mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-10 02:39:03 +08:00
remove dead code
This commit is contained in:
parent
e36a4c880a
commit
86bb20c431
@ -29,29 +29,6 @@ namespace Eigen {
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
struct DefaultBackend {};
|
||||
|
||||
|
||||
// solver flags
|
||||
enum {
|
||||
CompleteFactorization = 0x0000, // the default
|
||||
IncompleteFactorization = 0x0001,
|
||||
MemoryEfficient = 0x0002,
|
||||
|
||||
// For LLT Cholesky:
|
||||
SupernodalMultifrontal = 0x0010,
|
||||
SupernodalLeftLooking = 0x0020,
|
||||
|
||||
// Ordering methods:
|
||||
NaturalOrdering = 0x0100, // the default
|
||||
MinimumDegree_AT_PLUS_A = 0x0200,
|
||||
MinimumDegree_ATA = 0x0300,
|
||||
ColApproxMinimumDegree = 0x0400,
|
||||
Metis = 0x0500,
|
||||
Scotch = 0x0600,
|
||||
Chaco = 0x0700,
|
||||
OrderingMask = 0x0f00
|
||||
};
|
||||
|
||||
#include "../../Eigen/src/misc/Solve.h"
|
||||
#include "../../Eigen/src/misc/SparseSolve.h"
|
||||
@ -62,10 +39,6 @@ enum {
|
||||
|
||||
#include "src/SparseExtra/MarketIO.h"
|
||||
|
||||
#include "src/SparseExtra/SparseLLT.h"
|
||||
#include "src/SparseExtra/SparseLDLTLegacy.h"
|
||||
#include "src/SparseExtra/SparseLU.h"
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
|
||||
|
@ -1,416 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
/*
|
||||
|
||||
NOTE: the _symbolic, and _numeric functions has been adapted from
|
||||
the LDL library:
|
||||
|
||||
LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved.
|
||||
|
||||
LDL License:
|
||||
|
||||
Your use or distribution of LDL or any modified version of
|
||||
LDL implies that you agree to this License.
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
||||
USA
|
||||
|
||||
Permission is hereby granted to use or copy this program under the
|
||||
terms of the GNU LGPL, provided that the Copyright, this License,
|
||||
and the Availability of the original version is retained on all copies.
|
||||
User documentation of any code that uses this code or any modified
|
||||
version of this code must cite the Copyright, this License, the
|
||||
Availability note, and "Used by permission." Permission to modify
|
||||
the code and to distribute modified code is granted, provided the
|
||||
Copyright, this License, and the Availability note are retained,
|
||||
and a notice that the code was modified is included.
|
||||
*/
|
||||
|
||||
#ifndef EIGEN_SPARSELDLT_LEGACY_H
|
||||
#define EIGEN_SPARSELDLT_LEGACY_H
|
||||
|
||||
/** \deprecated use class SimplicialLDLT, or class SimplicialLLT, class ConjugateGradient
|
||||
* \ingroup Sparse_Module
|
||||
*
|
||||
* \class SparseLDLT
|
||||
*
|
||||
* \brief LDLT Cholesky decomposition of a sparse matrix and associated features
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the LDLT Cholesky decomposition
|
||||
*
|
||||
* \warning the upper triangular part has to be specified. The rest of the matrix is not used. The input matrix must be column major.
|
||||
*
|
||||
* \sa class LDLT, class LDLT
|
||||
*/
|
||||
template<typename _MatrixType, typename Backend = DefaultBackend>
|
||||
class SparseLDLT
|
||||
{
|
||||
protected:
|
||||
typedef typename _MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename _MatrixType::Scalar>::Real RealScalar;
|
||||
|
||||
typedef Matrix<Scalar,_MatrixType::ColsAtCompileTime,1> VectorType;
|
||||
|
||||
enum {
|
||||
SupernodalFactorIsDirty = 0x10000,
|
||||
MatrixLIsDirty = 0x20000
|
||||
};
|
||||
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
|
||||
|
||||
/** \deprecated the entire class is deprecated
|
||||
* Creates a dummy LDLT factorization object with flags \a flags. */
|
||||
EIGEN_DEPRECATED SparseLDLT(int flags = 0)
|
||||
: m_flags(flags), m_status(0)
|
||||
{
|
||||
eigen_assert((MatrixType::Flags&RowMajorBit)==0);
|
||||
m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
|
||||
}
|
||||
|
||||
/** \deprecated the entire class is deprecated
|
||||
* Creates a LDLT object and compute the respective factorization of \a matrix using
|
||||
* flags \a flags. */
|
||||
EIGEN_DEPRECATED SparseLDLT(const MatrixType& matrix, int flags = 0)
|
||||
: m_matrix(matrix.rows(), matrix.cols()), m_flags(flags), m_status(0)
|
||||
{
|
||||
eigen_assert((MatrixType::Flags&RowMajorBit)==0);
|
||||
m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
/** Sets the relative threshold value used to prune zero coefficients during the decomposition.
|
||||
*
|
||||
* Setting a value greater than zero speeds up computation, and yields to an imcomplete
|
||||
* factorization with fewer non zero coefficients. Such approximate factors are especially
|
||||
* useful to initialize an iterative solver.
|
||||
*
|
||||
* \warning if precision is greater that zero, the LDLT factorization is not guaranteed to succeed
|
||||
* even if the matrix is positive definite.
|
||||
*
|
||||
* Note that the exact meaning of this parameter might depends on the actual
|
||||
* backend. Moreover, not all backends support this feature.
|
||||
*
|
||||
* \sa precision() */
|
||||
void setPrecision(RealScalar v) { m_precision = v; }
|
||||
|
||||
/** \returns the current precision.
