mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-07 05:31:48 +08:00
add a JacobiRotation class wrapping the cosine-sine pair with
some convenient features (transpose, adjoint, product)
This commit is contained in:
parent
32f95ec267
commit
8392373d96
@ -804,10 +804,10 @@ template<typename Derived> class MatrixBase
|
|||||||
///////// Jacobi module /////////
|
///////// Jacobi module /////////
|
||||||
|
|
||||||
template<typename JacobiScalar>
|
template<typename JacobiScalar>
|
||||||
void applyJacobiOnTheLeft(int p, int q, JacobiScalar c, JacobiScalar s);
|
void applyJacobiOnTheLeft(int p, int q, const JacobiRotation<JacobiScalar>& j);
|
||||||
template<typename JacobiScalar>
|
template<typename JacobiScalar>
|
||||||
void applyJacobiOnTheRight(int p, int q, JacobiScalar c, JacobiScalar s);
|
void applyJacobiOnTheRight(int p, int q, const JacobiRotation<JacobiScalar>& j);
|
||||||
bool makeJacobi(int p, int q, Scalar *c, Scalar *s) const;
|
bool makeJacobi(int p, int q, JacobiRotation<Scalar> *j) const;
|
||||||
|
|
||||||
#ifdef EIGEN_MATRIXBASE_PLUGIN
|
#ifdef EIGEN_MATRIXBASE_PLUGIN
|
||||||
#include EIGEN_MATRIXBASE_PLUGIN
|
#include EIGEN_MATRIXBASE_PLUGIN
|
||||||
|
@ -123,6 +123,7 @@ template<typename MatrixType> class SVD;
|
|||||||
template<typename MatrixType, unsigned int Options = 0> class JacobiSVD;
|
template<typename MatrixType, unsigned int Options = 0> class JacobiSVD;
|
||||||
template<typename MatrixType, int UpLo = LowerTriangular> class LLT;
|
template<typename MatrixType, int UpLo = LowerTriangular> class LLT;
|
||||||
template<typename MatrixType> class LDLT;
|
template<typename MatrixType> class LDLT;
|
||||||
|
template<typename Scalar> class JacobiRotation;
|
||||||
|
|
||||||
// Geometry module:
|
// Geometry module:
|
||||||
template<typename Derived, int _Dim> class RotationBase;
|
template<typename Derived, int _Dim> class RotationBase;
|
||||||
|
@ -26,56 +26,98 @@
|
|||||||
#ifndef EIGEN_JACOBI_H
|
#ifndef EIGEN_JACOBI_H
|
||||||
#define EIGEN_JACOBI_H
|
#define EIGEN_JACOBI_H
|
||||||
|
|
||||||
/** Applies the counter clock wise 2D rotation of angle \c theta given by its
|
/** \ingroup Jacobi
|
||||||
* cosine \a c and sine \a s to the set of 2D vectors of cordinates \a x and \a y:
|
* \class JacobiRotation
|
||||||
* \f$ x = c x - s' y \f$
|
* \brief Represents a rotation in the plane from a cosine-sine pair.
|
||||||
* \f$ y = s x + c y \f$
|
*
|
||||||
|
* This class represents a Jacobi rotation which is also known as a Givens rotation.
