Fix rint SSE/NEON again, using optimization barrier.

This is a new version of !423, which failed for MSVC.

Defined `EIGEN_OPTIMIZATION_BARRIER(X)` that uses inline assembly to
prevent operations involving `X` from crossing that barrier. Should
work on most `GNUC` compatible compilers (MSVC doesn't seem to need
this). This is a modified version adapted from what was used in
`psincos_float` and tested on more platforms
(see #1674, https://godbolt.org/z/73ezTG).

Modified `rint` to use the barrier to prevent the add/subtract rounding
trick from being optimized away.

Also fixed an edge case for large inputs that get bumped up a power of two
and ends up rounding away more than just the fractional part.  If we are
over `2^digits` then just return the input.  This edge case was missed in
the test since the test was comparing approximate equality, which was still
satisfied.  Adding a strict equality option catches it.
This commit is contained in:
Antonio Sanchez 2021-03-03 19:22:15 -08:00
parent 5f0b4a4010
commit 82d61af3a4
6 changed files with 172 additions and 50 deletions

View File

@ -630,14 +630,6 @@ __attribute__((optimize("-fno-unsafe-math-optimizations")))
#endif
Packet psincos_float(const Packet& _x)
{
// Workaround -ffast-math aggressive optimizations
// See bug 1674
#if EIGEN_COMP_CLANG && defined(EIGEN_VECTORIZE_SSE)
#define EIGEN_SINCOS_DONT_OPT(X) __asm__ ("" : "+x" (X));
#else
#define EIGEN_SINCOS_DONT_OPT(X)
#endif
typedef typename unpacket_traits<Packet>::integer_packet PacketI;
const Packet cst_2oPI = pset1<Packet>(0.636619746685028076171875f); // 2/PI
@ -652,7 +644,7 @@ Packet psincos_float(const Packet& _x)
// Rounding trick:
Packet y_round = padd(y, cst_rounding_magic);
EIGEN_SINCOS_DONT_OPT(y_round)
EIGEN_OPTIMIZATION_BARRIER(y_round)
PacketI y_int = preinterpret<PacketI>(y_round); // last 23 digits represent integer (if abs(x)<2^24)
y = psub(y_round, cst_rounding_magic); // nearest integer to x*4/pi
@ -674,9 +666,9 @@ Packet psincos_float(const Packet& _x)
// and 2 ULP up to:
const float huge_th = ComputeSine ? 25966.f : 18838.f;
x = pmadd(y, pset1<Packet>(-1.5703125), x); // = 0xbfc90000
EIGEN_SINCOS_DONT_OPT(x)
EIGEN_OPTIMIZATION_BARRIER(x)
x = pmadd(y, pset1<Packet>(-0.000483989715576171875), x); // = 0xb9fdc000
EIGEN_SINCOS_DONT_OPT(x)
EIGEN_OPTIMIZATION_BARRIER(x)
x = pmadd(y, pset1<Packet>(1.62865035235881805419921875e-07), x); // = 0x342ee000
x = pmadd(y, pset1<Packet>(5.5644315544167710640977020375430583953857421875e-11), x); // = 0x2e74b9ee
@ -753,8 +745,6 @@ Packet psincos_float(const Packet& _x)
// Update the sign and filter huge inputs
return pxor(y, sign_bit);
#undef EIGEN_SINCOS_DONT_OPT
}
template<typename Packet>