|
||||
*
|
||||
* \sa setPrecision() */
|
||||
RealScalar precision() const { return m_precision; }
|
||||
|
||||
/** Sets the flags. Possible values are:
|
||||
* - CompleteFactorization
|
||||
* - IncompleteFactorization
|
||||
* - MemoryEfficient (hint to use the memory most efficient method offered by the backend)
|
||||
* - SupernodalMultifrontal (implies a complete factorization if supported by the backend,
|
||||
* overloads the MemoryEfficient flags)
|
||||
* - SupernodalLeftLooking (implies a complete factorization if supported by the backend,
|
||||
* overloads the MemoryEfficient flags)
|
||||
*
|
||||
* \sa flags() */
|
||||
void settags(int f) { m_flags = f; }
|
||||
/** \returns the current flags */
|
||||
int flags() const { return m_flags; }
|
||||
|
||||
/** Computes/re-computes the LDLT factorization */
|
||||
void compute(const MatrixType& matrix);
|
||||
|
||||
/** Perform a symbolic factorization */
|
||||
void _symbolic(const MatrixType& matrix);
|
||||
/** Perform the actual factorization using the previously
|
||||
* computed symbolic factorization */
|
||||
bool _numeric(const MatrixType& matrix);
|
||||
|
||||
/** \returns the lower triangular matrix L */
|
||||
inline const CholMatrixType& matrixL(void) const { return m_matrix; }
|
||||
|
||||
/** \returns the coefficients of the diagonal matrix D */
|
||||
inline VectorType vectorD(void) const { return m_diag; }
|
||||
|
||||
template<typename Derived>
|
||||
bool solveInPlace(MatrixBase<Derived> &b) const;
|
||||
|
||||
template<typename Rhs>
|
||||
inline const internal::solve_retval<SparseLDLT<MatrixType>, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(true && "SparseLDLT is not initialized.");
|
||||
return internal::solve_retval<SparseLDLT<MatrixType>, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
inline Index cols() const { return m_matrix.cols(); }
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
|
||||
inline const VectorType& diag() const { return m_diag; }
|
||||
|
||||
/** \returns true if the factorization succeeded */
|
||||
inline bool succeeded(void) const { return m_succeeded; }
|
||||
|
||||
protected:
|
||||
CholMatrixType m_matrix;
|
||||
VectorType m_diag;
|
||||
VectorXi m_parent; // elimination tree
|
||||
VectorXi m_nonZerosPerCol;
|
||||
// VectorXi m_w; // workspace
|
||||
PermutationMatrix<Dynamic,Dynamic,Index> m_P;
|
||||
PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv;
|
||||
RealScalar m_precision;
|
||||
int m_flags;
|
||||
mutable int m_status;
|
||||
bool m_succeeded;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _MatrixType, typename Rhs>
|
||||
struct solve_retval<SparseLDLT<_MatrixType>, Rhs>
|
||||
: solve_retval_base<SparseLDLT<_MatrixType>, Rhs>
|
||||
{
|
||||
typedef SparseLDLT<_MatrixType> SpLDLTDecType;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(SpLDLTDecType,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
//Index size = dec().matrixL().rows();
|
||||
eigen_assert(dec().matrixL().rows()==rhs().rows());
|
||||
|
||||
Rhs b(rhs().rows(), rhs().cols());
|
||||
b = rhs();
|
||||
|
||||
if (dec().matrixL().nonZeros()>0) // otherwise L==I
|
||||
dec().matrixL().template triangularView<UnitLower>().solveInPlace(b);
|
||||
|
||||
b = b.cwiseQuotient(dec().diag());
|
||||
if (dec().matrixL().nonZeros()>0) // otherwise L==I
|
||||
dec().matrixL().adjoint().template triangularView<UnitUpper>().solveInPlace(b);
|
||||
|
||||
dst = b;
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** Computes / recomputes the LDLT decomposition of matrix \a a
|
||||
* using the default algorithm.
|
||||
*/
|
||||
template<typename _MatrixType, typename Backend>
|
||||
void SparseLDLT<_MatrixType,Backend>::compute(const _MatrixType& a)
|
||||
{
|
||||
_symbolic(a);
|
||||
m_succeeded = _numeric(a);
|
||||
}
|
||||
|
||||
template<typename _MatrixType, typename Backend>
|
||||
void SparseLDLT<_MatrixType,Backend>::_symbolic(const _MatrixType& a)
|
||||
{
|
||||
assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
m_matrix.resize(size, size);
|
||||
m_parent.resize(size);
|
||||
m_nonZerosPerCol.resize(size);
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(Index, tags, size, 0);
|
||||
|
||||
const Index* Ap = a.outerIndexPtr();
|
||||
const Index* Ai = a.innerIndexPtr();
|
||||
Index* Lp = m_matrix.outerIndexPtr();
|
||||
|
||||
const Index* P = 0;
|
||||
Index* Pinv = 0;
|
||||
|
||||
if(P)
|
||||
{
|
||||
m_P.indices() = Map<const Matrix<Index,Dynamic,1> >(P,size);
|
||||
m_Pinv = m_P.inverse();
|
||||
Pinv = m_Pinv.indices().data();
|
||||
}
|
||||
else
|
||||
{
|
||||
m_P.resize(0);
|
||||
m_Pinv.resize(0);
|
||||
}
|
||||
|
||||
for (Index k = 0; k < size; ++k)
|
||||
{
|
||||
/* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */
|
||||
m_parent[k] = -1; /* parent of k is not yet known */
|
||||
tags[k] = k; /* mark node k as visited */
|
||||
m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */
|
||||
Index kk = P ? P[k] : k; /* kth original, or permuted, column */
|
||||
Index p2 = Ap[kk+1];
|
||||
for (Index p = Ap[kk]; p < p2; ++p)
|
||||
{
|
||||
/* A (i,k) is nonzero (original or permuted A) */
|
||||
Index i = Pinv ? Pinv[Ai[p]] : Ai[p];
|
||||
if (i < k)
|
||||
{
|
||||
/* follow path from i to root of etree, stop at flagged node */
|
||||
for (; tags[i] != k; i = m_parent[i])
|
||||
{
|
||||
/* find parent of i if not yet determined */
|
||||
if (m_parent[i] == -1)
|
||||
m_parent[i] = k;
|
||||
++m_nonZerosPerCol[i]; /* L (k,i) is nonzero */
|
||||
tags[i] = k; /* mark i as visited */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* construct Lp index array from m_nonZerosPerCol column counts */
|
||||
Lp[0] = 0;
|
||||
for (Index k = 0; k < size; ++k)
|
||||
Lp[k+1] = Lp[k] + m_nonZerosPerCol[k];
|
||||
|
||||
m_matrix.resizeNonZeros(Lp[size]);
|
||||
}
|
||||
|
||||
template<typename _MatrixType, typename Backend>
|
||||
