via BDCSVD::compute(const MatrixType&).
*/
BDCSVD()
: SVDBase<_MatrixType>::SVDBase(),
algoswap(ALGOSWAP)
{}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem size.
* \sa BDCSVD()
*/
BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
: SVDBase<_MatrixType>::SVDBase(),
algoswap(ALGOSWAP)
{
allocate(rows, cols, computationOptions);
}
/** \brief Constructor performing the decomposition of given matrix.
*
* \param matrix the matrix to decompose
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
* By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
* #ComputeFullV, #ComputeThinV.
*
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
* available with the (non - default) FullPivHouseholderQR preconditioner.
*/
BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
: SVDBase<_MatrixType>::SVDBase(),
algoswap(ALGOSWAP)
{
compute(matrix, computationOptions);
}
~BDCSVD()
{
}
/** \brief Method performing the decomposition of given matrix using custom options.
*
* \param matrix the matrix to decompose
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
* By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
* #ComputeFullV, #ComputeThinV.
*
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
* available with the (non - default) FullPivHouseholderQR preconditioner.
*/
SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions);
/** \brief Method performing the decomposition of given matrix using current options.
*
* \param matrix the matrix to decompose
*
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
*/
SVDBase<MatrixType>& compute(const MatrixType& matrix)
{
return compute(matrix, this->m_computationOptions);
}
void setSwitchSize(int s)
{
eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 4");
algoswap = s;
}
/** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
*
* \param b the right - hand - side of the equation to solve.
*
* \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
*
* \note SVD solving is implicitly least - squares. Thus, this method serves both purposes of exact solving and least - squares solving.
* In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
*/
template<typename Rhs>
inline const internal::solve_retval<BDCSVD, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(this->m_isInitialized && "BDCSVD is not initialized.");
eigen_assert(SVDBase<_MatrixType>::computeU() && SVDBase<_MatrixType>::computeV() &&
"BDCSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
return internal::solve_retval<BDCSVD, Rhs>(*this, b.derived());
}
const MatrixUType& matrixU() const
{
eigen_assert(this->m_isInitialized && "SVD is not initialized.");
if (isTranspose){
eigen_assert(this->computeV() && "This SVD decomposition didn't compute U. Did you ask for it?");
return this->m_matrixV;
}
else
{
eigen_assert(this->computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
return this->m_matrixU;
}
}
const MatrixVType& matrixV() const
{
eigen_assert(this->m_isInitialized && "SVD is not initialized.");
if (isTranspose){
eigen_assert(this->computeU() && "This SVD decomposition didn't compute V. Did you ask for it?");
return this->m_matrixU;
}
else
{
eigen_assert(this->computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
return this->m_matrixV;
}
}
private:
void allocate(Index rows, Index cols, unsigned int computationOptions);
void divide (Index firstCol, Index lastCol, Index firstRowW,
Index firstColW, Index shift);
void deflation43(Index firstCol, Index shift, Index i, Index size);
void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
void copyUV(MatrixXr naiveU, MatrixXr naiveV, MatrixX householderU, MatrixX houseHolderV);
protected:
MatrixXr m_naiveU, m_naiveV;
MatrixXr m_computed;
Index nRec;
int algoswap;
bool isTranspose, compU, compV;
}; //end class BDCSVD
// Methode to allocate ans initialize matrix and attributs
template<typename MatrixType>
void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
{
isTranspose = (cols > rows);
if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return;
m_computed = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize );
if (isTranspose){
compU = this->computeU();
compV = this->computeV();
}
else
{
compV = this->computeU();
compU = this->computeV();
}
if (compU) m_naiveU = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize + 1 );
else m_naiveU = MatrixXr::Zero(2, this->m_diagSize + 1 );
if (compV) m_naiveV = MatrixXr::Zero(this->m_diagSize, this->m_diagSize);
//should be changed for a cleaner implementation
if (isTranspose){
bool aux;
if (this->computeU()||this->computeV()){
aux = this->m_computeFullU;
this->m_computeFullU = this->m_computeFullV;
this->m_computeFullV = aux;
aux = this->m_computeThinU;
this->m_computeThinU = this->m_computeThinV;
this->m_computeThinV = aux;
}
}
}// end allocate
// Methode which compute the BDCSVD for the int
template<>
SVDBase<Matrix<int, Dynamic, Dynamic> >&
BDCSVD<Matrix<int, Dynamic, Dynamic> >::compute(const MatrixType& matrix, unsigned int computationOptions) {
allocate(matrix.rows(), matrix.cols(), computationOptions);
this->m_nonzeroSingularValues = 0;
m_computed = Matrix<int, Dynamic, Dynamic>::Zero(rows(), cols());
for (int i=0; i<this->m_diagSize; i++) {
this->m_singularValues.coeffRef(i) = 0;
}
if (this->m_computeFullU) this->m_matrixU = Matrix<int, Dynamic, Dynamic>::Zero(rows(), rows());
if (this->m_computeFullV) this->m_matrixV = Matrix<int, Dynamic, Dynamic>::Zero(cols(), cols());
this->m_isInitialized = true;
return *this;
}
// Methode which compute the BDCSVD
template<typename MatrixType>
SVDBase<MatrixType>&
BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
{
allocate(matrix.rows(), matrix.cols(), computationOptions);
using std::abs;
//**** step 1 Bidiagonalization isTranspose = (matrix.cols()>matrix.rows()) ;
MatrixType copy;
if (isTranspose) copy = matrix.adjoint();
else copy = matrix;
internal::UpperBidiagonalization<MatrixX > bid(copy);
//**** step 2 Divide
// this is ugly and has to be redone (care of complex cast)
MatrixXr temp;
temp = bid.bidiagonal().toDenseMatrix().transpose();
m_computed.setZero();
for (int i=0; i<this->m_diagSize - 1; i++) {
m_computed(i, i) = temp(i, i);
m_computed(i + 1, i) = temp(i + 1, i);
}
m_computed(this->m_diagSize - 1, this->m_diagSize - 1) = temp(this->m_diagSize - 1, this->m_diagSize - 1);
divide(0, this->m_diagSize - 1, 0, 0, 0);
//**** step 3 copy
for (int i=0; i<this->m_diagSize; i++) {
RealScalar a = abs(m_computed.coeff(i, i));
this->m_singularValues.coeffRef(i) = a;
if (a == 0){
this->m_nonzeroSingularValues = i;
break;
}
else if (i == this->m_diagSize - 1)
{
this->m_nonzeroSingularValues = i + 1;
break;
}
}
copyUV(m_naiveV, m_naiveU, bid.householderU(), bid.householderV());
this->m_isInitialized = true;
return *this;
}// end compute
template<typename MatrixType>
void BDCSVD<MatrixType>::copyUV(MatrixXr naiveU, MatrixXr naiveV, MatrixX householderU, MatrixX householderV){
if (this->computeU()){
MatrixX temp = MatrixX::Zero(naiveU.rows(), naiveU.cols());
temp.real() = naiveU;
if (this->m_computeThinU){
this->m_matrixU = MatrixX::Identity(householderU.cols(), this->m_nonzeroSingularValues );
this->m_matrixU.block(0, 0, this->m_diagSize, this->m_nonzeroSingularValues) =
temp.block(0, 0, this->m_diagSize, this->m_nonzeroSingularValues);
this->m_matrixU = householderU * this->m_matrixU ;
}
else
{
this->m_matrixU = MatrixX::Identity(householderU.cols(), householderU.cols());
this->m_matrixU.block(0, 0, this->m_diagSize, this->m_diagSize) = temp.block(0, 0, this->m_diagSize, this->m_diagSize);
this->m_matrixU = householderU * this->m_matrixU ;
}
}
if (this->computeV()){
MatrixX temp = MatrixX::Zero(naiveV.rows(), naiveV.cols());
temp.real() = naiveV;
if (this->m_computeThinV){
this->m_matrixV = MatrixX::Identity(householderV.cols(),this->m_nonzeroSingularValues );
this->m_matrixV.block(0, 0, this->m_nonzeroSingularValues, this->m_nonzeroSingularValues) =
temp.block(0, 0, this->m_nonzeroSingularValues, this->m_nonzeroSingularValues);
this->m_matrixV = householderV * this->m_matrixV ;
}
else
{
this->m_matrixV = MatrixX::Identity(householderV.cols(), householderV.cols());
this->m_matrixV.block(0, 0, this->m_diagSize, this->m_diagSize) = temp.block(0, 0, this->m_diagSize, this->m_diagSize);
this->m_matrixV = householderV * this->m_matrixV;
}
}
}
// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the
// place of the submatrix we are currently working on.
//@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
//@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU;
// lastCol + 1 - firstCol is the size of the submatrix.
//@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W)
//@param firstRowW : Same as firstRowW with the column.
//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
template<typename MatrixType>
void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
Index firstColW, Index shift)
{
// requires nbRows = nbCols + 1;
using std::pow;
using std::sqrt;
using std::abs;
const Index n = lastCol - firstCol + 1;
const Index k = n/2;
RealScalar alphaK;
RealScalar betaK;
RealScalar r0;
RealScalar lambda, phi, c0, s0;
MatrixXr l, f;
// We use the other algorithm which is more efficient for small
// matrices.
if (n < algoswap){
JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n),
ComputeFullU | (ComputeFullV * compV)) ;
if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() << b.matrixU();
else
{
m_naiveU.row(0).segment(firstCol, n + 1).real() << b.matrixU().row(0);
m_naiveU.row(1).segment(firstCol, n + 1).real() << b.matrixU().row(n);
}
if (compV) m_naiveV.block(firstRowW, firstColW, n, n).real() << b.matrixV();
m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
for (int i=0; i<n; i++)
{
m_computed(firstCol + shift + i, firstCol + shift +i) = b.singularValues().coeffRef(i);
}
return;
}
// We use the divide and conquer algorithm
alphaK = m_computed(firstCol + k, firstCol + k);
betaK = m_computed(firstCol + k + 1, firstCol + k);