|
||||||
|
* This is a 2D clock-wise rotation in the plane \c J of angle \f$ \theta \f$ defined by
|
||||||
|
* its cosine \c c and sine \c s as follow:
|
||||||
|
* \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) \f$
|
||||||
|
*
|
||||||
|
* \sa MatrixBase::makeJacobi(), MatrixBase::applyJacobiOnTheLeft(), MatrixBase::applyJacobiOnTheRight()
|
||||||
|
*/
|
||||||
|
template<typename Scalar> class JacobiRotation
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
/** Default constructor without any initialization. */
|
||||||
|
JacobiRotation() {}
|
||||||
|
|
||||||
|
/** Construct a Jacobi rotation from a cosine-sine pair (\a c, \c s). */
|
||||||
|
JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {}
|
||||||
|
|
||||||
|
Scalar& c() { return m_c; }
|
||||||
|
Scalar c() const { return m_c; }
|
||||||
|
Scalar& s() { return m_s; }
|
||||||
|
Scalar s() const { return m_s; }
|
||||||
|
|
||||||
|
/** Concatenates two Jacobi rotation */
|
||||||
|
JacobiRotation operator*(const JacobiRotation& other)
|
||||||
|
{
|
||||||
|
return JacobiRotation(m_c * other.m_c - ei_conj(m_s) * other.m_s,
|
||||||
|
ei_conj(m_c * ei_conj(other.m_s) + ei_conj(m_s) * ei_conj(other.m_c)));
|
||||||
|
}
|
||||||
|
|
||||||
|
/** Returns the transposed transformation */
|
||||||
|
JacobiRotation transpose() const { return JacobiRotation(m_c, -ei_conj(m_s)); }
|
||||||
|
|
||||||
|
/** Returns the adjoint transformation */
|
||||||
|
JacobiRotation adjoint() const { return JacobiRotation(ei_conj(m_c), -m_s); }
|
||||||
|
|
||||||
|
protected:
|
||||||
|
Scalar m_c, m_s;
|
||||||
|
};
|
||||||
|
|
||||||
|
/** Applies the clock wise 2D rotation \a j to the set of 2D vectors of cordinates \a x and \a y:
|
||||||
|
* \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right ) = J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$
|
||||||
*
|
*
|
||||||
* \sa MatrixBase::applyJacobiOnTheLeft(), MatrixBase::applyJacobiOnTheRight()
|
* \sa MatrixBase::applyJacobiOnTheLeft(), MatrixBase::applyJacobiOnTheRight()
|
||||||
*/
|
*/
|
||||||
template<typename VectorX, typename VectorY, typename JacobiScalar>
|
template<typename VectorX, typename VectorY, typename JacobiScalar>
|
||||||
void ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, JacobiScalar c, JacobiScalar s);
|
void ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<JacobiScalar>& j);
|
||||||
|
|
||||||
/** Applies a rotation in the plane defined by \a c, \a s to the rows \a p and \a q of \c *this.
|
/** Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B,
|
||||||
* More precisely, it computes B = J' * B, with J = [c s ; -s' c] and B = [ *this.row(p) ; *this.row(q) ]
|
* with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$.
|
||||||
* \sa MatrixBase::applyJacobiOnTheRight(), ei_apply_rotation_in_the_plane()
|
*
|
||||||
|
* \sa class JacobiRotation, MatrixBase::applyJacobiOnTheRight(), ei_apply_rotation_in_the_plane()
|
||||||
*/
|
*/
|
||||||
template<typename Derived>
|
template<typename Derived>
|
||||||
template<typename JacobiScalar>
|
template<typename JacobiScalar>
|
||||||
inline void MatrixBase<Derived>::applyJacobiOnTheLeft(int p, int q, JacobiScalar c, JacobiScalar s)
|
inline void MatrixBase<Derived>::applyJacobiOnTheLeft(int p, int q, const JacobiRotation<JacobiScalar>& j)
|
||||||
{
|
{
|
||||||
RowXpr x(row(p));
|
RowXpr x(row(p));
|
||||||
RowXpr y(row(q));
|
RowXpr y(row(q));
|
||||||
ei_apply_rotation_in_the_plane(x, y, c, s);
|
ei_apply_rotation_in_the_plane(x, y, j);
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Applies a rotation in the plane defined by \a c, \a s to the columns \a p and \a q of \c *this.
|
/** Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J
|
||||||
* More precisely, it computes B = B * J, with J = [c s ; -s' c] and B = [ *this.col(p) ; *this.col(q) ]
|
* with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$.