bool SparseLDLT<_MatrixType,Backend>::_numeric(const _MatrixType& a)
|
||||
{
|
||||
assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
assert(m_parent.size()==size);
|
||||
assert(m_nonZerosPerCol.size()==size);
|
||||
|
||||
const Index* Ap = a.outerIndexPtr();
|
||||
const Index* Ai = a.innerIndexPtr();
|
||||
const Scalar* Ax = a.valuePtr();
|
||||
const Index* Lp = m_matrix.outerIndexPtr();
|
||||
Index* Li = m_matrix.innerIndexPtr();
|
||||
Scalar* Lx = m_matrix.valuePtr();
|
||||
m_diag.resize(size);
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(Scalar, y, size, 0);
|
||||
ei_declare_aligned_stack_constructed_variable(Index, pattern, size, 0);
|
||||
ei_declare_aligned_stack_constructed_variable(Index, tags, size, 0);
|
||||
|
||||
Index* P = 0;
|
||||
Index* Pinv = 0;
|
||||
|
||||
if(m_P.size()==size)
|
||||
{
|
||||
P = m_P.indices().data();
|
||||
Pinv = m_Pinv.indices().data();
|
||||
}
|
||||
|
||||
bool ok = true;
|
||||
|
||||
for (Index k = 0; k < size; ++k)
|
||||
{
|
||||
/* compute nonzero pattern of kth row of L, in topological order */
|
||||
y[k] = 0.0; /* Y(0:k) is now all zero */
|
||||
Index top = size; /* stack for pattern is empty */
|
||||
tags[k] = k; /* mark node k as visited */
|
||||
m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */
|
||||
Index kk = (P) ? (P[k]) : (k); /* kth original, or permuted, column */
|
||||
Index p2 = Ap[kk+1];
|
||||
for (Index p = Ap[kk]; p < p2; ++p)
|
||||
{
|
||||
Index i = Pinv ? Pinv[Ai[p]] : Ai[p]; /* get A(i,k) */
|
||||
if (i <= k)
|
||||
{
|
||||
y[i] += internal::conj(Ax[p]); /* scatter A(i,k) into Y (sum duplicates) */
|
||||
Index len;
|
||||
for (len = 0; tags[i] != k; i = m_parent[i])
|
||||
{
|
||||
pattern[len++] = i; /* L(k,i) is nonzero */
|
||||
tags[i] = k; /* mark i as visited */
|
||||
}
|
||||
while (len > 0)
|
||||
pattern[--top] = pattern[--len];
|
||||
}
|
||||
}
|
||||
|
||||
/* compute numerical values kth row of L (a sparse triangular solve) */
|
||||
m_diag[k] = y[k]; /* get D(k,k) and clear Y(k) */
|
||||
y[k] = 0.0;
|
||||
for (; top < size; ++top)
|
||||
{
|
||||
Index i = pattern[top]; /* pattern[top:n-1] is pattern of L(:,k) */
|
||||
Scalar yi = (y[i]); /* get and clear Y(i) */
|
||||
y[i] = 0.0;
|
||||
Index p2 = Lp[i] + m_nonZerosPerCol[i];
|
||||
Index p;
|
||||
for (p = Lp[i]; p < p2; ++p)
|
||||
y[Li[p]] -= internal::conj(Lx[p]) * (yi);
|
||||
Scalar l_ki = yi / m_diag[i]; /* the nonzero entry L(k,i) */
|
||||
m_diag[k] -= l_ki * internal::conj(yi);
|
||||
Li[p] = k; /* store L(k,i) in column form of L */
|
||||
Lx[p] = (l_ki);
|
||||
++m_nonZerosPerCol[i]; /* increment count of nonzeros in col i */
|
||||
}
|
||||
if (m_diag[k] == 0.0)
|
||||
{
|
||||
ok = false; /* failure, D(k,k) is zero */
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return ok; /* success, diagonal of D is all nonzero */
|
||||
}
|
||||
|
||||
/** Computes b = L^-T D^-1 L^-1 b */
|
||||
template<typename _MatrixType, typename Backend>
|
||||
template<typename Derived>
|
||||
bool SparseLDLT<_MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const
|
||||
{
|
||||
//Index size = m_matrix.rows();
|
||||
eigen_assert(m_matrix.rows()==b.rows());
|
||||
if (!m_succeeded)
|
||||
return false;
|
||||
|
||||
if(m_P.size()>0)
|
||||
b = m_Pinv * b;
|
||||
|
||||
if (m_matrix.nonZeros()>0) // otherwise L==I
|
||||
m_matrix.template triangularView<UnitLower>().solveInPlace(b);
|
||||
b = b.cwiseQuotient(m_diag);
|
||||
if (m_matrix.nonZeros()>0) // otherwise L==I
|
||||
m_matrix.adjoint().template triangularView<UnitUpper>().solveInPlace(b);
|
||||
|
||||
if(m_P.size()>0)
|
||||
b = m_P * b;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif // EIGEN_SPARSELDLT_LEGACY_H
|
@ -1,248 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_SPARSELLT_H
|
||||
#define EIGEN_SPARSELLT_H
|
||||
|
||||
/** \deprecated use class SimplicialLDLT, or class SimplicialLLT, class ConjugateGradient
|
||||
* \ingroup Sparse_Module
|
||||
*
|
||||
* \class SparseLLT
|
||||
*
|
||||
* \brief LLT Cholesky decomposition of a sparse matrix and associated features
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the LLT Cholesky decomposition
|
||||
*
|
||||
* \sa class LLT, class LDLT
|
||||
*/
|
||||
template<typename _MatrixType, typename Backend = DefaultBackend>
|
||||
class SparseLLT
|
||||
{
|
||||
protected:
|
||||
typedef typename _MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename _MatrixType::Scalar>::Real RealScalar;
|
||||
|
||||
enum {
|
||||
SupernodalFactorIsDirty = 0x10000,
|
||||
MatrixLIsDirty = 0x20000
|
||||
};
|
||||
|
||||
public:
|
||||
typedef SparseMatrix<Scalar> CholMatrixType;
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
/** \deprecated the entire class is deprecated
|
||||
* Creates a dummy LLT factorization object with flags \a flags. */
|
||||
EIGEN_DEPRECATED SparseLLT(int flags = 0)
|
||||
: m_flags(flags), m_status(0)
|
||||
{
|
||||
m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
|
||||
}
|
||||
|
||||
/** \deprecated the entire class is deprecated
|
||||
* Creates a LLT object and compute the respective factorization of \a matrix using
|
||||
* flags \a flags. */
|
||||
EIGEN_DEPRECATED SparseLLT(const MatrixType& matrix, int flags = 0)
|
||||
: m_matrix(matrix.rows(), matrix.cols()), m_flags(flags), m_status(0)
|
||||
{
|
||||
m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
/** Sets the relative threshold value used to prune zero coefficients during the decomposition.
|
||||
*
|
||||
* Setting a value greater than zero speeds up computation, and yields to an imcomplete
|
||||
* factorization with fewer non zero coefficients. Such approximate factors are especially
|
||||
* useful to initialize an iterative solver.
|
||||
*
|
||||
* \warning if precision is greater that zero, the LLT factorization is not guaranteed to succeed
|
||||
* even if the matrix is positive definite.
