mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-07 03:39:04 +08:00
RealSchur: reduce scope of temporary variables in hqr2().
This commit is contained in:
parent
dad50338b8
commit
86df74c765
@ -129,7 +129,7 @@ void RealSchur<MatrixType>::hqr2()
|
||||
const int low = 0;
|
||||
const int high = size-1;
|
||||
Scalar exshift = 0.0;
|
||||
Scalar p=0,q=0,r=0,s=0,z=0,w,x,y;
|
||||
Scalar p=0, q=0, r=0;
|
||||
|
||||
// Compute matrix norm
|
||||
// FIXME to be efficient the following would requires a triangular reduxion code
|
||||
@ -148,7 +148,7 @@ void RealSchur<MatrixType>::hqr2()
|
||||
int l = n;
|
||||
while (l > low)
|
||||
{
|
||||
s = ei_abs(m_matT.coeff(l-1,l-1)) + ei_abs(m_matT.coeff(l,l));
|
||||
Scalar s = ei_abs(m_matT.coeff(l-1,l-1)) + ei_abs(m_matT.coeff(l,l));
|
||||
if (s == 0.0)
|
||||
s = norm;
|
||||
if (ei_abs(m_matT.coeff(l,l-1)) < NumTraits<Scalar>::epsilon() * s)
|
||||
@ -167,13 +167,13 @@ void RealSchur<MatrixType>::hqr2()
|
||||
}
|
||||
else if (l == n-1) // Two roots found
|
||||
{
|
||||
w = m_matT.coeff(n,n-1) * m_matT.coeff(n-1,n);
|
||||
Scalar w = m_matT.coeff(n,n-1) * m_matT.coeff(n-1,n);
|
||||
p = (m_matT.coeff(n-1,n-1) - m_matT.coeff(n,n)) * Scalar(0.5);
|
||||
q = p * p + w;
|
||||
z = ei_sqrt(ei_abs(q));
|
||||
Scalar z = ei_sqrt(ei_abs(q));
|
||||
m_matT.coeffRef(n,n) = m_matT.coeff(n,n) + exshift;
|
||||
m_matT.coeffRef(n-1,n-1) = m_matT.coeff(n-1,n-1) + exshift;
|
||||
x = m_matT.coeff(n,n);
|
||||
Scalar x = m_matT.coeff(n,n);
|
||||
|
||||
// Scalar pair
|
||||
if (q >= 0)
|
||||
@ -203,9 +203,9 @@ void RealSchur<MatrixType>::hqr2()
|
||||
else // No convergence yet
|
||||
{
|
||||
// Form shift
|
||||
x = m_matT.coeff(n,n);
|
||||
y = 0.0;
|
||||
w = 0.0;
|
||||
Scalar x = m_matT.coeff(n,n);
|
||||
Scalar y = 0.0;
|
||||
Scalar w = 0.0;
|
||||
if (l < n)
|
||||
{
|
||||
y = m_matT.coeff(n-1,n-1);
|
||||
@ -218,7 +218,7 @@ void RealSchur<MatrixType>::hqr2()
|
||||
exshift += x;
|
||||
for (int i = low; i <= n; ++i)
|
||||
m_matT.coeffRef(i,i) -= x;
|
||||
s = ei_abs(m_matT.coeff(n,n-1)) + ei_abs(m_matT.coeff(n-1,n-2));
|
||||
Scalar s = ei_abs(m_matT.coeff(n,n-1)) + ei_abs(m_matT.coeff(n-1,n-2));
|
||||
x = y = Scalar(0.75) * s;
|
||||
w = Scalar(-0.4375) * s * s;
|
||||
}
|
||||
@ -226,7 +226,7 @@ void RealSchur<MatrixType>::hqr2()
|
||||
// MATLAB's new ad hoc shift
|
||||
if (iter == 30)
|
||||
{
|
||||
s = Scalar((y - x) / 2.0);
|
||||
Scalar s = Scalar((y - x) / 2.0);
|
||||
s = s * s + w;
|
||||
if (s > 0)
|
||||
{
|
||||
@ -247,9 +247,9 @@ void RealSchur<MatrixType>::hqr2()
|
||||
int m = n-2;
|
||||
while (m >= l)
|
||||
{
|
||||
z = m_matT.coeff(m,m);
|
||||
Scalar z = m_matT.coeff(m,m);
|
||||
r = x - z;
|
||||
s = y - z;
|
||||
Scalar s = y - z;
|
||||
p = (r * s - w) / m_matT.coeff(m+1,m) + m_matT.coeff(m,m+1);
|
||||
q = m_matT.coeff(m+1,m+1) - z - r - s;
|
||||
r = m_matT.coeff(m+2,m+1);
|
||||
@ -296,7 +296,7 @@ void RealSchur<MatrixType>::hqr2()
|
||||
if (x == 0.0)
|
||||
break;
|
||||
|
||||
s = ei_sqrt(p * p + q * q + r * r);
|
||||
Scalar s = ei_sqrt(p * p + q * q + r * r);
|
||||
|
||||
if (p < 0)
|
||||
s = -s;
|
||||
@ -311,7 +311,7 @@ void RealSchur<MatrixType>::hqr2()
|
||||
p = p + s;
|
||||
x = p / s;
|
||||
y = q / s;
|
||||
z = r / s;
|
||||
Scalar z = r / s;
|
||||
q = q / p;
|
||||
r = r / p;
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user