View File

@ -3207,20 +3207,30 @@ template<> EIGEN_STRONG_INLINE Packet4f pceil<Packet4f>(const Packet4f& a)
template<> EIGEN_STRONG_INLINE Packet4f print(const Packet4f& a) {
// Adds and subtracts signum(a) * 2^23 to force rounding.
const Packet4f offset =
pselect(pcmp_lt(a, pzero(a)),
pset1<Packet4f>(-static_cast<float>(1<<23)),
pset1<Packet4f>(+static_cast<float>(1<<23)));
return psub(padd(a, offset), offset);
const Packet4f limit = pset1<Packet4f>(static_cast<float>(1<<23));
const Packet4f abs_a = pabs(a);
Packet4f r = padd(abs_a, limit);
// Don't compile-away addition and subtraction.
EIGEN_OPTIMIZATION_BARRIER(r);
r = psub(r, limit);
// If greater than limit, simply return a. Otherwise, account for sign.
r = pselect(pcmp_lt(abs_a, limit),
pselect(pcmp_lt(a, pzero(a)), pnegate(r), r), a);
return r;
}
template<> EIGEN_STRONG_INLINE Packet2f print(const Packet2f& a) {
// Adds and subtracts signum(a) * 2^23 to force rounding.
const Packet2f offset =
pselect(pcmp_lt(a, pzero(a)),
pset1<Packet2f>(-static_cast<float>(1<<23)),
pset1<Packet2f>(+static_cast<float>(1<<23)));
return psub(padd(a, offset), offset);
const Packet2f limit = pset1<Packet2f>(static_cast<float>(1<<23));
const Packet2f abs_a = pabs(a);
Packet2f r = padd(abs_a, limit);
// Don't compile-away addition and subtraction.
EIGEN_OPTIMIZATION_BARRIER(r);
r = psub(r, limit);
// If greater than limit, simply return a. Otherwise, account for sign.
r = pselect(pcmp_lt(abs_a, limit),
pselect(pcmp_lt(a, pzero(a)), pnegate(r), r), a);
return r;
}
template<> EIGEN_STRONG_INLINE Packet4f pfloor<Packet4f>(const Packet4f& a)

View File

@ -646,20 +646,30 @@ template<> EIGEN_STRONG_INLINE Packet2d pfloor<Packet2d>(const Packet2d& a) { re
#else
template<> EIGEN_STRONG_INLINE Packet4f print(const Packet4f& a) {
// Adds and subtracts signum(a) * 2^23 to force rounding.
const Packet4f offset =
pselect(pcmp_lt(a, pzero(a)),
pset1<Packet4f>(-static_cast<float>(1<<23)),
pset1<Packet4f>(+static_cast<float>(1<<23)));
return psub(padd(a, offset), offset);
const Packet4f limit = pset1<Packet4f>(static_cast<float>(1<<23));
const Packet4f abs_a = pabs(a);
Packet4f r = padd(abs_a, limit);
// Don't compile-away addition and subtraction.
EIGEN_OPTIMIZATION_BARRIER(r);
r = psub(r, limit);
// If greater than limit, simply return a. Otherwise, account for sign.
r = pselect(pcmp_lt(abs_a, limit),
pselect(pcmp_lt(a, pzero(a)), pnegate(r), r), a);
return r;
}
template<> EIGEN_STRONG_INLINE Packet2d print(const Packet2d& a) {
// Adds and subtracts signum(a) * 2^52 to force rounding.
const Packet2d offset =
pselect(pcmp_lt(a, pzero(a)),
pset1<Packet2d>(-static_cast<double>(1ull<<52)),
pset1<Packet2d>(+static_cast<double>(1ull<<52)));
return psub(padd(a, offset), offset);
const Packet2d limit = pset1<Packet2d>(static_cast<double>(1ull<<52));
const Packet2d abs_a = pabs(a);
Packet2d r = padd(abs_a, limit);
// Don't compile-away addition and subtraction.
EIGEN_OPTIMIZATION_BARRIER(r);
r = psub(r, limit);
// If greater than limit, simply return a. Otherwise, account for sign.
r = pselect(pcmp_lt(abs_a, limit),
pselect(pcmp_lt(a, pzero(a)), pnegate(r), r), a);
return r;
}
template<> EIGEN_STRONG_INLINE Packet4f pfloor<Packet4f>(const Packet4f& a)