|
||||
*
|
||||
* Note that the exact meaning of this parameter might depends on the actual
|
||||
* backend. Moreover, not all backends support this feature.
|
||||
*
|
||||
* \sa precision() */
|
||||
void setPrecision(RealScalar v) { m_precision = v; }
|
||||
|
||||
/** \returns the current precision.
|
||||
*
|
||||
* \sa setPrecision() */
|
||||
RealScalar precision() const { return m_precision; }
|
||||
|
||||
/** Sets the flags. Possible values are:
|
||||
* - CompleteFactorization
|
||||
* - IncompleteFactorization
|
||||
* - MemoryEfficient (hint to use the memory most efficient method offered by the backend)
|
||||
* - SupernodalMultifrontal (implies a complete factorization if supported by the backend,
|
||||
* overloads the MemoryEfficient flags)
|
||||
* - SupernodalLeftLooking (implies a complete factorization if supported by the backend,
|
||||
* overloads the MemoryEfficient flags)
|
||||
*
|
||||
* \sa flags() */
|
||||
void setFlags(int f) { m_flags = f; }
|
||||
/** \returns the current flags */
|
||||
int flags() const { return m_flags; }
|
||||
|
||||
/** Computes/re-computes the LLT factorization */
|
||||
void compute(const MatrixType& matrix);
|
||||
|
||||
/** \returns the lower triangular matrix L */
|
||||
inline const CholMatrixType& matrixL(void) const { return m_matrix; }
|
||||
|
||||
template<typename Derived>
|
||||
bool solveInPlace(MatrixBase<Derived> &b) const;
|
||||
|
||||
template<typename Rhs>
|
||||
inline const internal::solve_retval<SparseLLT<MatrixType>, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(true && "SparseLLT is not initialized.");
|
||||
return internal::solve_retval<SparseLLT<MatrixType>, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
inline Index cols() const { return m_matrix.cols(); }
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
|
||||
/** \returns true if the factorization succeeded */
|
||||
inline bool succeeded(void) const { return m_succeeded; }
|
||||
|
||||
protected:
|
||||
CholMatrixType m_matrix;
|
||||
RealScalar m_precision;
|
||||
int m_flags;
|
||||
mutable int m_status;
|
||||
bool m_succeeded;
|
||||
};
|
||||
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _MatrixType, typename Rhs>
|
||||
struct solve_retval<SparseLLT<_MatrixType>, Rhs>
|
||||
: solve_retval_base<SparseLLT<_MatrixType>, Rhs>
|
||||
{
|
||||
typedef SparseLLT<_MatrixType> SpLLTDecType;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(SpLLTDecType,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
const Index size = dec().matrixL().rows();
|
||||
eigen_assert(size==rhs().rows());
|
||||
|
||||
Rhs b(rhs().rows(), rhs().cols());
|
||||
b = rhs();
|
||||
|
||||
dec().matrixL().template triangularView<Lower>().solveInPlace(b);
|
||||
dec().matrixL().adjoint().template triangularView<Upper>().solveInPlace(b);
|
||||
|
||||
dst = b;
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
|
||||
/** Computes / recomputes the LLT decomposition of matrix \a a
|
||||
* using the default algorithm.
|
||||
*/
|
||||
template<typename _MatrixType, typename Backend>
|
||||
void SparseLLT<_MatrixType,Backend>::compute(const _MatrixType& a)
|
||||
{
|
||||
assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
m_matrix.resize(size, size);
|
||||
|
||||
// allocate a temporary vector for accumulations
|
||||
internal::AmbiVector<Scalar,Index> tempVector(size);
|
||||
RealScalar density = a.nonZeros()/RealScalar(size*size);
|
||||
|
||||
// TODO estimate the number of non zeros
|
||||
m_matrix.setZero();
|
||||
m_matrix.reserve(a.nonZeros()*10);
|
||||
for (Index j = 0; j < size; ++j)
|
||||
{
|
||||
Scalar x = internal::real(a.coeff(j,j));
|
||||
|
||||
// TODO better estimate of the density !
|
||||
tempVector.init(density>0.001? IsDense : IsSparse);
|
||||
tempVector.setBounds(j+1,size);
|
||||
tempVector.setZero();
|
||||
// init with current matrix a
|
||||
{
|
||||
typename _MatrixType::InnerIterator it(a,j);
|
||||
eigen_assert(it.index()==j &&
|
||||
"matrix must has non zero diagonal entries and only the lower triangular part must be stored");
|
||||
++it; // skip diagonal element
|
||||
for (; it; ++it)
|
||||
tempVector.coeffRef(it.index()) = it.value();
|
||||
}
|
||||
for (Index k=0; k<j+1; ++k)
|
||||
{
|
||||
typename CholMatrixType::InnerIterator it(m_matrix, k);
|
||||
while (it && it.index()<j)
|
||||
++it;
|
||||
if (it && it.index()==j)
|
||||
{
|
||||
Scalar y = it.value();
|
||||
x -= internal::abs2(y);
|
||||
++it; // skip j-th element, and process remaining column coefficients
|
||||
tempVector.restart();
|
||||
for (; it; ++it)
|
||||
{
|
||||
tempVector.coeffRef(it.index()) -= it.value() * y;
|
||||
}
|
||||
}
|
||||
}
|
||||
// copy the temporary vector to the respective m_matrix.col()
|
||||
// while scaling the result by 1/real(x)
|
||||
RealScalar rx = internal::sqrt(internal::real(x));
|
||||
m_matrix.insert(j,j) = rx; // FIXME use insertBack
|
||||
Scalar y = Scalar(1)/rx;
|
||||
for (typename internal::AmbiVector<Scalar,Index>::Iterator it(tempVector, m_precision*rx); it; ++it)
|
||||
{
|
||||
// FIXME use insertBack
|
||||
m_matrix.insertBack(it.index(), j) = it.value() * y;
|
||||
}
|
||||
}
|
||||
m_matrix.finalize();
|
||||
}
|
||||
|
||||
/** Computes b = L^-T L^-1 b */
|
||||
template<typename _MatrixType, typename Backend>
|
||||
template<typename Derived>
|
||||
bool SparseLLT<_MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const
|
||||
{
|
||||
const Index size = m_matrix.rows();
|
||||
eigen_assert(size==b.rows());
|
||||
|
||||
m_matrix.template triangularView<Lower>().solveInPlace(b);
|
||||
m_matrix.adjoint().template triangularView<Upper>().solveInPlace(b);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif // EIGEN_SPARSELLT_H
|
@ -1,166 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_SPARSELU_H
|
||||
#define EIGEN_SPARSELU_H
|
||||
|
||||
enum {
|
||||
SvNoTrans = 0,
|
||||
SvTranspose = 1,
|
||||
SvAdjoint = 2
|
||||
};
|
||||
|
||||
/** \deprecated use class BiCGSTAB, class SuperLU, or class UmfPackLU
|
||||
* \ingroup Sparse_Module
|
||||
*
|
||||
* \class SparseLU
|
||||
*
|
||||
* \brief LU decomposition of a sparse matrix and associated features
|
||||
*
|
||||
* \param _MatrixType the type of the matrix of which we are computing the LU factorization
|
||||
*
|
||||
* \sa class FullPivLU, class SparseLLT
|
||||
*/
|
||||
template<typename _MatrixType, typename Backend = DefaultBackend>
|
||||
class SparseLU
|
||||
{
|
||||
protected:
|
||||
typedef typename _MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename _MatrixType::Scalar>::Real RealScalar;
|
||||
typedef SparseMatrix<Scalar> LUMatrixType;
|
||||
|
||||
enum {
|
||||
MatrixLUIsDirty = 0x10000
|
||||
};
|
||||
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
|
||||
/** \deprecated the entire class is deprecated
|
||||
* Creates a dummy LU factorization object with flags \a flags. */
|
||||
EIGEN_DEPRECATED SparseLU(int flags = 0)
|
||||
: m_flags(flags), m_status(0)
|
||||
{
|
||||
m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
|
||||
}
|
||||
|
||||
/** \deprecated the entire class is deprecated
|
||||
* Creates a LU object and compute the respective factorization of \a matrix using
|
||||
* flags \a flags. */
|
||||
EIGEN_DEPRECATED SparseLU(const _MatrixType& matrix, int flags = 0)
|
||||
: /*m_matrix(matrix.rows(), matrix.cols()),*/ m_flags(flags), m_status(0)
|
||||
{
|
||||
m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
/** Sets the relative threshold value used to prune zero coefficients during the decomposition.