// The divide must be done in that order in order to have good results. Divide change the data inside the submatrices
// and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the
// right submatrix before the left one.
divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
if (compU)
{
lambda = m_naiveU(firstCol + k, firstCol + k);
phi = m_naiveU(firstCol + k + 1, lastCol + 1);
}
else
{
lambda = m_naiveU(1, firstCol + k);
phi = m_naiveU(0, lastCol + 1);
}
r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda))
+ abs(betaK * phi) * abs(betaK * phi));
if (compU)
{
l = m_naiveU.row(firstCol + k).segment(firstCol, k);
f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
}
else
{
l = m_naiveU.row(1).segment(firstCol, k);
f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
}
if (compV) m_naiveV(firstRowW+k, firstColW) = 1;
if (r0 == 0)
{
c0 = 1;
s0 = 0;
}
else
{
c0 = alphaK * lambda / r0;
s0 = betaK * phi / r0;
}
if (compU)
{
MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));
// we shiftW Q1 to the right
for (Index i = firstCol + k - 1; i >= firstCol; i--)
{
m_naiveU.col(i + 1).segment(firstCol, k + 1) << m_naiveU.col(i).segment(firstCol, k + 1);
}
// we shift q1 at the left with a factor c0
m_naiveU.col(firstCol).segment( firstCol, k + 1) << (q1 * c0);
// last column = q1 * - s0
m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) << (q1 * ( - s0));
// first column = q2 * s0
m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) <<
m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *s0;
// q2 *= c0
m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
}
else
{
RealScalar q1 = (m_naiveU(0, firstCol + k));
// we shift Q1 to the right
for (Index i = firstCol + k - 1; i >= firstCol; i--)
{
m_naiveU(0, i + 1) = m_naiveU(0, i);
}
// we shift q1 at the left with a factor c0
m_naiveU(0, firstCol) = (q1 * c0);
// last column = q1 * - s0
m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
// first column = q2 * s0
m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0;
// q2 *= c0
m_naiveU(1, lastCol + 1) *= c0;
m_naiveU.row(1).segment(firstCol + 1, k).setZero();
m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
}
m_computed(firstCol + shift, firstCol + shift) = r0;
m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) << alphaK * l.transpose().real();
m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) << betaK * f.transpose().real();
// the line below do the deflation of the matrix for the third part of the algorithm
// Here the deflation is commented because the third part of the algorithm is not implemented
// the third part of the algorithm is a fast SVD on the matrix m_computed which works thanks to the deflation
deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
// Third part of the algorithm, since the real third part of the algorithm is not implemeted we use a JacobiSVD
JacobiSVD<MatrixXr> res= JacobiSVD<MatrixXr>(m_computed.block(firstCol + shift, firstCol +shift, n + 1, n),
ComputeFullU | (ComputeFullV * compV)) ;
if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1) *= res.matrixU();
else m_naiveU.block(0, firstCol, 2, n + 1) *= res.matrixU();
if (compV) m_naiveV.block(firstRowW, firstColW, n, n) *= res.matrixV();
m_computed.block(firstCol + shift, firstCol + shift, n, n) << MatrixXr::Zero(n, n);
for (int i=0; i<n; i++)
m_computed(firstCol + shift + i, firstCol + shift +i) = res.singularValues().coeffRef(i);
// end of the third part
}// end divide
// page 12_13
// i >= 1, di almost null and zi non null.
// We use a rotation to zero out zi applied to the left of M
template <typename MatrixType>
void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size){
using std::abs;
using std::sqrt;
using std::pow;
RealScalar c = m_computed(firstCol + shift, firstCol + shift);
RealScalar s = m_computed(i, firstCol + shift);
RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
if (r == 0){
m_computed(i, i)=0;
return;
}
c/=r;
s/=r;
m_computed(firstCol + shift, firstCol + shift) = r;
m_computed(i, firstCol + shift) = 0;
m_computed(i, i) = 0;
if (compU){
m_naiveU.col(firstCol).segment(firstCol,size) =
c * m_naiveU.col(firstCol).segment(firstCol, size) -
s * m_naiveU.col(i).segment(firstCol, size) ;
m_naiveU.col(i).segment(firstCol, size) =
(c + s*s/c) * m_naiveU.col(i).segment(firstCol, size) +
(s/c) * m_naiveU.col(firstCol).segment(firstCol,size);
}
}// end deflation 43
// page 13
// i,j >= 1, i != j and |di - dj| < epsilon * norm2(M)
// We apply two rotations to have zj = 0;
template <typename MatrixType>
void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size){
using std::abs;
using std::sqrt;
using std::conj;
using std::pow;
RealScalar c = m_computed(firstColm, firstColm + j - 1);
RealScalar s = m_computed(firstColm, firstColm + i - 1);
RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
if (r==0){
m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
return;
}
c/=r;
s/=r;
m_computed(firstColm + i, firstColm) = r;
m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
m_computed(firstColm + j, firstColm) = 0;
if (compU){
m_naiveU.col(firstColu + i).segment(firstColu, size) =
c * m_naiveU.col(firstColu + i).segment(firstColu, size) -
s * m_naiveU.col(firstColu + j).segment(firstColu, size) ;
m_naiveU.col(firstColu + j).segment(firstColu, size) =
(c + s*s/c) * m_naiveU.col(firstColu + j).segment(firstColu, size) +
(s/c) * m_naiveU.col(firstColu + i).segment(firstColu, size);
}
if (compV){
m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) =
c * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) +
s * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) ;
m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) =
(c + s*s/c) * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) -
(s/c) * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1);
}
}// end deflation 44
template <typename MatrixType>
void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift){
//condition 4.1
RealScalar EPS = EPSILON * (std::max<RealScalar>(m_computed(firstCol + shift + 1, firstCol + shift + 1), m_computed(firstCol + k, firstCol + k)));
const Index length = lastCol + 1 - firstCol;
if (m_computed(firstCol + shift, firstCol + shift) < EPS){
m_computed(firstCol + shift, firstCol + shift) = EPS;
}
//condition 4.2
for (Index i=firstCol + shift + 1;i<=lastCol + shift;i++){
if (std::abs(m_computed(i, firstCol + shift)) < EPS){
m_computed(i, firstCol + shift) = 0;
}
}
//condition 4.3
for (Index i=firstCol + shift + 1;i<=lastCol + shift; i++){
if (m_computed(i, i) < EPS){
deflation43(firstCol, shift, i, length);
}
}
//condition 4.4
Index i=firstCol + shift + 1, j=firstCol + shift + k + 1;
//we stock the final place of each line
Index *permutation = new Index[length];
for (Index p =1; p < length; p++) {
if (i> firstCol + shift + k){
permutation[p] = j;
j++;
} else if (j> lastCol + shift)
{
permutation[p] = i;
i++;
}
else
{
if (m_computed(i, i) < m_computed(j, j)){
permutation[p] = j;
j++;
}
else
{
permutation[p] = i;
i++;
}
}
}
//we do the permutation
RealScalar aux;
//we stock the current index of each col
//and the column of each index
Index *realInd = new Index[length];
Index *realCol = new Index[length];
for (int pos = 0; pos< length; pos++){
realCol[pos] = pos + firstCol + shift;
realInd[pos] = pos;
}
const Index Zero = firstCol + shift;
VectorType temp;
for (int i = 1; i < length - 1; i++){
const Index I = i + Zero;
const Index realI = realInd[i];
const Index j = permutation[length - i] - Zero;
const Index J = realCol[j];
//diag displace
aux = m_computed(I, I);
m_computed(I, I) = m_computed(J, J);
m_computed(J, J) = aux;
//firstrow displace
aux = m_computed(I, Zero);
m_computed(I, Zero) = m_computed(J, Zero);
m_computed(J, Zero) = aux;
// change columns
if (compU) {
temp = m_naiveU.col(I - shift).segment(firstCol, length + 1);
m_naiveU.col(I - shift).segment(firstCol, length + 1) <<
m_naiveU.col(J - shift).segment(firstCol, length + 1);
m_naiveU.col(J - shift).segment(firstCol, length + 1) << temp;
}
else
{
temp = m_naiveU.col(I - shift).segment(0, 2);
m_naiveU.col(I - shift).segment(0, 2) <<
m_naiveU.col(J - shift).segment(0, 2);
m_naiveU.col(J - shift).segment(0, 2) << temp;
}
if (compV) {
const Index CWI = I + firstColW - Zero;
const Index CWJ = J + firstColW - Zero;
temp = m_naiveV.col(CWI).segment(firstRowW, length);
m_naiveV.col(CWI).segment(firstRowW, length) << m_naiveV.col(CWJ).segment(firstRowW, length);
m_naiveV.col(CWJ).segment(firstRowW, length) << temp;
}
//update real pos
realCol[realI] = J;
realCol[j] = I;
realInd[J - Zero] = realI;
realInd[I - Zero] = j;
}
for (Index i = firstCol + shift + 1; i<lastCol + shift;i++){
if ((m_computed(i + 1, i + 1) - m_computed(i, i)) < EPS){
deflation44(firstCol ,
firstCol + shift,
firstRowW,
firstColW,
i - Zero,
i + 1 - Zero,
length);
}
}
delete [] permutation;
delete [] realInd;
delete [] realCol;
}//end deflation
namespace internal{
template<typename _MatrixType, typename Rhs>
struct solve_retval<BDCSVD<_MatrixType>, Rhs>
: solve_retval_base<BDCSVD<_MatrixType>, Rhs>
{
typedef BDCSVD<_MatrixType> BDCSVDType;
EIGEN_MAKE_SOLVE_HELPERS(BDCSVDType, Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
eigen_assert(rhs().rows() == dec().rows());
// A = U S V^*
// So A^{ - 1} = V S^{ - 1} U^*
Index diagSize = (std::min)(dec().rows(), dec().cols());
typename BDCSVDType::SingularValuesType invertedSingVals(diagSize);
Index nonzeroSingVals = dec().nonzeroSingularValues();
invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
dst = dec().matrixV().leftCols(diagSize)
* invertedSingVals.asDiagonal()
* dec().matrixU().leftCols(diagSize).adjoint()
* rhs();
return;
}
};
} //end namespace internal
/** \svd_module
*
* \return the singular value decomposition of \c *this computed by
* BDC Algorithm
*
* \sa class BDCSVD
*/
/*
template<typename Derived>
BDCSVD<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
{
return BDCSVD<PlainObject>(*this, computationOptions);
}
*/
} // end namespace Eigen
#endif