View File

@ -51,7 +51,11 @@
#ifndef EIGEN_STACK_ALLOCATION_LIMIT
// 131072 == 128 KB
#define EIGEN_STACK_ALLOCATION_LIMIT 131072
#if defined(__AVX512F__)
#define EIGEN_STACK_ALLOCATION_LIMIT 0
#else
#define EIGEN_STACK_ALLOCATION_LIMIT 16384
#endif
#endif
//------------------------------------------------------------------------------------------
@ -1063,6 +1067,64 @@ namespace Eigen {
#endif
// Acts as a barrier preventing operations involving `X` from crossing. This
// occurs, for example, in the fast rounding trick where a magic constant is
// added then subtracted, which is otherwise compiled away with -ffast-math.
//
// See bug 1674
#if !defined(EIGEN_OPTIMIZATION_BARRIER)
#if EIGEN_COMP_GNUC
// According to https://gcc.gnu.org/onlinedocs/gcc/Constraints.html:
// X: Any operand whatsoever.
// r: A register operand is allowed provided that it is in a general
// register.
// g: Any register, memory or immediate integer operand is allowed, except
// for registers that are not general registers.
// w: (AArch32/AArch64) Floating point register, Advanced SIMD vector
// register or SVE vector register.
// x: (SSE) Any SSE register.
// (AArch64) Like w, but restricted to registers 0 to 15 inclusive.
// v: (PowerPC) An Altivec vector register.
// wa:(PowerPC) A VSX register.
//
// "X" (uppercase) should work for all cases, though this seems to fail for
// some versions of GCC for arm/aarch64 with
// "error: inconsistent operand constraints in an 'asm'"
// Clang x86_64/arm/aarch64 seems to require "g" to support both scalars and
// vectors, otherwise
// "error: non-trivial scalar-to-vector conversion, possible invalid
// constraint for vector type"
//
// GCC for ppc64le generates an internal compiler error with x/X/g.
// GCC for AVX generates an internal compiler error with X.
//
// Tested on icc/gcc/clang for sse, avx, avx2, avx512dq
// gcc for arm, aarch64,
// gcc for ppc64le,
// both vectors and scalars.
//
// Note that this is restricted to plain types - this will not work
// directly for std::complex<T>, Eigen::half, Eigen::bfloat16. For these,
// you will need to apply to the underlying POD type.
#if EIGEN_ARCH_PPC
// General, Altivec, VSX.
#define EIGEN_OPTIMIZATION_BARRIER(X) __asm__ ("" : "+r,v,wa" (X));
#elif EIGEN_ARCH_ARM_OR_ARM64
// General, NEON.
#define EIGEN_OPTIMIZATION_BARRIER(X) __asm__ ("" : "+g,w" (X));
#elif EIGEN_ARCH_i386_OR_x86_64
// General, SSE.
#define EIGEN_OPTIMIZATION_BARRIER(X) __asm__ ("" : "+g,x" (X));
#else
// Not implemented for other architectures.
#define EIGEN_OPTIMIZATION_BARRIER(X)
#endif
#else
// Not implemented for other compilers.
#define EIGEN_OPTIMIZATION_BARRIER(X)
#endif
#endif
#if EIGEN_COMP_MSVC
// NOTE MSVC often gives C4127 warnings with compiletime if statements. See bug 1362.
// This workaround is ugly, but it does the job.