|
||||
*
|
||||
* Setting a value greater than zero speeds up computation, and yields to an imcomplete
|
||||
* factorization with fewer non zero coefficients. Such approximate factors are especially
|
||||
* useful to initialize an iterative solver.
|
||||
*
|
||||
* Note that the exact meaning of this parameter might depends on the actual
|
||||
* backend. Moreover, not all backends support this feature.
|
||||
*
|
||||
* \sa precision() */
|
||||
void setPrecision(RealScalar v) { m_precision = v; }
|
||||
|
||||
/** \returns the current precision.
|
||||
*
|
||||
* \sa setPrecision() */
|
||||
RealScalar precision() const { return m_precision; }
|
||||
|
||||
/** Sets the flags. Possible values are:
|
||||
* - CompleteFactorization
|
||||
* - IncompleteFactorization
|
||||
* - MemoryEfficient
|
||||
* - one of the ordering methods
|
||||
* - etc...
|
||||
*
|
||||
* \sa flags() */
|
||||
void setFlags(int f) { m_flags = f; }
|
||||
/** \returns the current flags */
|
||||
int flags() const { return m_flags; }
|
||||
|
||||
void setOrderingMethod(int m)
|
||||
{
|
||||
eigen_assert( (m&~OrderingMask) == 0 && m!=0 && "invalid ordering method");
|
||||
m_flags = m_flags&~OrderingMask | m&OrderingMask;
|
||||
}
|
||||
|
||||
int orderingMethod() const
|
||||
{
|
||||
return m_flags&OrderingMask;
|
||||
}
|
||||
|
||||
/** Computes/re-computes the LU factorization */
|
||||
void compute(const _MatrixType& matrix);
|
||||
|
||||
/** \returns the lower triangular matrix L */
|
||||
//inline const _MatrixType& matrixL() const { return m_matrixL; }
|
||||
|
||||
/** \returns the upper triangular matrix U */
|
||||
//inline const _MatrixType& matrixU() const { return m_matrixU; }
|
||||
|
||||
template<typename BDerived, typename XDerived>
|
||||
bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x,
|
||||
const int transposed = SvNoTrans) const;
|
||||
|
||||
/** \returns true if the factorization succeeded */
|
||||
inline bool succeeded(void) const { return m_succeeded; }
|
||||
|
||||
protected:
|
||||
RealScalar m_precision;
|
||||
int m_flags;
|
||||
mutable int m_status;
|
||||
bool m_succeeded;
|
||||
};
|
||||
|
||||
/** Computes / recomputes the LU decomposition of matrix \a a
|
||||
* using the default algorithm.
|
||||
*/
|
||||
template<typename _MatrixType, typename Backend>
|
||||
void SparseLU<_MatrixType,Backend>::compute(const _MatrixType& )
|
||||
{
|
||||
eigen_assert(false && "not implemented yet");
|
||||
}
|
||||
|
||||
/** Computes *x = U^-1 L^-1 b
|
||||
*
|
||||
* If \a transpose is set to SvTranspose or SvAdjoint, the solution
|
||||
* of the transposed/adjoint system is computed instead.
|
||||
*
|
||||
* Not all backends implement the solution of the transposed or
|
||||
* adjoint system.
