mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-14 04:35:57 +08:00
Remove CUDA >= 300 checks and enable outer reductin for doubles
This commit is contained in:
parent
0425118e2a
commit
841e075154
@ -23,7 +23,6 @@ namespace internal {
|
||||
// updated the content of the output address it will try again.
|
||||
template <typename T, typename R>
|
||||
__device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) {
|
||||
#if __CUDA_ARCH__ >= 300
|
||||
if (sizeof(T) == 4)
|
||||
{
|
||||
unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
|
||||
@ -62,9 +61,6 @@ __device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer)
|
||||
else {
|
||||
assert(0 && "Wordsize not supported");
|
||||
}
|
||||
#else
|
||||
assert(0 && "Shouldn't be called on unsupported device");
|
||||
#endif
|
||||
}
|
||||
|
||||
// We extend atomicExch to support extra data types
|
||||
@ -82,7 +78,6 @@ __device__ inline double atomicExchCustom(double* address, double val) {
|
||||
#ifdef EIGEN_HAS_CUDA_FP16
|
||||
template <template <typename T> class R>
|
||||
__device__ inline void atomicReduce(half2* output, half2 accum, R<half>& reducer) {
|
||||
#if __CUDA_ARCH__ >= 300
|
||||
unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
|
||||
unsigned int newval = oldval;
|
||||
reducer.reducePacket(accum, reinterpret_cast<half2*>(&newval));
|
||||
@ -98,19 +93,12 @@ __device__ inline void atomicReduce(half2* output, half2 accum, R<half>& reducer
|
||||
return;
|
||||
}
|
||||
}
|
||||
#else
|
||||
assert(0 && "Shouldn't be called on unsupported device");
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
template <>
|
||||
__device__ inline void atomicReduce(float* output, float accum, SumReducer<float>&) {
|
||||
#if __CUDA_ARCH__ >= 300
|
||||
atomicAdd(output, accum);
|
||||
#else
|
||||
assert(0 && "Shouldn't be called on unsupported device");
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@ -128,7 +116,6 @@ template <int BlockSize, int NumPerThread, typename Self,
|
||||
typename Reducer, typename Index>
|
||||
__global__ void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs,
|
||||
typename Self::CoeffReturnType* output, unsigned int* semaphore) {
|
||||
#if __CUDA_ARCH__ >= 300
|
||||
// Initialize the output value
|
||||
const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x;
|
||||
if (gridDim.x == 1) {
|
||||
@ -183,9 +170,6 @@ __global__ void FullReductionKernel(Reducer reducer, const Self input, Index num
|
||||
// Let the last block reset the semaphore
|
||||
atomicInc(semaphore, gridDim.x + 1);
|
||||
}
|
||||
#else
|
||||
assert(0 && "Shouldn't be called on unsupported device");
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@ -277,7 +261,7 @@ __global__ void ReductionCleanupKernelHalfFloat(Op& reducer, half* output, half2
|
||||
template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void>
|
||||
struct FullReductionLauncher {
|
||||
static void run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index) {
|
||||
assert(false && "Should only be called on floats and half floats");
|
||||
assert(false && "Should only be called on doubles, floats and half floats");
|
||||
}
|
||||
};
|
||||
|
||||
@ -353,17 +337,15 @@ struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
|
||||
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
|
||||
internal::is_same<typename Self::CoeffReturnType, double>::value ||
|
||||
(internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess));
|
||||
#elif __CUDA_ARCH__ >= 300
|
||||
#else
|
||||
static const bool HasOptimizedImplementation = !Op::IsStateful &&
|
||||
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
|
||||
internal::is_same<typename Self::CoeffReturnType, double>::value);
|
||||
#else
|
||||
static const bool HasOptimizedImplementation = false;
|
||||
#endif
|
||||
|
||||
template <typename OutputType>
|
||||
static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
|
||||
assert(HasOptimizedImplementation && "Should only be called on floats or half floats");
|
||||
assert(HasOptimizedImplementation && "Should only be called on doubles, floats or half floats");
|
||||
const Index num_coeffs = array_prod(self.m_impl.dimensions());
|
||||
// Don't crash when we're called with an input tensor of size 0.
|
||||
if (num_coeffs == 0) {
|
||||
@ -379,7 +361,6 @@ template <int NumPerThread, typename Self,
|
||||
typename Reducer, typename Index>
|
||||
__global__ void InnerReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
|
||||
typename Self::CoeffReturnType* output) {
|
||||
#if __CUDA_ARCH__ >= 300
|
||||
typedef typename Self::CoeffReturnType Type;
|
||||
eigen_assert(blockDim.y == 1);
|
||||
eigen_assert(blockDim.z == 1);
|
||||
@ -440,9 +421,6 @@ __global__ void InnerReductionKernel(Reducer reducer, const Self input, Index nu
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
assert(0 && "Shouldn't be called on unsupported device");
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef EIGEN_HAS_CUDA_FP16
|
||||
@ -545,7 +523,7 @@ __global__ void InnerReductionKernelHalfFloat(Reducer reducer, const Self input,
|
||||
template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void>
|
||||
struct InnerReductionLauncher {
|
||||
static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index, typename Self::Index) {
|
||||
assert(false && "Should only be called to reduce floats and half floats on a gpu device");
|
||||
assert(false && "Should only be called to reduce doubles, floats and half floats on a gpu device");
|
||||
return true;
|
||||
}
|
||||
};
|
||||
@ -645,17 +623,15 @@ struct InnerReducer<Self, Op, GpuDevice> {
|
||||
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
|
||||
internal::is_same<typename Self::CoeffReturnType, double>::value ||
|
||||
(internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess));
|
||||
#elif __CUDA_ARCH__ >= 300
|
||||
#else
|
||||
static const bool HasOptimizedImplementation = !Op::IsStateful &&
|
||||
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
|
||||
internal::is_same<typename Self::CoeffReturnType, double>::value);
|
||||
#else
|
||||
static const bool HasOptimizedImplementation = false;
|
||||
#endif
|
||||
|
||||
template <typename OutputType>
|
||||
static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
|
||||
assert(HasOptimizedImplementation && "Should only be called on floats or half floats");
|
||||
assert(HasOptimizedImplementation && "Should only be called on doubles, floats or half floats");
|
||||
const Index num_coeffs = array_prod(self.m_impl.dimensions());
|
||||
// Don't crash when we're called with an input tensor of size 0.
|
||||
if (num_coeffs == 0) {
|
||||
@ -705,16 +681,13 @@ struct OuterReducer<Self, Op, GpuDevice> {
|
||||
// Unfortunately nvidia doesn't support well exotic types such as complex,
|
||||
// so reduce the scope of the optimized version of the code to the simple case
|
||||
// of floats.
|
||||
#if __CUDA_ARCH__ >= 300
|
||||
static const bool HasOptimizedImplementation = !Op::IsStateful &&
|
||||
internal::is_same<typename Self::CoeffReturnType, float>::value;
|
||||
#else
|
||||
static const bool HasOptimizedImplementation = false;
|
||||
#endif
|
||||
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
|
||||
internal::is_same<typename Self::CoeffReturnType, double>::value);
|
||||
|
||||
template <typename Device, typename OutputType>
|
||||
static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) {
|
||||
assert(false && "Should only be called to reduce floats on a gpu device");
|
||||
assert(false && "Should only be called to reduce doubles or floats on a gpu device");
|
||||
return true;
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user