|
||||||
* \sa MatrixBase::applyJacobiOnTheLeft(), ei_apply_rotation_in_the_plane()
|
*
|
||||||
|
* \sa class JacobiRotation, MatrixBase::applyJacobiOnTheLeft(), ei_apply_rotation_in_the_plane()
|
||||||
*/
|
*/
|
||||||
template<typename Derived>
|
template<typename Derived>
|
||||||
template<typename JacobiScalar>
|
template<typename JacobiScalar>
|
||||||
inline void MatrixBase<Derived>::applyJacobiOnTheRight(int p, int q, JacobiScalar c, JacobiScalar s)
|
inline void MatrixBase<Derived>::applyJacobiOnTheRight(int p, int q, const JacobiRotation<JacobiScalar>& j)
|
||||||
{
|
{
|
||||||
ColXpr x(col(p));
|
ColXpr x(col(p));
|
||||||
ColXpr y(col(q));
|
ColXpr y(col(q));
|
||||||
ei_apply_rotation_in_the_plane(x, y, c, -ei_conj(s));
|
ei_apply_rotation_in_the_plane(x, y, j.transpose());
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Computes the cosine-sine pair (\a c, \a s) such that its associated
|
/** Computes the Jacobi rotation \a J such that applying \a J on both the right and left sides of the 2x2 matrix
|
||||||
* rotation \f$ J = ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} )\f$
|
* \f$ B = \left ( \begin{array}{cc} x & y \\ * & z \end{array} \right )\f$ yields
|
||||||
* applied to both the right and left of the 2x2 matrix
|
* a diagonal matrix \f$ A = J^* B J \f$
|
||||||
* \f$ B = ( \begin{array}{cc} x & y \\ * & z \end{array} )\f$ yields
|
*
|
||||||
* a diagonal matrix A: \f$ A = J^* B J \f$
|
* \sa MatrixBase::makeJacobi(), MatrixBase::applyJacobiOnTheLeft(), MatrixBase::applyJacobiOnTheRight()
|
||||||
*/
|
*/
|
||||||
template<typename Scalar>
|
template<typename Scalar>
|
||||||
bool ei_makeJacobi(typename NumTraits<Scalar>::Real x, Scalar y, typename NumTraits<Scalar>::Real z, Scalar *c, Scalar *s)
|
bool ei_makeJacobi(typename NumTraits<Scalar>::Real x, Scalar y, typename NumTraits<Scalar>::Real z, JacobiRotation<Scalar> *j)
|
||||||
{
|
{
|
||||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||||
if(y == Scalar(0))
|
if(y == Scalar(0))
|
||||||
{
|
{
|
||||||
*c = Scalar(1);
|
j->c() = Scalar(1);
|
||||||
*s = Scalar(0);
|
j->s() = Scalar(0);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
@ -93,20 +135,26 @@ bool ei_makeJacobi(typename NumTraits<Scalar>::Real x, Scalar y, typename NumTra
|
|||||||
}
|
}
|
||||||
RealScalar sign_t = t > 0 ? 1 : -1;
|
RealScalar sign_t = t > 0 ? 1 : -1;
|
||||||
RealScalar n = RealScalar(1) / ei_sqrt(ei_abs2(t)+1);
|
RealScalar n = RealScalar(1) / ei_sqrt(ei_abs2(t)+1);
|
||||||
*s = - sign_t * (ei_conj(y) / ei_abs(y)) * ei_abs(t) * n;
|
j->s() = - sign_t * (ei_conj(y) / ei_abs(y)) * ei_abs(t) * n;
|
||||||
*c = n;
|
j->c() = n;
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/** Computes the Jacobi rotation \a J such that applying \a J on both the right and left sides of the 2x2 matrix
|
||||||
|
* \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ * & \text{this}_{qq} \end{array} \right )\f$ yields
|
||||||
|
* a diagonal matrix \f$ A = J^* B J \f$
|
||||||
|
*
|
||||||
|
* \sa MatrixBase::ei_make_jacobi(), MatrixBase::applyJacobiOnTheLeft(), MatrixBase::applyJacobiOnTheRight()
|
||||||
|
*/
|
||||||
template<typename Derived>
|
template<typename Derived>
|
||||||
inline bool MatrixBase<Derived>::makeJacobi(int p, int q, Scalar *c, Scalar *s) const
|
inline bool MatrixBase<Derived>::makeJacobi(int p, int q, JacobiRotation<Scalar> *j) const
|
||||||
{
|
{
|
||||||
return ei_makeJacobi(ei_real(coeff(p,p)), coeff(p,q), ei_real(coeff(q,q)), c, s);
|
return ei_makeJacobi(ei_real(coeff(p,p)), coeff(p,q), ei_real(coeff(q,q)), j);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename VectorX, typename VectorY, typename JacobiScalar>