View File

@ -299,6 +299,29 @@ void packetmath_minus_zero_add() {
CHECK_CWISE2_IF(internal::packet_traits<Scalar>::HasAdd, REF_ADD, internal::padd);
}
// Ensure optimization barrier compiles and doesn't modify contents.
// Only applies to raw types, so will not work for std::complex, Eigen::half
// or Eigen::bfloat16. For those you would need to refer to an underlying
// storage element.
template<typename Packet, typename EnableIf = void>
struct eigen_optimization_barrier_test {
static void run() {}
};
template<typename Packet>
struct eigen_optimization_barrier_test<Packet, typename internal::enable_if<
!NumTraits<Packet>::IsComplex &&
!internal::is_same<Packet, Eigen::half>::value &&
!internal::is_same<Packet, Eigen::bfloat16>::value
>::type> {
static void run() {
typedef typename internal::unpacket_traits<Packet>::type Scalar;
Scalar s = internal::random<Scalar>();
Packet barrier = internal::pset1<Packet>(s);
EIGEN_OPTIMIZATION_BARRIER(barrier);
eigen_assert(s == internal::pfirst(barrier) && "EIGEN_OPTIMIZATION_BARRIER");
}
};
template <typename Scalar, typename Packet>
void packetmath() {
@ -317,6 +340,10 @@ void packetmath() {
EIGEN_ALIGN_MAX Scalar data3[size];
EIGEN_ALIGN_MAX Scalar ref[size];
RealScalar refvalue = RealScalar(0);
eigen_optimization_barrier_test<Packet>::run();
eigen_optimization_barrier_test<Scalar>::run();
for (int i = 0; i < size; ++i) {
data1[i] = internal::random<Scalar>() / RealScalar(PacketSize);
data2[i] = internal::random<Scalar>() / RealScalar(PacketSize);
@ -543,10 +570,10 @@ void packetmath_real() {
CHECK_CWISE1_IF(PacketTraits::HasCos, std::cos, internal::pcos);
CHECK_CWISE1_IF(PacketTraits::HasTan, std::tan, internal::ptan);
CHECK_CWISE1_IF(PacketTraits::HasRound, numext::round, internal::pround);
CHECK_CWISE1_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil);
CHECK_CWISE1_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor);
CHECK_CWISE1_IF(PacketTraits::HasRint, numext::rint, internal::print);
CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::round, internal::pround);
CHECK_CWISE1_EXACT_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil);
CHECK_CWISE1_EXACT_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor);
CHECK_CWISE1_EXACT_IF(PacketTraits::HasRint, numext::rint, internal::print);
// Rounding edge cases.
if (PacketTraits::HasRound || PacketTraits::HasCeil || PacketTraits::HasFloor || PacketTraits::HasRint) {
@ -583,10 +610,10 @@ void packetmath_real() {
for (size_t k=0; k<values.size(); ++k) {
data1[0] = values[k];
CHECK_CWISE1_IF(PacketTraits::HasRound, numext::round, internal::pround);
CHECK_CWISE1_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil);
CHECK_CWISE1_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor);
CHECK_CWISE1_IF(PacketTraits::HasRint, numext::rint, internal::print);
CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::round, internal::pround);
CHECK_CWISE1_EXACT_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil);
CHECK_CWISE1_EXACT_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor);
CHECK_CWISE1_EXACT_IF(PacketTraits::HasRint, numext::rint, internal::print);
}
}
@ -644,7 +671,7 @@ void packetmath_real() {
if (PacketTraits::HasExp) {
data1[0] = Scalar(-1);
// underflow to zero
data1[PacketSize] = Scalar(std::numeric_limits<Scalar>::min_exponent-10);
data1[PacketSize] = Scalar(std::numeric_limits<Scalar>::min_exponent-55);
CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
// overflow to inf
data1[PacketSize] = Scalar(std::numeric_limits<Scalar>::max_exponent+10);

View File

@ -78,13 +78,18 @@ bool isApproxAbs(const Scalar& a, const Scalar& b, const typename NumTraits<Scal
return internal::isMuchSmallerThan(a-b, refvalue);
}
template<typename Scalar>
inline void print_mismatch(const Scalar* ref, const Scalar* vec, int size) {
std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(ref,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(vec,size) << "]\n";
}
template<typename Scalar> bool areApproxAbs(const Scalar* a, const Scalar* b, int size, const typename NumTraits<Scalar>::Real& refvalue)
{
for (int i=0; i<size; ++i)
{
if (!isApproxAbs(a[i],b[i],refvalue))
{
std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(a,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(b,size) << "]\n";
print_mismatch(a, b, size);
return false;
}
}
@ -95,13 +100,23 @@ template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int s
{
for (int i=0; i<size; ++i)
{
if (a[i]!=b[i] && !internal::isApprox(a[i],b[i]))
if ( a[i]!=b[i] && !internal::isApprox(a[i],b[i])
&& !((numext::isnan)(a[i]) && (numext::isnan)(b[i])) )
{
if((numext::isnan)(a[i]) && (numext::isnan)(b[i]))
{
continue;
print_mismatch(a, b, size);
return false;
}
std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(a,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(b,size) << "]\n";
}
return true;
}
template<typename Scalar> bool areEqual(const Scalar* a, const Scalar* b, int size)
{
for (int i=0; i<size; ++i)
{
if ( (a[i] != b[i]) && !((numext::isnan)(a[i]) && (numext::isnan)(b[i])) )
{
print_mismatch(a, b, size);
return false;
}
}
@ -178,6 +193,14 @@ struct packet_helper<false,Packet>
VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \
}
#define CHECK_CWISE1_EXACT_IF(COND, REFOP, POP) if(COND) { \
test::packet_helper<COND,Packet> h; \
for (int i=0; i<PacketSize; ++i) \
ref[i] = Scalar(REFOP(data1[i])); \
h.store(data2, POP(h.load(data1))); \
VERIFY(test::areEqual(ref, data2, PacketSize) && #POP); \
}
#define CHECK_CWISE2_IF(COND, REFOP, POP) if(COND) { \
test::packet_helper<COND,Packet> h; \
for (int i=0; i<PacketSize; ++i) \