|
||||
*/
|
||||
template<typename _MatrixType, typename Backend>
|
||||
template<typename BDerived, typename XDerived>
|
||||
bool SparseLU<_MatrixType,Backend>::solve(const MatrixBase<BDerived> &, MatrixBase<XDerived>* , const int ) const
|
||||
{
|
||||
eigen_assert(false && "not implemented yet");
|
||||
return false;
|
||||
}
|
||||
|
||||
#endif // EIGEN_SPARSELU_H
|
@ -1,100 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "sparse.h"
|
||||
#include <Eigen/IterativeSolvers>
|
||||
|
||||
template<typename Scalar,typename Index> void cg(int size)
|
||||
{
|
||||
double density = (std::max)(8./(size*size), 0.01);
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
typedef SparseMatrix<Scalar,ColMajor,Index> SparseMatrixType;
|
||||
|
||||
SparseMatrixType m2(size,size);
|
||||
DenseMatrix refMat2(size,size);
|
||||
|
||||
DenseVector b = DenseVector::Random(size);
|
||||
DenseVector ref_x(size), x(size);
|
||||
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, 0, 0);
|
||||
// for(int i=0; i<rows; ++i)
|
||||
// m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i)));
|
||||
|
||||
SparseMatrixType m3 = m2 * m2.adjoint(), m3_lo(size,size), m3_up(size,size);
|
||||
DenseMatrix refMat3 = refMat2 * refMat2.adjoint();
|
||||
|
||||
m3_lo.template selfadjointView<Lower>().rankUpdate(m2,0);
|
||||
m3_up.template selfadjointView<Upper>().rankUpdate(m2,0);
|
||||
|
||||
ref_x = refMat3.template selfadjointView<Lower>().llt().solve(b);
|
||||
|
||||
x = ConjugateGradient<SparseMatrixType, Lower>().compute(m3).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "ConjugateGradient: solve, full storage, lower");
|
||||
|
||||
x.setRandom();
|
||||
x = ConjugateGradient<SparseMatrixType, Lower>().compute(m3).solveWithGuess(b,x);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "ConjugateGradient: solveWithGuess, full storage, lower");
|
||||
|
||||
x = ConjugateGradient<SparseMatrixType, Upper>().compute(m3).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "ConjugateGradient: solve, full storage, upper, single dense rhs");
|
||||
|
||||
x = ConjugateGradient<SparseMatrixType, Lower>(m3_lo).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "ConjugateGradient: solve, lower only, single dense rhs");
|
||||
|
||||
x = ConjugateGradient<SparseMatrixType, Upper>(m3_up).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "ConjugateGradient: solve, upper only, single dense rhs");
|
||||
|
||||
|
||||
|
||||
x = ConjugateGradient<SparseMatrixType, Lower, IdentityPreconditioner>().compute(m3).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "ConjugateGradient: solve, full storage, lower");
|
||||
|
||||
x = ConjugateGradient<SparseMatrixType, Upper, IdentityPreconditioner>().compute(m3).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "ConjugateGradient: solve, full storage, upper, single dense rhs");
|
||||
|
||||
x = ConjugateGradient<SparseMatrixType, Lower, IdentityPreconditioner>(m3_lo).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "ConjugateGradient: solve, lower only, single dense rhs");
|
||||
|
||||
x = ConjugateGradient<SparseMatrixType, Upper, IdentityPreconditioner>(m3_up).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "ConjugateGradient: solve, upper only, single dense rhs");
|
||||
|
||||
ref_x = refMat2.lu().solve(b);
|
||||
|
||||
x = BiCGSTAB<SparseMatrixType, IdentityPreconditioner>(m2).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "BiCGSTAB: solve, I, single dense rhs");
|
||||
|
||||
x = BiCGSTAB<SparseMatrixType>(m2).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "BiCGSTAB: solve, diag, single dense rhs");
|
||||
}
|
||||
|
||||
void test_cg()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1( (cg<double,int>(8)) );
|
||||
CALL_SUBTEST_1( (cg<double,long int>(8)) );
|
||||
CALL_SUBTEST_2( (cg<std::complex<double>,int>(internal::random<int>(1,300))) );
|
||||
CALL_SUBTEST_1( (cg<double,int>(internal::random<int>(1,300))) );
|
||||
}
|
||||
}
|
@ -1,179 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#define EIGEN_NO_DEPRECATED_WARNING
|
||||
|
||||
#include "sparse.h"
|
||||
#include <Eigen/SparseExtra>
|
||||
|
||||
#ifdef EIGEN_CHOLMOD_SUPPORT
|
||||
#include <Eigen/CholmodSupport>
|
||||
#endif
|
||||
|
||||
template<typename Scalar,typename Index> void sparse_ldlt(int rows, int cols)
|
||||
{
|
||||
static bool odd = true;
|
||||
odd = !odd;
|
||||
double density = (std::max)(8./(rows*cols), 0.01);
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
typedef SparseMatrix<Scalar,ColMajor,Index> SparseMatrixType;
|
||||
|
||||
SparseMatrixType m2(rows, cols);
|
||||
DenseMatrix refMat2(rows, cols);
|
||||
|
||||
DenseVector b = DenseVector::Random(cols);
|
||||
DenseVector refX(cols), x(cols);
|
||||
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, 0, 0);
|
||||
|
||||
SparseMatrixType m3 = m2 * m2.adjoint(), m3_lo(rows,rows), m3_up(rows,rows);
|
||||
DenseMatrix refMat3 = refMat2 * refMat2.adjoint();
|
||||
|
||||
refX = refMat3.template selfadjointView<Upper>().ldlt().solve(b);
|
||||
typedef SparseMatrix<Scalar,Upper|SelfAdjoint,Index> SparseSelfAdjointMatrix;
|
||||
x = b;
|
||||
SparseLDLT<SparseSelfAdjointMatrix> ldlt(m3);
|
||||
if (ldlt.succeeded())
|
||||
ldlt.solveInPlace(x);
|
||||
else
|
||||
std::cerr << "warning LDLT failed\n";
|
||||
|
||||
VERIFY_IS_APPROX(refMat3.template selfadjointView<Upper>() * x, b);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
|
||||
|
||||
#ifdef EIGEN_CHOLMOD_SUPPORT
|
||||
{
|
||||
x = b;
|
||||
SparseLDLT<SparseSelfAdjointMatrix, Cholmod> ldlt2(m3);
|
||||
if (ldlt2.succeeded())
|
||||
{
|
||||
ldlt2.solveInPlace(x);
|
||||
VERIFY_IS_APPROX(refMat3.template selfadjointView<Upper>() * x, b);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: cholmod solveInPlace");
|
||||
|
||||
x = ldlt2.solve(b);
|
||||
VERIFY_IS_APPROX(refMat3.template selfadjointView<Upper>() * x, b);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: cholmod solve");
|
||||
}
|
||||
else
|
||||
std::cerr << "warning LDLT failed\n";