|
template<typename VectorX, typename VectorY, typename JacobiScalar>
|
||||||
void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, JacobiScalar c, JacobiScalar s)
|
void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<JacobiScalar>& j)
|
||||||
{
|
{
|
||||||
typedef typename VectorX::Scalar Scalar;
|
typedef typename VectorX::Scalar Scalar;
|
||||||
ei_assert(_x.size() == _y.size());
|
ei_assert(_x.size() == _y.size());
|
||||||
@ -126,16 +174,16 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
|
|||||||
int alignedStart = ei_alignmentOffset(y, size);
|
int alignedStart = ei_alignmentOffset(y, size);
|
||||||
int alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize;
|
int alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize;
|
||||||
|
|
||||||
const Packet pc = ei_pset1(Scalar(c));
|
const Packet pc = ei_pset1(Scalar(j.c()));
|
||||||
const Packet ps = ei_pset1(Scalar(s));
|
const Packet ps = ei_pset1(Scalar(j.s()));
|
||||||
ei_conj_helper<NumTraits<Scalar>::IsComplex,false> cj;
|
ei_conj_helper<NumTraits<Scalar>::IsComplex,false> cj;
|
||||||
|
|
||||||
for(int i=0; i<alignedStart; ++i)
|
for(int i=0; i<alignedStart; ++i)
|
||||||
{
|
{
|
||||||
Scalar xi = x[i];
|
Scalar xi = x[i];
|
||||||
Scalar yi = y[i];
|
Scalar yi = y[i];
|
||||||
x[i] = c * xi + ei_conj(s) * yi;
|
x[i] = j.c() * xi + ei_conj(j.s()) * yi;
|
||||||
y[i] = - s * xi + ei_conj(c) * yi;
|
y[i] = -j.s() * xi + ei_conj(j.c()) * yi;
|
||||||
}
|
}
|
||||||
|
|
||||||
Scalar* px = x + alignedStart;
|
Scalar* px = x + alignedStart;
|
||||||
@ -182,8 +230,8 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
|
|||||||
{
|
{
|
||||||
Scalar xi = x[i];
|
Scalar xi = x[i];
|
||||||
Scalar yi = y[i];
|
Scalar yi = y[i];
|
||||||
x[i] = c * xi + ei_conj(s) * yi;
|
x[i] = j.c() * xi + ei_conj(j.s()) * yi;
|
||||||
y[i] = -s * xi + ei_conj(c) * yi;
|
y[i] = -j.s() * xi + ei_conj(j.c()) * yi;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
@ -192,8 +240,8 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
|
|||||||
{
|
{
|
||||||
Scalar xi = *x;
|
Scalar xi = *x;
|
||||||
Scalar yi = *y;
|
Scalar yi = *y;
|
||||||
*x = c * xi + ei_conj(s) * yi;
|
*x = j.c() * xi + ei_conj(j.s()) * yi;
|
||||||
*y = -s * xi + ei_conj(c) * yi;
|
*y = -j.s() * xi + ei_conj(j.c()) * yi;
|
||||||
x += incrx;
|
x += incrx;
|
||||||
y += incry;
|
y += incry;
|
||||||
}
|
}
|
||||||
|
@ -124,7 +124,8 @@ struct ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options, true>
|
|||||||
enum { ComputeU = SVD::ComputeU, ComputeV = SVD::ComputeV };
|
enum { ComputeU = SVD::ComputeU, ComputeV = SVD::ComputeV };
|
||||||
static void run(MatrixType& work_matrix, JacobiSVD<MatrixType, Options>& svd, int p, int q)
|
static void run(MatrixType& work_matrix, JacobiSVD<MatrixType, Options>& svd, int p, int q)
|
||||||
{
|
{
|
||||||
Scalar c, s, z;
|
Scalar z;
|
||||||
|
JacobiRotation<Scalar> rot;
|
||||||
RealScalar n = ei_sqrt(ei_abs2(work_matrix.coeff(p,p)) + ei_abs2(work_matrix.coeff(q,p)));
|
RealScalar n = ei_sqrt(ei_abs2(work_matrix.coeff(p,p)) + ei_abs2(work_matrix.coeff(q,p)));
|
||||||
if(n==0)
|
if(n==0)
|
||||||
{
|
{
|
||||||
@ -137,10 +138,10 @@ struct ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options, true>
|
|||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
c = ei_conj(work_matrix.coeff(p,p)) / n;
|
rot.c() = ei_conj(work_matrix.coeff(p,p)) / n;
|
||||||
s = work_matrix.coeff(q,p) / n;
|
rot.s() = work_matrix.coeff(q,p) / n;
|
||||||
work_matrix.applyJacobiOnTheLeft(p,q,c,s);
|
