mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 03:39:01 +08:00
Use matrices with clustered eigenvalues in matrix function test.
This is in order to get better code coverage. Test matrix_function_3 now fails regularly because ComplexSchur reaches the max number of iterations; further study needed.
This commit is contained in:
parent
d08035f3e1
commit
858539a6af
@ -25,18 +25,37 @@
|
||||
#include "main.h"
|
||||
#include <unsupported/Eigen/MatrixFunctions>
|
||||
|
||||
// Returns either a matrix with iid random entries or a matrix with
|
||||
// clustered eigenvalues. Matrices with clustered eigenvalue clusters
|
||||
// lead to different code paths in MatrixFunction.h and are thus
|
||||
// useful for testing.
|
||||
template<typename MatrixType>
|
||||
void testMatrixExponential(const MatrixType& m)
|
||||
MatrixType createRandomMatrix(const int size)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
MatrixType result;
|
||||
if (ei_random<int>(0,1) == 0) {
|
||||
result = MatrixType::Random(size, size);
|
||||
} else {
|
||||
MatrixType diag = MatrixType::Zero(size, size);
|
||||
for (int i = 0; i < size; ++i) {
|
||||
diag(i, i) = static_cast<Scalar>(ei_random<int>(0,2))
|
||||
+ ei_random<Scalar>() * static_cast<Scalar>(0.01);
|
||||
}
|
||||
MatrixType A = MatrixType::Random(size, size);
|
||||
result = A.inverse() * diag * A;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void testMatrixExponential(const MatrixType& A)
|
||||
{
|
||||
typedef typename ei_traits<MatrixType>::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef std::complex<RealScalar> ComplexScalar;
|
||||
|
||||
const int rows = m.rows();
|
||||
const int cols = m.cols();
|
||||
|
||||
for (int i = 0; i < g_repeat; i++) {
|
||||
MatrixType A = MatrixType::Random(rows, cols);
|
||||
MatrixType expA1, expA2;
|
||||
ei_matrix_exponential(A, &expA1);
|
||||
ei_matrix_function(A, StdStemFunctions<ComplexScalar>::exp, &expA2);
|
||||
@ -45,13 +64,9 @@ void testMatrixExponential(const MatrixType& m)
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void testHyperbolicFunctions(const MatrixType& m)
|
||||
void testHyperbolicFunctions(const MatrixType& A)
|
||||
{
|
||||
const int rows = m.rows();
|
||||
const int cols = m.cols();
|
||||
|
||||
for (int i = 0; i < g_repeat; i++) {
|
||||
MatrixType A = MatrixType::Random(rows, cols);
|
||||
MatrixType sinhA, coshA, expA;
|
||||
ei_matrix_sinh(A, &sinhA);
|
||||
ei_matrix_cosh(A, &coshA);
|
||||
@ -62,7 +77,7 @@ void testHyperbolicFunctions(const MatrixType& m)
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void testGonioFunctions(const MatrixType& m)
|
||||
void testGonioFunctions(const MatrixType& A)
|
||||
{
|
||||
typedef ei_traits<MatrixType> Traits;
|
||||
typedef typename Traits::Scalar Scalar;
|
||||
@ -71,13 +86,10 @@ void testGonioFunctions(const MatrixType& m)
|
||||
typedef Matrix<ComplexScalar, Traits::RowsAtCompileTime,
|
||||
Traits::ColsAtCompileTime, MatrixType::Options> ComplexMatrix;
|
||||
|
||||
const int rows = m.rows();
|
||||
const int cols = m.cols();
|
||||
ComplexScalar imagUnit(0,1);
|
||||
ComplexScalar two(2,0);
|
||||
|
||||
for (int i = 0; i < g_repeat; i++) {
|
||||
MatrixType A = MatrixType::Random(rows, cols);
|
||||
ComplexMatrix Ac = A.template cast<ComplexScalar>();
|
||||
|
||||
ComplexMatrix exp_iA;
|
||||
@ -98,9 +110,12 @@ void testGonioFunctions(const MatrixType& m)
|
||||
template<typename MatrixType>
|
||||
void testMatrixType(const MatrixType& m)
|
||||
{
|
||||
testMatrixExponential(m);
|
||||
testHyperbolicFunctions(m);
|
||||
testGonioFunctions(m);
|
||||
for (int i = 0; i < g_repeat; i++) {
|
||||
MatrixType A = createRandomMatrix<MatrixType>(m.rows());
|
||||
testMatrixExponential(A);
|
||||
testHyperbolicFunctions(A);
|
||||
testGonioFunctions(A);
|
||||
}
|
||||
}
|
||||
|
||||
void test_matrix_function()
|
||||
|
Loading…
x
Reference in New Issue
Block a user