|
||||
}
|
||||
#endif
|
||||
|
||||
// new Simplicial LLT
|
||||
|
||||
|
||||
// new API
|
||||
{
|
||||
SparseMatrixType m2(rows, cols);
|
||||
DenseMatrix refMat2(rows, cols);
|
||||
|
||||
DenseVector b = DenseVector::Random(cols);
|
||||
DenseVector ref_x(cols), x(cols);
|
||||
DenseMatrix B = DenseMatrix::Random(rows,cols);
|
||||
DenseMatrix ref_X(rows,cols), X(rows,cols);
|
||||
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, 0, 0);
|
||||
|
||||
for(int i=0; i<rows; ++i)
|
||||
m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i)));
|
||||
|
||||
|
||||
SparseMatrixType m3 = m2 * m2.adjoint(), m3_lo(rows,rows), m3_up(rows,rows);
|
||||
DenseMatrix refMat3 = refMat2 * refMat2.adjoint();
|
||||
|
||||
m3_lo.template selfadjointView<Lower>().rankUpdate(m2,0);
|
||||
m3_up.template selfadjointView<Upper>().rankUpdate(m2,0);
|
||||
|
||||
// with a single vector as the rhs
|
||||
ref_x = refMat3.template selfadjointView<Lower>().llt().solve(b);
|
||||
|
||||
x = SimplicialCholesky<SparseMatrixType, Lower>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, lower, single dense rhs");
|
||||
|
||||
x = SimplicialCholesky<SparseMatrixType, Upper>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, upper, single dense rhs");
|
||||
|
||||
x = SimplicialCholesky<SparseMatrixType, Lower>(m3_lo).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, lower only, single dense rhs");
|
||||
|
||||
x = SimplicialCholesky<SparseMatrixType, Upper>(m3_up).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, upper only, single dense rhs");
|
||||
|
||||
|
||||
// with multiple rhs
|
||||
ref_X = refMat3.template selfadjointView<Lower>().llt().solve(B);
|
||||
|
||||
X = SimplicialCholesky<SparseMatrixType, Lower>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(B);
|
||||
VERIFY(ref_X.isApprox(X,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, lower, multiple dense rhs");
|
||||
|
||||
X = SimplicialCholesky<SparseMatrixType, Upper>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(B);
|
||||
VERIFY(ref_X.isApprox(X,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, upper, multiple dense rhs");
|
||||
|
||||
|
||||
// with a sparse rhs
|
||||
SparseMatrixType spB(rows,cols), spX(rows,cols);
|
||||
B.diagonal().array() += 1;
|
||||
spB = B.sparseView(0.5,1);
|
||||
|
||||
ref_X = refMat3.template selfadjointView<Lower>().llt().solve(DenseMatrix(spB));
|
||||
|
||||
spX = SimplicialCholesky<SparseMatrixType, Lower>(m3).solve(spB);
|
||||
VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: SimplicialCholesky solve, multiple sparse rhs");
|
||||
//
|
||||
spX = SimplicialCholesky<SparseMatrixType, Upper>(m3).solve(spB);
|
||||
VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: SimplicialCholesky solve, multiple sparse rhs");
|
||||
}
|
||||
|
||||
|
||||
|
||||
// for(int i=0; i<rows; ++i)
|
||||
// m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i)));
|
||||
//
|
||||
// refX = refMat2.template selfadjointView<Upper>().ldlt().solve(b);
|
||||
// typedef SparseMatrix<Scalar,Upper|SelfAdjoint> SparseSelfAdjointMatrix;
|
||||
// x = b;
|
||||
// SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2);
|
||||
// if (ldlt.succeeded())
|
||||
// ldlt.solveInPlace(x);
|
||||
// else
|
||||
// std::cerr << "warning LDLT failed\n";
|
||||
//
|
||||
// VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b);
|
||||
// VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
|
||||
|
||||
|
||||
}
|
||||
|
||||
void test_sparse_ldlt()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1( (sparse_ldlt<double,int>(8, 8)) );
|
||||
CALL_SUBTEST_1( (sparse_ldlt<double,long int>(8, 8)) );
|
||||
int s = internal::random<int>(1,300);
|
||||
CALL_SUBTEST_2( (sparse_ldlt<std::complex<double>,int>(s,s)) );
|
||||
CALL_SUBTEST_1( (sparse_ldlt<double,int>(s,s)) );
|
||||
}
|
||||
}
|
@ -1,144 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#define EIGEN_NO_DEPRECATED_WARNING
|
||||
|
||||
#include "sparse.h"
|
||||
#include <Eigen/SparseExtra>
|
||||
|
||||
#ifdef EIGEN_CHOLMOD_SUPPORT
|
||||
#include <Eigen/CholmodSupport>
|
||||
#endif
|
||||
|
||||
template<typename Scalar,typename Index> void sparse_llt(int rows, int cols)
|
||||
{
|
||||
double density = (std::max)(8./(rows*cols), 0.01);
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
typedef SparseMatrix<Scalar,ColMajor,Index> SparseMatrixType;
|
||||
|
||||
// TODO fix the issue with complex (see SparseLLT::solveInPlace)
|
||||
SparseMatrixType m2(rows, cols);
|
||||
DenseMatrix refMat2(rows, cols);
|
||||
|
||||
DenseVector b = DenseVector::Random(cols);
|
||||
DenseVector ref_x(cols), x(cols);
|
||||
DenseMatrix B = DenseMatrix::Random(rows,cols);
|
||||
DenseMatrix ref_X(rows,cols), X(rows,cols);
|
||||
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, 0, 0);
|
||||
|
||||
for(int i=0; i<rows; ++i)
|
||||
m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i)));
|
||||
|
||||
ref_x = refMat2.template selfadjointView<Lower>().llt().solve(b);
|
||||
if (!NumTraits<Scalar>::IsComplex)
|
||||
{
|
||||
x = b;
|
||||
SparseLLT<SparseMatrixType > (m2).solveInPlace(x);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "LLT: default");
|
||||
}
|
||||
|
||||
#ifdef EIGEN_CHOLMOD_SUPPORT
|
||||
// legacy API
|
||||
{
|
||||
// Cholmod, as configured in CholmodSupport.h, only supports self-adjoint matrices
|
||||
SparseMatrixType m3 = m2.adjoint()*m2;
|
||||
DenseMatrix refMat3 = refMat2.adjoint()*refMat2;
|
||||
|
||||
ref_x = refMat3.template selfadjointView<Lower>().llt().solve(b);
|
||||
|
||||
x = b;
|
||||
SparseLLT<SparseMatrixType, Cholmod>(m3).solveInPlace(x);
|
||||
VERIFY((m3*x).isApprox(b,test_precision<Scalar>()) && "LLT legacy: cholmod solveInPlace");
|
||||
|
||||
x = SparseLLT<SparseMatrixType, Cholmod>(m3).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "LLT legacy: cholmod solve");
|
||||
}
|
||||
|
||||
// new API
|
||||
{
|
||||
// Cholmod, as configured in CholmodSupport.h, only supports self-adjoint matrices