View File

@ -0,0 +1,6 @@
FILE(GLOB Eigen_SVD_SRCS "*.h")
INSTALL(FILES
${Eigen_SVD_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}unsupported/Eigen/src/SVD COMPONENT Devel
)

View File

@ -0,0 +1,782 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_JACOBISVD_H
#define EIGEN_JACOBISVD_H
namespace Eigen {
namespace internal {
// forward declaration (needed by ICC)
// the empty body is required by MSVC
template<typename MatrixType, int QRPreconditioner,
bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
struct svd_precondition_2x2_block_to_be_real {};
/*** QR preconditioners (R-SVD)
***
*** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
*** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
*** JacobiSVD which by itself is only able to work on square matrices.
***/
enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };
template<typename MatrixType, int QRPreconditioner, int Case>
struct qr_preconditioner_should_do_anything
{
enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
MatrixType::ColsAtCompileTime != Dynamic &&
MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
b = MatrixType::RowsAtCompileTime != Dynamic &&
MatrixType::ColsAtCompileTime != Dynamic &&
MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
ret = !( (QRPreconditioner == NoQRPreconditioner) ||
(Case == PreconditionIfMoreColsThanRows && bool(a)) ||
(Case == PreconditionIfMoreRowsThanCols && bool(b)) )
};
};
template<typename MatrixType, int QRPreconditioner, int Case,
bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
> struct qr_preconditioner_impl {};
template<typename MatrixType, int QRPreconditioner, int Case>
class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
{
public:
typedef typename MatrixType::Index Index;
void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
{
return false;
}
};
/*** preconditioner using FullPivHouseholderQR ***/
template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
{
public:
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
enum
{
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
};
typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
{
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
{
m_qr.~QRType();
::new (&m_qr) QRType(svd.rows(), svd.cols());
}
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
}
bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
if(matrix.rows() > matrix.cols())
{
m_qr.compute(matrix);
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
return true;
}
return false;
}
private:
typedef FullPivHouseholderQR<MatrixType> QRType;
QRType m_qr;
WorkspaceType m_workspace;
};
template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
{
public:
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
enum
{
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
Options = MatrixType::Options
};
typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
TransposeTypeWithSameStorageOrder;
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
{
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
{
m_qr.~QRType();
::new (&m_qr) QRType(svd.cols(), svd.rows());
}
m_adjoint.resize(svd.cols(), svd.rows());
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
}
bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
if(matrix.cols() > matrix.rows())
{
m_adjoint = matrix.adjoint();
m_qr.compute(m_adjoint);
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
return true;
}
else return false;
}
private:
typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
QRType m_qr;
TransposeTypeWithSameStorageOrder m_adjoint;
typename internal::plain_row_type<MatrixType>::type m_workspace;
};
/*** preconditioner using ColPivHouseholderQR ***/
template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
{
public:
typedef typename MatrixType::Index Index;
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
{
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
{
m_qr.~QRType();
::new (&m_qr) QRType(svd.rows(), svd.cols());
}
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
}
bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
if(matrix.rows() > matrix.cols())
{
m_qr.compute(matrix);
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
else if(svd.m_computeThinU)
{
svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
}
if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
return true;
}
return false;
}
private:
typedef ColPivHouseholderQR<MatrixType> QRType;
QRType m_qr;
typename internal::plain_col_type<MatrixType>::type m_workspace;
};
template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
{
public:
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
enum
{
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
Options = MatrixType::Options
};
typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
TransposeTypeWithSameStorageOrder;
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
{
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
{
m_qr.~QRType();
::new (&m_qr) QRType(svd.cols(), svd.rows());
}
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
m_adjoint.resize(svd.cols(), svd.rows());
}
bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
if(matrix.cols() > matrix.rows())
{
m_adjoint = matrix.adjoint();
m_qr.compute(m_adjoint);
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
else if(svd.m_computeThinV)
{
svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
}
if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
return true;
}
else return false;
}
private:
typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
QRType m_qr;
TransposeTypeWithSameStorageOrder m_adjoint;
typename internal::plain_row_type<MatrixType>::type m_workspace;
};
/*** preconditioner using HouseholderQR ***/
template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
{
public:
typedef typename MatrixType::Index Index;
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
{
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
{
m_qr.~QRType();
::new (&m_qr) QRType(svd.rows(), svd.cols());
}
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
}
bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
if(matrix.rows() > matrix.cols())
{
m_qr.compute(matrix);
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
else if(svd.m_computeThinU)
{
svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
}
if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
return true;
}
return false;
}
private:
typedef HouseholderQR<MatrixType> QRType;
QRType m_qr;
typename internal::plain_col_type<MatrixType>::type m_workspace;
};
template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
{
public:
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
enum
{
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
Options = MatrixType::Options
};
typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
TransposeTypeWithSameStorageOrder;
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
{
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
{
m_qr.~QRType();
::new (&m_qr) QRType(svd.cols(), svd.rows());
}
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
m_adjoint.resize(svd.cols(), svd.rows());
}
bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
if(matrix.cols() > matrix.rows())
{
m_adjoint = matrix.adjoint();
m_qr.compute(m_adjoint);
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
else if(svd.m_computeThinV)
{
svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
}
if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
return true;
}
else return false;
}
private:
typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
QRType m_qr;
TransposeTypeWithSameStorageOrder m_adjoint;
typename internal::plain_row_type<MatrixType>::type m_workspace;
};
/*** 2x2 SVD implementation
***
*** JacobiSVD consists in performing a series of 2x2 SVD subproblems
***/
template<typename MatrixType, int QRPreconditioner>
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
{
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
typedef typename SVD::Index Index;
static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
};
template<typename MatrixType, int QRPreconditioner>
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
{
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename SVD::Index Index;
static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
{
using std::sqrt;
Scalar z;
JacobiRotation<Scalar> rot;
RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
if(n==0)
{
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
work_matrix.row(p) *= z;
if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
work_matrix.row(q) *= z;
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
}
else
{
rot.c() = conj(work_matrix.coeff(p,p)) / n;
rot.s() = work_matrix.coeff(q,p) / n;
work_matrix.applyOnTheLeft(p,q,rot);
if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
if(work_matrix.coeff(p,q) != Scalar(0))
{
Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
work_matrix.col(q) *= z;
if(svd.computeV()) svd.m_matrixV.col(q) *= z;
}
if(work_matrix.coeff(q,q) != Scalar(0))
{
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
work_matrix.row(q) *= z;
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
}
}
}
};
template<typename MatrixType, typename RealScalar, typename Index>
void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
JacobiRotation<RealScalar> *j_left,
JacobiRotation<RealScalar> *j_right)
{
using std::sqrt;
Matrix<RealScalar,2,2> m;
m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
JacobiRotation<RealScalar> rot1;
RealScalar t = m.coeff(0,0) + m.coeff(1,1);
RealScalar d = m.coeff(1,0) - m.coeff(0,1);
if(t == RealScalar(0))
{
rot1.c() = RealScalar(0);
rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
}
else
{
RealScalar u = d / t;
rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + numext::abs2(u));
rot1.s() = rot1.c() * u;
}
m.applyOnTheLeft(0,1,rot1);
j_right->makeJacobi(m,0,1);
*j_left = rot1 * j_right->transpose();
}
} // end namespace internal
/** \ingroup SVD_Module
*
*
* \class JacobiSVD
*