work_matrix.applyJacobiOnTheLeft(p,q,rot);
|
||||||
if(ComputeU) svd.m_matrixU.applyJacobiOnTheRight(p,q,ei_conj(c),-s);
|
if(ComputeU) svd.m_matrixU.applyJacobiOnTheRight(p,q,rot.adjoint());
|
||||||
if(work_matrix.coeff(p,q) != Scalar(0))
|
if(work_matrix.coeff(p,q) != Scalar(0))
|
||||||
{
|
{
|
||||||
Scalar z = ei_abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
Scalar z = ei_abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
||||||
@ -159,33 +160,29 @@ struct ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options, true>
|
|||||||
|
|
||||||
template<typename MatrixType, typename RealScalar>
|
template<typename MatrixType, typename RealScalar>
|
||||||
void ei_real_2x2_jacobi_svd(const MatrixType& matrix, int p, int q,
|
void ei_real_2x2_jacobi_svd(const MatrixType& matrix, int p, int q,
|
||||||
RealScalar *c_left, RealScalar *s_left,
|
JacobiRotation<RealScalar> *j_left,
|
||||||
RealScalar *c_right, RealScalar *s_right)
|
JacobiRotation<RealScalar> *j_right)
|
||||||
{
|
{
|
||||||
Matrix<RealScalar,2,2> m;
|
Matrix<RealScalar,2,2> m;
|
||||||
m << ei_real(matrix.coeff(p,p)), ei_real(matrix.coeff(p,q)),
|
m << ei_real(matrix.coeff(p,p)), ei_real(matrix.coeff(p,q)),
|
||||||
ei_real(matrix.coeff(q,p)), ei_real(matrix.coeff(q,q));
|
ei_real(matrix.coeff(q,p)), ei_real(matrix.coeff(q,q));
|
||||||
RealScalar c1, s1;
|
JacobiRotation<RealScalar> rot1;
|
||||||
RealScalar t = m.coeff(0,0) + m.coeff(1,1);
|
RealScalar t = m.coeff(0,0) + m.coeff(1,1);
|
||||||
RealScalar d = m.coeff(1,0) - m.coeff(0,1);
|
RealScalar d = m.coeff(1,0) - m.coeff(0,1);
|
||||||
if(t == RealScalar(0))
|
if(t == RealScalar(0))
|
||||||
{
|
{
|
||||||
c1 = 0;
|
rot1.c() = 0;
|
||||||
s1 = d > 0 ? 1 : -1;
|
rot1.s() = d > 0 ? 1 : -1;
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
RealScalar u = d / t;
|
RealScalar u = d / t;
|
||||||
c1 = RealScalar(1) / ei_sqrt(1 + ei_abs2(u));
|
rot1.c() = RealScalar(1) / ei_sqrt(1 + ei_abs2(u));
|
||||||
s1 = c1 * u;
|
rot1.s() = rot1.c() * u;
|
||||||
}
|
}
|
||||||
m.applyJacobiOnTheLeft(0,1,c1,s1);
|
m.applyJacobiOnTheLeft(0,1,rot1);
|
||||||
RealScalar c2, s2;
|
m.makeJacobi(0,1,j_right);
|
||||||
m.makeJacobi(0,1,&c2,&s2);
|
*j_left = rot1 * j_right->transpose();
|
||||||
*c_left = c1*c2 + s1*s2;
|
|
||||||
*s_left = s1*c2 - c1*s2;
|
|
||||||
*c_right = c2;
|
|
||||||
*s_right = s2;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename MatrixType, unsigned int Options>
|
template<typename MatrixType, unsigned int Options>
|
||||||
@ -208,14 +205,14 @@ sweep_again:
|
|||||||
{
|
{
|
||||||
ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options>::run(work_matrix, *this, p, q);
|
ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options>::run(work_matrix, *this, p, q);
|
||||||
|
|
||||||
RealScalar c_left, s_left, c_right, s_right;
|
JacobiRotation<RealScalar> j_left, j_right;
|
||||||
ei_real_2x2_jacobi_svd(work_matrix, p, q, &c_left, &s_left, &c_right, &s_right);
|
ei_real_2x2_jacobi_svd(work_matrix, p, q, &j_left, &j_right);
|
||||||
|
|
||||||
work_matrix.applyJacobiOnTheLeft(p,q,c_left,s_left);
|
work_matrix.applyJacobiOnTheLeft(p,q,j_left);
|
||||||
if(ComputeU) m_matrixU.applyJacobiOnTheRight(p,q,c_left,-s_left);
|
if(ComputeU) m_matrixU.applyJacobiOnTheRight(p,q,j_left.transpose());
|
||||||
|
|
||||||
work_matrix.applyJacobiOnTheRight(p,q,c_right,s_right);
|
work_matrix.applyJacobiOnTheRight(p,q,j_right);
|
||||||
if(ComputeV) m_matrixV.applyJacobiOnTheRight(p,q,c_right,s_right);
|
if(ComputeV) m_matrixV.applyJacobiOnTheRight(p,q,j_right);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user