|
||||
SparseMatrixType m3 = m2 * m2.adjoint(), m3_lo(rows,rows), m3_up(rows,rows);
|
||||
DenseMatrix refMat3 = refMat2 * refMat2.adjoint();
|
||||
|
||||
m3_lo.template selfadjointView<Lower>().rankUpdate(m2,0);
|
||||
m3_up.template selfadjointView<Upper>().rankUpdate(m2,0);
|
||||
|
||||
// with a single vector as the rhs
|
||||
ref_x = refMat3.template selfadjointView<Lower>().llt().solve(b);
|
||||
|
||||
x = CholmodDecomposition<SparseMatrixType, Lower>(m3).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod solve, single dense rhs");
|
||||
|
||||
x = CholmodDecomposition<SparseMatrixType, Upper>(m3).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod solve, single dense rhs");
|
||||
|
||||
x = CholmodDecomposition<SparseMatrixType, Lower>(m3_lo).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod solve, single dense rhs");
|
||||
|
||||
x = CholmodDecomposition<SparseMatrixType, Upper>(m3_up).solve(b);
|
||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod solve, single dense rhs");
|
||||
|
||||
|
||||
// with multiple rhs
|
||||
ref_X = refMat3.template selfadjointView<Lower>().llt().solve(B);
|
||||
|
||||
#ifndef EIGEN_DEFAULT_TO_ROW_MAJOR
|
||||
// TODO make sure the API is properly documented about this fact
|
||||
X = CholmodDecomposition<SparseMatrixType, Lower>(m3).solve(B);
|
||||
VERIFY(ref_X.isApprox(X,test_precision<Scalar>()) && "LLT: cholmod solve, multiple dense rhs");
|
||||
|
||||
X = CholmodDecomposition<SparseMatrixType, Upper>(m3).solve(B);
|
||||
VERIFY(ref_X.isApprox(X,test_precision<Scalar>()) && "LLT: cholmod solve, multiple dense rhs");
|
||||
#endif
|
||||
|
||||
|
||||
// with a sparse rhs
|
||||
SparseMatrixType spB(rows,cols), spX(rows,cols);
|
||||
B.diagonal().array() += 1;
|
||||
spB = B.sparseView(0.5,1);
|
||||
|
||||
ref_X = refMat3.template selfadjointView<Lower>().llt().solve(DenseMatrix(spB));
|
||||
|
||||
spX = CholmodDecomposition<SparseMatrixType, Lower>(m3).solve(spB);
|
||||
VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: cholmod solve, multiple sparse rhs");
|
||||
|
||||
spX = CholmodDecomposition<SparseMatrixType, Upper>(m3).solve(spB);
|
||||
VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: cholmod solve, multiple sparse rhs");
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void test_sparse_llt()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1( (sparse_llt<double,int>(8, 8)) );
|
||||
int s = internal::random<int>(1,300);
|
||||
CALL_SUBTEST_2( (sparse_llt<std::complex<double>,int>(s,s)) );
|
||||
CALL_SUBTEST_1( (sparse_llt<double,int>(s,s)) );
|
||||
CALL_SUBTEST_1( (sparse_llt<double,long int>(s,s)) );
|
||||
}
|
||||
}
|
@ -1,128 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#define EIGEN_NO_DEPRECATED_WARNING
|
||||
|
||||
#include "sparse.h"
|
||||
#include <Eigen/SparseExtra>
|
||||
|
||||
#ifdef EIGEN_UMFPACK_SUPPORT
|
||||
#include <Eigen/UmfPackSupport>
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_SUPERLU_SUPPORT
|
||||
#include <Eigen/SuperLUSupport>
|
||||
#endif
|
||||
|
||||
|
||||
template<typename Scalar> void sparse_lu_legacy(int rows, int cols)
|
||||
{
|
||||
double density = (std::max)(8./(rows*cols), 0.01);
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
|
||||
DenseVector vec1 = DenseVector::Random(rows);
|
||||
|
||||
std::vector<Vector2i> zeroCoords;
|
||||
std::vector<Vector2i> nonzeroCoords;
|
||||
|
||||
SparseMatrix<Scalar> m2(rows, cols);
|
||||
DenseMatrix refMat2(rows, cols);
|
||||
|
||||
DenseVector b = DenseVector::Random(cols);
|
||||
DenseVector refX(cols), x(cols);
|
||||
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords);
|
||||
|
||||
FullPivLU<DenseMatrix> refLu(refMat2);
|
||||
refX = refLu.solve(b);
|
||||
#if defined(EIGEN_SUPERLU_SUPPORT) || defined(EIGEN_UMFPACK_SUPPORT)
|
||||
Scalar refDet = refLu.determinant();
|
||||
#endif
|
||||
x.setZero();
|
||||
// // SparseLU<SparseMatrix<Scalar> > (m2).solve(b,&x);
|
||||
// // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default");
|
||||
|
||||
#ifdef EIGEN_UMFPACK_SUPPORT
|
||||
{
|
||||
// check solve
|
||||
x.setZero();
|
||||
SparseLU<SparseMatrix<Scalar>,UmfPack> lu(m2);
|
||||
VERIFY(lu.succeeded() && "umfpack LU decomposition failed");
|
||||
VERIFY(lu.solve(b,&x) && "umfpack LU solving failed");
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack");
|
||||
VERIFY_IS_APPROX(refDet,lu.determinant());
|
||||
// TODO check the extracted data
|
||||
//std::cerr << slu.matrixL() << "\n";
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_SUPERLU_SUPPORT
|
||||
// legacy, deprecated API
|
||||
{
|
||||
x.setZero();
|
||||
SparseLU<SparseMatrix<Scalar>,SuperLULegacy> slu(m2);
|
||||
if (slu.succeeded())
|
||||
{
|
||||
DenseVector oldb = b;
|
||||
if (slu.solve(b,&x)) {
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU");
|
||||
}
|
||||
else
|
||||
std::cerr << "super lu solving failed\n";
|
||||
VERIFY(oldb.isApprox(b) && "the rhs should not be modified!");
|
||||
|
||||
// std::cerr << refDet << " == " << slu.determinant() << "\n";
|
||||
if (slu.solve(b, &x, SvTranspose)) {
|
||||
VERIFY(b.isApprox(m2.transpose() * x, test_precision<Scalar>()));
|
||||
}
|
||||
else
|
||||
std::cerr << "super lu solving failed\n";
|
||||
|
||||
if (slu.solve(b, &x, SvAdjoint)) {
|
||||
VERIFY(b.isApprox(m2.adjoint() * x, test_precision<Scalar>()));
|
||||
}
|
||||
else
|
||||
std::cerr << "super lu solving failed\n";
|
||||
|
||||
if (!NumTraits<Scalar>::IsComplex) {
|
||||
VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex
|
||||
}
|
||||
}
|
||||
else
|
||||
std::cerr << "super lu factorize failed\n";
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void test_sparse_lu_legacy()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1(sparse_lu_legacy<double>(8, 8) );
|
||||
int s = internal::random<int>(1,300);
|
||||
CALL_SUBTEST_1(sparse_lu_legacy<std::complex<double> >(s,s) );
|
||||
CALL_SUBTEST_1(sparse_lu_legacy<double>(s,s) );
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user