* \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
*
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
* \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
* for the R-SVD step for non-square matrices. See discussion of possible values below.
*
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
* \f[ A = U S V^* \f]
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
* the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
* and right \em singular \em vectors of \a A respectively.
*
* Singular values are always sorted in decreasing order.
*
* This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly.
*
* You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
* smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
*
* Here's an example demonstrating basic usage:
* \include JacobiSVD_basic.cpp
* Output: \verbinclude JacobiSVD_basic.out
*
* This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than
* bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and
* \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms.
* In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
*
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
* terminate in finite (and reasonable) time.
*
* The possible values for QRPreconditioner are:
* \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
* \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
* Contrary to other QRs, it doesn't allow computing thin unitaries.
* \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
* This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
* is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive
* process is more reliable than the optimized bidiagonal SVD iterations.
* \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing
* JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
* faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
* if QR preconditioning is needed before applying it anyway.
*
* \sa MatrixBase::jacobiSvd()
*/
template<typename _MatrixType, int QRPreconditioner>
class JacobiSVD : public SVDBase<_MatrixType>
{
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
MatrixOptions = MatrixType::Options
};
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
MatrixUType;
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
MatrixVType;
typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
typedef typename internal::plain_row_type<MatrixType>::type RowType;
typedef typename internal::plain_col_type<MatrixType>::type ColType;
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
WorkMatrixType;
/** \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via JacobiSVD::compute(const MatrixType&).
*/
JacobiSVD()
: SVDBase<_MatrixType>::SVDBase()
{}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem size.
* \sa JacobiSVD()
*/
JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
: SVDBase<_MatrixType>::SVDBase()
{
allocate(rows, cols, computationOptions);
}
/** \brief Constructor performing the decomposition of given matrix.
*
* \param matrix the matrix to decompose
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
* #ComputeFullV, #ComputeThinV.
*
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
* available with the (non-default) FullPivHouseholderQR preconditioner.
*/
JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
: SVDBase<_MatrixType>::SVDBase()
{
compute(matrix, computationOptions);
}
/** \brief Method performing the decomposition of given matrix using custom options.
*
* \param matrix the matrix to decompose
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
* #ComputeFullV, #ComputeThinV.
*
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
* available with the (non-default) FullPivHouseholderQR preconditioner.
*/
SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions);
/** \brief Method performing the decomposition of given matrix using current options.
*
* \param matrix the matrix to decompose
*
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
*/
SVDBase<MatrixType>& compute(const MatrixType& matrix)
{
return compute(matrix, this->m_computationOptions);
}
/** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
*
* \param b the right-hand-side of the equation to solve.
*
* \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
*
* \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
* In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
*/
template<typename Rhs>
inline const internal::solve_retval<JacobiSVD, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(this->m_isInitialized && "JacobiSVD is not initialized.");
eigen_assert(SVDBase<MatrixType>::computeU() && SVDBase<MatrixType>::computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
}
private:
void allocate(Index rows, Index cols, unsigned int computationOptions);
protected:
WorkMatrixType m_workMatrix;
template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
friend struct internal::svd_precondition_2x2_block_to_be_real;
template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
friend struct internal::qr_preconditioner_impl;
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
};
template<typename MatrixType, int QRPreconditioner>
void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
{
if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return;
if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
{
eigen_assert(!(this->m_computeThinU || this->m_computeThinV) &&
"JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
"Use the ColPivHouseholderQR preconditioner instead.");
}
m_workMatrix.resize(this->m_diagSize, this->m_diagSize);
if(this->m_cols>this->m_rows) m_qr_precond_morecols.allocate(*this);
if(this->m_rows>this->m_cols) m_qr_precond_morerows.allocate(*this);
}
template<typename MatrixType, int QRPreconditioner>
SVDBase<MatrixType>&
JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
{
using std::abs;
allocate(matrix.rows(), matrix.cols(), computationOptions);
// currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
// only worsening the precision of U and V as we accumulate more rotations
const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();
// limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min();
/*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
if(!m_qr_precond_morecols.run(*this, matrix) && !m_qr_precond_morerows.run(*this, matrix))
{
m_workMatrix = matrix.block(0,0,this->m_diagSize,this->m_diagSize);
if(this->m_computeFullU) this->m_matrixU.setIdentity(this->m_rows,this->m_rows);
if(this->m_computeThinU) this->m_matrixU.setIdentity(this->m_rows,this->m_diagSize);
if(this->m_computeFullV) this->m_matrixV.setIdentity(this->m_cols,this->m_cols);
if(this->m_computeThinV) this->m_matrixV.setIdentity(this->m_cols, this->m_diagSize);
}
/*** step 2. The main Jacobi SVD iteration. ***/
bool finished = false;
while(!finished)
{
finished = true;
// do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix
for(Index p = 1; p < this->m_diagSize; ++p)
{
for(Index q = 0; q < p; ++q)
{
// if this 2x2 sub-matrix is not diagonal already...
// notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
// keep us iterating forever. Similarly, small denormal numbers are considered zero.
using std::max;
RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)),
abs(m_workMatrix.coeff(q,q))));
if((max)(abs(m_workMatrix.coeff(p,q)),abs(m_workMatrix.coeff(q,p))) > threshold)
{
finished = false;
// perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
JacobiRotation<RealScalar> j_left, j_right;
internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
// accumulate resulting Jacobi rotations
m_workMatrix.applyOnTheLeft(p,q,j_left);
if(SVDBase<MatrixType>::computeU()) this->m_matrixU.applyOnTheRight(p,q,j_left.transpose());
m_workMatrix.applyOnTheRight(p,q,j_right);
if(SVDBase<MatrixType>::computeV()) this->m_matrixV.applyOnTheRight(p,q,j_right);
}
}
}
}
/*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/
for(Index i = 0; i < this->m_diagSize; ++i)
{
RealScalar a = abs(m_workMatrix.coeff(i,i));
this->m_singularValues.coeffRef(i) = a;
if(SVDBase<MatrixType>::computeU() && (a!=RealScalar(0))) this->m_matrixU.col(i) *= this->m_workMatrix.coeff(i,i)/a;
}
/*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/
this->m_nonzeroSingularValues = this->m_diagSize;
for(Index i = 0; i < this->m_diagSize; i++)
{
Index pos;
RealScalar maxRemainingSingularValue = this->m_singularValues.tail(this->m_diagSize-i).maxCoeff(&pos);
if(maxRemainingSingularValue == RealScalar(0))
{
this->m_nonzeroSingularValues = i;
break;
}
if(pos)
{
pos += i;
std::swap(this->m_singularValues.coeffRef(i), this->m_singularValues.coeffRef(pos));
if(SVDBase<MatrixType>::computeU()) this->m_matrixU.col(pos).swap(this->m_matrixU.col(i));
if(SVDBase<MatrixType>::computeV()) this->m_matrixV.col(pos).swap(this->m_matrixV.col(i));
}
}
this->m_isInitialized = true;
return *this;
}
namespace internal {
template<typename _MatrixType, int QRPreconditioner, typename Rhs>
struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
: solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
{
typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType;
EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
eigen_assert(rhs().rows() == dec().rows());
// A = U S V^*
// So A^{-1} = V S^{-1} U^*
Index diagSize = (std::min)(dec().rows(), dec().cols());
typename JacobiSVDType::SingularValuesType invertedSingVals(diagSize);
Index nonzeroSingVals = dec().nonzeroSingularValues();
invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
dst = dec().matrixV().leftCols(diagSize)
* invertedSingVals.asDiagonal()
* dec().matrixU().leftCols(diagSize).adjoint()
* rhs();
}
};
} // end namespace internal
/** \svd_module
*
* \return the singular value decomposition of \c *this computed by two-sided
* Jacobi transformations.
*
* \sa class JacobiSVD
*/
template<typename Derived>
JacobiSVD<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
{
return JacobiSVD<PlainObject>(*this, computationOptions);
}
} // end namespace Eigen
#endif // EIGEN_JACOBISVD_H

View File

@ -0,0 +1,236 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SVD_H
#define EIGEN_SVD_H
namespace Eigen {
/** \ingroup SVD_Module
*
*
* \class SVDBase
*
* \brief Mother class of SVD classes algorithms
*
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
* \f[ A = U S V^* \f]
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
* the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
* and right \em singular \em vectors of \a A respectively.
*
* Singular values are always sorted in decreasing order.
*
*
* You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
* smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
*
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
* terminate in finite (and reasonable) time.
* \sa MatrixBase::genericSvd()
*/
template<typename _MatrixType>
class SVDBase
{
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
MatrixOptions = MatrixType::Options
};
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
MatrixUType;
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
MatrixVType;
typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
typedef typename internal::plain_row_type<MatrixType>::type RowType;
typedef typename internal::plain_col_type<MatrixType>::type ColType;
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
WorkMatrixType;
/** \brief Method performing the decomposition of given matrix using custom options.
*
* \param matrix the matrix to decompose
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
* #ComputeFullV, #ComputeThinV.
*
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
* available with the (non-default) FullPivHouseholderQR preconditioner.
*/
SVDBase& compute(const MatrixType& matrix, unsigned int computationOptions);
/** \brief Method performing the decomposition of given matrix using current options.
*
* \param matrix the matrix to decompose
*
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
*/
//virtual SVDBase& compute(const MatrixType& matrix) = 0;
SVDBase& compute(const MatrixType& matrix);
/** \returns the \a U matrix.
*
* For the SVDBase decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
* the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU.
*
* The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
*
* This method asserts that you asked for \a U to be computed.
*/
const MatrixUType& matrixU() const
{
eigen_assert(m_isInitialized && "SVD is not initialized.");
eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
return m_matrixU;
}
/** \returns the \a V matrix.
*
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
* the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV.
*
* The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
*
* This method asserts that you asked for \a V to be computed.
*/
const MatrixVType& matrixV() const
{
eigen_assert(m_isInitialized && "SVD is not initialized.");
eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
return m_matrixV;
}
/** \returns the vector of singular values.
*
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
* returned vector has size \a m. Singular values are always sorted in decreasing order.
*/
const SingularValuesType& singularValues() const
{
eigen_assert(m_isInitialized && "SVD is not initialized.");
return m_singularValues;
}
/** \returns the number of singular values that are not exactly 0 */
Index nonzeroSingularValues() const
{
eigen_assert(m_isInitialized && "SVD is not initialized.");
return m_nonzeroSingularValues;
}
/** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
inline bool computeU() const { return m_computeFullU || m_computeThinU; }
/** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
inline bool computeV() const { return m_computeFullV || m_computeThinV; }
inline Index rows() const { return m_rows; }
inline Index cols() const { return m_cols; }
protected:
// return true if already allocated
bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
MatrixUType m_matrixU;
MatrixVType m_matrixV;
SingularValuesType m_singularValues;
bool m_isInitialized, m_isAllocated;
bool m_computeFullU, m_computeThinU;
bool m_computeFullV, m_computeThinV;
unsigned int m_computationOptions;
Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
/** \brief Default Constructor.
*
* Default constructor of SVDBase
*/
SVDBase()
: m_isInitialized(false),
m_isAllocated(false),
m_computationOptions(0),
m_rows(-1), m_cols(-1)
{}
};
template<typename MatrixType>
bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
{
eigen_assert(rows >= 0 && cols >= 0);
if (m_isAllocated &&
rows == m_rows &&
cols == m_cols &&
computationOptions == m_computationOptions)
{
return true;
}
m_rows = rows;
m_cols = cols;
m_isInitialized = false;
m_isAllocated = true;
m_computationOptions = computationOptions;
m_computeFullU = (computationOptions & ComputeFullU) != 0;
m_computeThinU = (computationOptions & ComputeThinU) != 0;
m_computeFullV = (computationOptions & ComputeFullV) != 0;
m_computeThinV = (computationOptions & ComputeThinV) != 0;
eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
"SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
m_diagSize = (std::min)(m_rows, m_cols);
m_singularValues.resize(m_diagSize);
if(RowsAtCompileTime==Dynamic)
m_matrixU.resize(m_rows, m_computeFullU ? m_rows
: m_computeThinU ? m_diagSize
: 0);
if(ColsAtCompileTime==Dynamic)
m_matrixV.resize(m_cols, m_computeFullV ? m_cols
: m_computeThinV ? m_diagSize
: 0);
return false;
}
}// end namespace
#endif // EIGEN_SVD_H

View File

@ -0,0 +1,29 @@
TO DO LIST
(optional optimization) - do all the allocations in the allocate part
- support static matrices
- return a error at compilation time when using integer matrices (int, long, std::complex<int>, ...)
to finish the algorithm :
-implement the last part of the algorithm as described on the reference paper.
You may find more information on that part on this paper
-to replace the call to JacobiSVD at the end of the divide algorithm, just after the call to
deflation.
(suggested step by step resolution)
0) comment the call to Jacobi in the last part of the divide method and everything right after
until the end of the method. What is commented can be a guideline to steps 3) 4) and 6)
1) solve the secular equation (Characteristic equation) on the values that are not null (zi!=0 and di!=0), after the deflation
wich should be uncommented in the divide method
2) remember the values of the singular values that are already computed (zi=0)
3) assign the singular values found in m_computed at the right places (with the ones found in step 2) )
in decreasing order
4) set the firstcol to zero (except the first element) in m_computed
5) compute all the singular vectors when CompV is set to true and only the left vectors when
CompV is set to false
6) multiply naiveU and naiveV to the right by the matrices found, only naiveU when CompV is set to
false, /!\ if CompU is false NaiveU has only 2 rows
7) delete everything commented in step 0)

View File

@ -0,0 +1,21 @@
This unsupported package is about a divide and conquer algorithm to compute SVD.
The implementation follows as closely as possible the following reference paper :
www.cs.yale.edu/publications/techreports/tr933.pdf
The code documentation uses the same names for variables as the reference paper. The code, deflation included, is
working but there are a few things that could be optimised as explained in the TODOBdsvd.
In the code comments were put at the line where would be the third step of the algorithm so one could simply add the call
of a function doing the last part of the algorithm and that would not require any knowledge of the part we implemented.
In the TODOBdcsvd we explain what is the main difficulty of the last part and suggest a reference paper to help solve it.
The implemented has trouble with fixed size matrices.
In the actual implementation, it returns matrices of zero when ask to do a svd on an int matrix.
Paper for the third part:
http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf

View File

@ -0,0 +1,123 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/
// Bench to compare the efficiency of SVD algorithms
#include <iostream>
#include <bench/BenchTimer.h>
#include <unsupported/Eigen/SVD>
using namespace Eigen;
using namespace std;
// number of computations of each algorithm before the print of the time
#ifndef REPEAT
#define REPEAT 10
#endif
// number of tests of the same type
#ifndef NUMBER_SAMPLE
#define NUMBER_SAMPLE 2
#endif
template<typename MatrixType>
void bench_svd(const MatrixType& a = MatrixType())
{
MatrixType m = MatrixType::Random(a.rows(), a.cols());
BenchTimer timerJacobi;
BenchTimer timerBDC;
timerJacobi.reset();
timerBDC.reset();
cout << " Only compute Singular Values" <<endl;
for (int k=1; k<=NUMBER_SAMPLE; ++k)
{
timerBDC.start();
for (int i=0; i<REPEAT; ++i)
{
BDCSVD<MatrixType> bdc_matrix(m);
}
timerBDC.stop();
timerJacobi.start();
for (int i=0; i<REPEAT; ++i)
{
JacobiSVD<MatrixType> jacobi_matrix(m);
}
timerJacobi.stop();
cout << "Sample " << k << " : " << REPEAT << " computations : Jacobi : " << fixed << timerJacobi.value() << "s ";
cout << " || " << " BDC : " << timerBDC.value() << "s " <<endl <<endl;
if (timerBDC.value() >= timerJacobi.value())
cout << "KO : BDC is " << timerJacobi.value() / timerBDC.value() << " times faster than Jacobi" <<endl;
else
cout << "OK : BDC is " << timerJacobi.value() / timerBDC.value() << " times faster than Jacobi" <<endl;
}
cout << " =================" <<endl;
std::cout<< std::endl;
timerJacobi.reset();
timerBDC.reset();
cout << " Computes rotaion matrix" <<endl;
for (int k=1; k<=NUMBER_SAMPLE; ++k)
{
timerBDC.start();
for (int i=0; i<REPEAT; ++i)
{
BDCSVD<MatrixType> bdc_matrix(m, ComputeFullU|ComputeFullV);
}
timerBDC.stop();
timerJacobi.start();
for (int i=0; i<REPEAT; ++i)
{
JacobiSVD<MatrixType> jacobi_matrix(m, ComputeFullU|ComputeFullV);
}
timerJacobi.stop();
cout << "Sample " << k << " : " << REPEAT << " computations : Jacobi : " << fixed << timerJacobi.value() << "s ";
cout << " || " << " BDC : " << timerBDC.value() << "s " <<endl <<endl;
if (timerBDC.value() >= timerJacobi.value())
cout << "KO : BDC is " << timerJacobi.value() / timerBDC.value() << " times faster than Jacobi" <<endl;
else
cout << "OK : BDC is " << timerJacobi.value() / timerBDC.value() << " times faster than Jacobi" <<endl;
}
std::cout<< std::endl;
}
int main(int argc, char* argv[])
{
std::cout<< std::endl;
std::cout<<"On a (Dynamic, Dynamic) (6, 6) Matrix" <<std::endl;
bench_svd<Matrix<double,Dynamic,Dynamic> >(Matrix<double,Dynamic,Dynamic>(6, 6));
std::cout<<"On a (Dynamic, Dynamic) (32, 32) Matrix" <<std::endl;
bench_svd<Matrix<double,Dynamic,Dynamic> >(Matrix<double,Dynamic,Dynamic>(32, 32));
//std::cout<<"On a (Dynamic, Dynamic) (128, 128) Matrix" <<std::endl;
//bench_svd<Matrix<double,Dynamic,Dynamic> >(Matrix<double,Dynamic,Dynamic>(128, 128));
std::cout<<"On a (Dynamic, Dynamic) (160, 160) Matrix" <<std::endl;
bench_svd<Matrix<double,Dynamic,Dynamic> >(Matrix<double,Dynamic,Dynamic>(160, 160));
std::cout<< "--------------------------------------------------------------------"<< std::endl;
}

213
unsupported/test/bdcsvd.cpp Normal file
View File

@ -0,0 +1,213 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/
#include "svd_common.h"
#include <iostream>
#include <Eigen/LU>
// check if "svd" is the good image of "m"
template<typename MatrixType>
void bdcsvd_check_full(const MatrixType& m, const BDCSVD<MatrixType>& svd)
{
svd_check_full< MatrixType, BDCSVD< MatrixType > >(m, svd);
}
// Compare to a reference value
template<typename MatrixType>
void bdcsvd_compare_to_full(const MatrixType& m,
unsigned int computationOptions,
const BDCSVD<MatrixType>& referenceSvd)
{
svd_compare_to_full< MatrixType, BDCSVD< MatrixType > >(m, computationOptions, referenceSvd);
} // end bdcsvd_compare_to_full
template<typename MatrixType>
void bdcsvd_solve(const MatrixType& m, unsigned int computationOptions)
{
svd_solve< MatrixType, BDCSVD< MatrixType > >(m, computationOptions);
} // end template bdcsvd_solve
// test the computations options
template<typename MatrixType>
void bdcsvd_test_all_computation_options(const MatrixType& m)
{
BDCSVD<MatrixType> fullSvd(m, ComputeFullU|ComputeFullV);
svd_test_computation_options_1< MatrixType, BDCSVD< MatrixType > >(m, fullSvd);
svd_test_computation_options_2< MatrixType, BDCSVD< MatrixType > >(m, fullSvd);
} // end bdcsvd_test_all_computation_options
// Call a test with all the computations options
template<typename MatrixType>
void bdcsvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
{
MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a;
bdcsvd_test_all_computation_options<MatrixType>(m);
} // end template bdcsvd
// verify assert
template<typename MatrixType>
void bdcsvd_verify_assert(const MatrixType& m)
{
svd_verify_assert< MatrixType, BDCSVD< MatrixType > >(m);
}// end template bdcsvd_verify_assert
// test weird values
template<typename MatrixType>
void bdcsvd_inf_nan()
{
svd_inf_nan< MatrixType, BDCSVD< MatrixType > >();
}// end template bdcsvd_inf_nan
void bdcsvd_preallocate()
{
svd_preallocate< BDCSVD< MatrixXf > >();
} // end bdcsvd_preallocate
// compare the Singular values returned with Jacobi and Bdc
template<typename MatrixType>
void compare_bdc_jacobi(const MatrixType& a = MatrixType(), unsigned int computationOptions = 0)
{
std::cout << "debut compare" << std::endl;
MatrixType m = MatrixType::Random(a.rows(), a.cols());
BDCSVD<MatrixType> bdc_svd(m);
JacobiSVD<MatrixType> jacobi_svd(m);
VERIFY_IS_APPROX(bdc_svd.singularValues(), jacobi_svd.singularValues());
if(computationOptions & ComputeFullU)
VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU());
if(computationOptions & ComputeThinU)
VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU());
if(computationOptions & ComputeFullV)
VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV());
if(computationOptions & ComputeThinV)
VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV());
std::cout << "fin compare" << std::endl;
} // end template compare_bdc_jacobi
// call the tests
void test_bdcsvd()
{
// test of Dynamic defined Matrix (42, 42) of float
CALL_SUBTEST_11(( bdcsvd_verify_assert<Matrix<float,Dynamic,Dynamic> >
(Matrix<float,Dynamic,Dynamic>(42,42)) ));
CALL_SUBTEST_11(( compare_bdc_jacobi<Matrix<float,Dynamic,Dynamic> >
(Matrix<float,Dynamic,Dynamic>(42,42), 0) ));
CALL_SUBTEST_11(( bdcsvd<Matrix<float,Dynamic,Dynamic> >
(Matrix<float,Dynamic,Dynamic>(42,42)) ));
// test of Dynamic defined Matrix (50, 50) of double
CALL_SUBTEST_13(( bdcsvd_verify_assert<Matrix<double,Dynamic,Dynamic> >
(Matrix<double,Dynamic,Dynamic>(50,50)) ));
CALL_SUBTEST_13(( compare_bdc_jacobi<Matrix<double,Dynamic,Dynamic> >
(Matrix<double,Dynamic,Dynamic>(50,50), 0) ));
CALL_SUBTEST_13(( bdcsvd<Matrix<double,Dynamic,Dynamic> >
(Matrix<double,Dynamic,Dynamic>(50, 50)) ));
// test of Dynamic defined Matrix (22, 22) of complex double
CALL_SUBTEST_14(( bdcsvd_verify_assert<Matrix<std::complex<double>,Dynamic,Dynamic> >
(Matrix<std::complex<double>,Dynamic,Dynamic>(22,22)) ));
CALL_SUBTEST_14(( compare_bdc_jacobi<Matrix<std::complex<double>,Dynamic,Dynamic> >
(Matrix<std::complex<double>, Dynamic, Dynamic> (22,22), 0) ));
CALL_SUBTEST_14(( bdcsvd<Matrix<std::complex<double>,Dynamic,Dynamic> >
(Matrix<std::complex<double>,Dynamic,Dynamic>(22, 22)) ));
// test of Dynamic defined Matrix (10, 10) of int
//CALL_SUBTEST_15(( bdcsvd_verify_assert<Matrix<int,Dynamic,Dynamic> >
// (Matrix<int,Dynamic,Dynamic>(10,10)) ));
//CALL_SUBTEST_15(( compare_bdc_jacobi<Matrix<int,Dynamic,Dynamic> >
// (Matrix<int,Dynamic,Dynamic>(10,10), 0) ));
//CALL_SUBTEST_15(( bdcsvd<Matrix<int,Dynamic,Dynamic> >
// (Matrix<int,Dynamic,Dynamic>(10, 10)) ));
// test of Dynamic defined Matrix (8, 6) of double
CALL_SUBTEST_16(( bdcsvd_verify_assert<Matrix<double,Dynamic,Dynamic> >
(Matrix<double,Dynamic,Dynamic>(8,6)) ));
CALL_SUBTEST_16(( compare_bdc_jacobi<Matrix<double,Dynamic,Dynamic> >
(Matrix<double,Dynamic,Dynamic>(8, 6), 0) ));
CALL_SUBTEST_16(( bdcsvd<Matrix<double,Dynamic,Dynamic> >
(Matrix<double,Dynamic,Dynamic>(8, 6)) ));
// test of Dynamic defined Matrix (36, 12) of float
CALL_SUBTEST_17(( compare_bdc_jacobi<Matrix<float,Dynamic,Dynamic> >
(Matrix<float,Dynamic,Dynamic>(36, 12), 0) ));
CALL_SUBTEST_17(( bdcsvd<Matrix<float,Dynamic,Dynamic> >
(Matrix<float,Dynamic,Dynamic>(36, 12)) ));
// test of Dynamic defined Matrix (5, 8) of double
CALL_SUBTEST_18(( compare_bdc_jacobi<Matrix<double,Dynamic,Dynamic> >
(Matrix<double,Dynamic,Dynamic>(5, 8), 0) ));
CALL_SUBTEST_18(( bdcsvd<Matrix<double,Dynamic,Dynamic> >
(Matrix<double,Dynamic,Dynamic>(5, 8)) ));
// non regression tests
CALL_SUBTEST_3(( bdcsvd_verify_assert(Matrix3f()) ));
CALL_SUBTEST_4(( bdcsvd_verify_assert(Matrix4d()) ));
CALL_SUBTEST_7(( bdcsvd_verify_assert(MatrixXf(10,12)) ));
CALL_SUBTEST_8(( bdcsvd_verify_assert(MatrixXcd(7,5)) ));
// SUBTESTS 1 and 2 on specifics matrix
for(int i = 0; i < g_repeat; i++) {
Matrix2cd m;
m << 0, 1,
0, 1;
CALL_SUBTEST_1(( bdcsvd(m, false) ));
m << 1, 0,
1, 0;
CALL_SUBTEST_1(( bdcsvd(m, false) ));
Matrix2d n;
n << 0, 0,
0, 0;
CALL_SUBTEST_2(( bdcsvd(n, false) ));
n << 0, 0,
0, 1;
CALL_SUBTEST_2(( bdcsvd(n, false) ));
// Statics matrix don't work with BDSVD yet
// bdc algo on a random 3x3 float matrix
// CALL_SUBTEST_3(( bdcsvd<Matrix3f>() ));
// bdc algo on a random 4x4 double matrix
// CALL_SUBTEST_4(( bdcsvd<Matrix4d>() ));
// bdc algo on a random 3x5 float matrix
// CALL_SUBTEST_5(( bdcsvd<Matrix<float,3,5> >() ));
int r = internal::random<int>(1, 30),
c = internal::random<int>(1, 30);
CALL_SUBTEST_7(( bdcsvd<MatrixXf>(MatrixXf(r,c)) ));
CALL_SUBTEST_8(( bdcsvd<MatrixXcd>(MatrixXcd(r,c)) ));
(void) r;
(void) c;
// Test on inf/nan matrix
CALL_SUBTEST_7( bdcsvd_inf_nan<MatrixXf>() );
}
CALL_SUBTEST_7(( bdcsvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
CALL_SUBTEST_8(( bdcsvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));
// Test problem size constructors
CALL_SUBTEST_7( BDCSVD<MatrixXf>(10,10) );
} // end test_bdcsvd

View File

@ -0,0 +1,198 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "svd_common.h"
template<typename MatrixType, int QRPreconditioner>
void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd)
{
svd_check_full<MatrixType, JacobiSVD<MatrixType, QRPreconditioner > >(m, svd);
}
template<typename MatrixType, int QRPreconditioner>
void jacobisvd_compare_to_full(const MatrixType& m,
unsigned int computationOptions,
const JacobiSVD<MatrixType, QRPreconditioner>& referenceSvd)
{
svd_compare_to_full<MatrixType, JacobiSVD<MatrixType, QRPreconditioner> >(m, computationOptions, referenceSvd);
}
template<typename MatrixType, int QRPreconditioner>
void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions)
{
svd_solve< MatrixType, JacobiSVD< MatrixType, QRPreconditioner > >(m, computationOptions);
}
template<typename MatrixType, int QRPreconditioner>
void jacobisvd_test_all_computation_options(const MatrixType& m)
{
if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
return;
JacobiSVD< MatrixType, QRPreconditioner > fullSvd(m, ComputeFullU|ComputeFullV);
svd_test_computation_options_1< MatrixType, JacobiSVD< MatrixType, QRPreconditioner > >(m, fullSvd);
if(QRPreconditioner == FullPivHouseholderQRPreconditioner)
return;
svd_test_computation_options_2< MatrixType, JacobiSVD< MatrixType, QRPreconditioner > >(m, fullSvd);
}
template<typename MatrixType>
void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
{
MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a;
jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m);
jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m);
jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m);
jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m);
}
template<typename MatrixType>
void jacobisvd_verify_assert(const MatrixType& m)
{
svd_verify_assert<MatrixType, JacobiSVD< MatrixType > >(m);
typedef typename MatrixType::Index Index;
Index rows = m.rows();
Index cols = m.cols();
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
MatrixType a = MatrixType::Zero(rows, cols);
a.setZero();
if (ColsAtCompileTime == Dynamic)
{
JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr;
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV))
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV))
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV))
}
}
template<typename MatrixType>
void jacobisvd_method()
{
enum { Size = MatrixType::RowsAtCompileTime };
typedef typename MatrixType::RealScalar RealScalar;
typedef Matrix<RealScalar, Size, 1> RealVecType;
MatrixType m = MatrixType::Identity();
VERIFY_IS_APPROX(m.jacobiSvd().singularValues(), RealVecType::Ones());
VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixU());
VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixV());
VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).solve(m), m);
}
template<typename MatrixType>
void jacobisvd_inf_nan()
{
svd_inf_nan<MatrixType, JacobiSVD< MatrixType > >();
}
// Regression test for bug 286: JacobiSVD loops indefinitely with some
// matrices containing denormal numbers.
void jacobisvd_bug286()
{
#if defined __INTEL_COMPILER
// shut up warning #239: floating point underflow
#pragma warning push
#pragma warning disable 239
#endif
Matrix2d M;
M << -7.90884e-313, -4.94e-324,
0, 5.60844e-313;
#if defined __INTEL_COMPILER
#pragma warning pop
#endif
JacobiSVD<Matrix2d> svd;
svd.compute(M); // just check we don't loop indefinitely
}
void jacobisvd_preallocate()
{
svd_preallocate< JacobiSVD <MatrixXf> >();
}
void test_jacobisvd()
{
CALL_SUBTEST_11(( jacobisvd<Matrix<double,Dynamic,Dynamic> >
(Matrix<double,Dynamic,Dynamic>(16, 6)) ));
CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) ));
CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) ));
CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) ));
CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) ));
for(int i = 0; i < g_repeat; i++) {
Matrix2cd m;
m << 0, 1,
0, 1;
CALL_SUBTEST_1(( jacobisvd(m, false) ));
m << 1, 0,
1, 0;
CALL_SUBTEST_1(( jacobisvd(m, false) ));
Matrix2d n;
n << 0, 0,
0, 0;
CALL_SUBTEST_2(( jacobisvd(n, false) ));
n << 0, 0,
0, 1;
CALL_SUBTEST_2(( jacobisvd(n, false) ));
CALL_SUBTEST_3(( jacobisvd<Matrix3f>() ));
CALL_SUBTEST_4(( jacobisvd<Matrix4d>() ));
CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() ));
CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) ));
int r = internal::random<int>(1, 30),
c = internal::random<int>(1, 30);
CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) ));
CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) ));
(void) r;
(void) c;
// Test on inf/nan matrix
CALL_SUBTEST_7( jacobisvd_inf_nan<MatrixXf>() );
}
CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));
// test matrixbase method
CALL_SUBTEST_1(( jacobisvd_method<Matrix2cd>() ));
CALL_SUBTEST_3(( jacobisvd_method<Matrix3f>() ));
// Test problem size constructors
CALL_SUBTEST_7( JacobiSVD<MatrixXf>(10,10) );
// Check that preallocation avoids subsequent mallocs
CALL_SUBTEST_9( jacobisvd_preallocate() );
// Regression check for bug 286
CALL_SUBTEST_2( jacobisvd_bug286() );
}

View File

@ -0,0 +1,261 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// discard stack allocation as that too bypasses malloc
#define EIGEN_STACK_ALLOCATION_LIMIT 0
#define EIGEN_RUNTIME_NO_MALLOC
#include "main.h"
#include <unsupported/Eigen/SVD>
#include <Eigen/LU>
// check if "svd" is the good image of "m"
template<typename MatrixType, typename SVD>
void svd_check_full(const MatrixType& m, const SVD& svd)
{
typedef typename MatrixType::Index Index;
Index rows = m.rows();
Index cols = m.cols();
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
MatrixType sigma = MatrixType::Zero(rows, cols);
sigma.diagonal() = svd.singularValues().template cast<Scalar>();
MatrixUType u = svd.matrixU();
MatrixVType v = svd.matrixV();
VERIFY_IS_APPROX(m, u * sigma * v.adjoint());
VERIFY_IS_UNITARY(u);
VERIFY_IS_UNITARY(v);
} // end svd_check_full
// Compare to a reference value
template<typename MatrixType, typename SVD>
void svd_compare_to_full(const MatrixType& m,
unsigned int computationOptions,
const SVD& referenceSvd)
{
typedef typename MatrixType::Index Index;
Index rows = m.rows();
Index cols = m.cols();
Index diagSize = (std::min)(rows, cols);
SVD svd(m, computationOptions);
VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
if(computationOptions & ComputeFullU)
VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
if(computationOptions & ComputeThinU)
VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
if(computationOptions & ComputeFullV)
VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV());
if(computationOptions & ComputeThinV)
VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
} // end svd_compare_to_full
template<typename MatrixType, typename SVD>
void svd_solve(const MatrixType& m, unsigned int computationOptions)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
Index rows = m.rows();
Index cols = m.cols();
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
SVD svd(m, computationOptions);
SolutionType x = svd.solve(rhs);
// evaluate normal equation which works also for least-squares solutions
VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
} // end svd_solve
// test computations options
// 2 functions because Jacobisvd can return before the second function
template<typename MatrixType, typename SVD>
void svd_test_computation_options_1(const MatrixType& m, const SVD& fullSvd)
{
svd_check_full< MatrixType, SVD >(m, fullSvd);
svd_solve< MatrixType, SVD >(m, ComputeFullU | ComputeFullV);
}
template<typename MatrixType, typename SVD>
void svd_test_computation_options_2(const MatrixType& m, const SVD& fullSvd)
{
svd_compare_to_full< MatrixType, SVD >(m, ComputeFullU, fullSvd);
svd_compare_to_full< MatrixType, SVD >(m, ComputeFullV, fullSvd);
svd_compare_to_full< MatrixType, SVD >(m, 0, fullSvd);
if (MatrixType::ColsAtCompileTime == Dynamic) {
// thin U/V are only available with dynamic number of columns
svd_compare_to_full< MatrixType, SVD >(m, ComputeFullU|ComputeThinV, fullSvd);
svd_compare_to_full< MatrixType, SVD >(m, ComputeThinV, fullSvd);
svd_compare_to_full< MatrixType, SVD >(m, ComputeThinU|ComputeFullV, fullSvd);
svd_compare_to_full< MatrixType, SVD >(m, ComputeThinU , fullSvd);
svd_compare_to_full< MatrixType, SVD >(m, ComputeThinU|ComputeThinV, fullSvd);
svd_solve<MatrixType, SVD>(m, ComputeFullU | ComputeThinV);
svd_solve<MatrixType, SVD>(m, ComputeThinU | ComputeFullV);
svd_solve<MatrixType, SVD>(m, ComputeThinU | ComputeThinV);
typedef typename MatrixType::Index Index;
Index diagSize = (std::min)(m.rows(), m.cols());
SVD svd(m, ComputeThinU | ComputeThinV);
VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
}
}
template<typename MatrixType, typename SVD>
void svd_verify_assert(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
Index rows = m.rows();
Index cols = m.cols();
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
RhsType rhs(rows);
SVD svd;
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.singularValues())
VERIFY_RAISES_ASSERT(svd.matrixV())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
MatrixType a = MatrixType::Zero(rows, cols);
a.setZero();
svd.compute(a, 0);
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.matrixV())
svd.singularValues();
VERIFY_RAISES_ASSERT(svd.solve(rhs))
if (ColsAtCompileTime == Dynamic)
{
svd.compute(a, ComputeThinU);
svd.matrixU();
VERIFY_RAISES_ASSERT(svd.matrixV())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
svd.compute(a, ComputeThinV);
svd.matrixV();
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
}
else
{
VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
}
}
// work around stupid msvc error when constructing at compile time an expression that involves
// a division by zero, even if the numeric type has floating point
template<typename Scalar>
EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }
// workaround aggressive optimization in ICC
template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
template<typename MatrixType, typename SVD>
void svd_inf_nan()
{
// all this function does is verify we don't iterate infinitely on nan/inf values
SVD svd;
typedef typename MatrixType::Scalar Scalar;
Scalar some_inf = Scalar(1) / zero<Scalar>();
VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
Scalar some_nan = zero<Scalar> () / zero<Scalar> ();
VERIFY(some_nan != some_nan);
svd.compute(MatrixType::Constant(10,10,some_nan), ComputeFullU | ComputeFullV);
MatrixType m = MatrixType::Zero(10,10);
m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
svd.compute(m, ComputeFullU | ComputeFullV);
m = MatrixType::Zero(10,10);
m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_nan;
svd.compute(m, ComputeFullU | ComputeFullV);
}
template<typename SVD>
void svd_preallocate()
{
Vector3f v(3.f, 2.f, 1.f);
MatrixXf m = v.asDiagonal();
internal::set_is_malloc_allowed(false);
VERIFY_RAISES_ASSERT(VectorXf v(10);)
SVD svd;
internal::set_is_malloc_allowed(true);
svd.compute(m);
VERIFY_IS_APPROX(svd.singularValues(), v);
SVD svd2(3,3);
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
VERIFY_IS_APPROX(svd2.singularValues(), v);
VERIFY_RAISES_ASSERT(svd2.matrixU());
VERIFY_RAISES_ASSERT(svd2.matrixV());
svd2.compute(m, ComputeFullU | ComputeFullV);
VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
SVD svd3(3,3,ComputeFullU|ComputeFullV);
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
VERIFY_IS_APPROX(svd2.singularValues(), v);
VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
internal::set_is_malloc_allowed(false);
svd2.compute(m, ComputeFullU|ComputeFullV);
internal::set_is_malloc_allowed(true);
}