mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 03:39:01 +08:00
bug #1036: implement verify_is_approx_upto_permutation through a combinatorial search.
The previous implementation was subject to numerical cancellation issues.
This commit is contained in:
parent
ab8b497a7e
commit
87f3e533f5
@ -13,20 +13,60 @@
|
|||||||
#include <Eigen/Eigenvalues>
|
#include <Eigen/Eigenvalues>
|
||||||
#include <Eigen/LU>
|
#include <Eigen/LU>
|
||||||
|
|
||||||
/* Check that two column vectors are approximately equal upto permutations,
|
template<typename MatrixType> bool find_pivot(typename MatrixType::Scalar tol, MatrixType &diffs, Index col=0)
|
||||||
by checking that the k-th power sums are equal for k = 1, ..., vec1.rows() */
|
{
|
||||||
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
bool match = diffs.diagonal().sum() <= tol;
|
||||||
|
if(match || col==diffs.cols())
|
||||||
|
{
|
||||||
|
return match;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
Index n = diffs.cols();
|
||||||
|
std::vector<std::pair<Index,Index> > transpositions;
|
||||||
|
for(Index i=col; i<n; ++i)
|
||||||
|
{
|
||||||
|
Index best_index(0);
|
||||||
|
if(diffs.col(col).segment(col,n-i).minCoeff(&best_index) > tol)
|
||||||
|
break;
|
||||||
|
|
||||||
|
best_index += col;
|
||||||
|
|
||||||
|
diffs.row(col).swap(diffs.row(best_index));
|
||||||
|
if(find_pivot(tol,diffs,col+1)) return true;
|
||||||
|
diffs.row(col).swap(diffs.row(best_index));
|
||||||
|
|
||||||
|
// move current pivot to the end
|
||||||
|
diffs.row(n-(i-col)-1).swap(diffs.row(best_index));
|
||||||
|
transpositions.push_back(std::pair<Index,Index>(n-(i-col)-1,best_index));
|
||||||
|
}
|
||||||
|
// restore
|
||||||
|
for(Index k=transpositions.size()-1; k>=0; --k)
|
||||||
|
diffs.row(transpositions[k].first).swap(diffs.row(transpositions[k].second));
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Check that two column vectors are approximately equal upto permutations.
|
||||||
|
* Initially, this method checked that the k-th power sums are equal for all k = 1, ..., vec1.rows(),
|
||||||
|
* however this strategy is numerically inacurate because of numerical cancellation issues.
|
||||||
|
*/
|
||||||
template<typename VectorType>
|
template<typename VectorType>
|
||||||
void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2)
|
void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2)
|
||||||
{
|
{
|
||||||
typedef typename NumTraits<typename VectorType::Scalar>::Real RealScalar;
|
typedef typename VectorType::Scalar Scalar;
|
||||||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||||
|
|
||||||
VERIFY(vec1.cols() == 1);
|
VERIFY(vec1.cols() == 1);
|
||||||
VERIFY(vec2.cols() == 1);
|
VERIFY(vec2.cols() == 1);
|
||||||
VERIFY(vec1.rows() == vec2.rows());
|
VERIFY(vec1.rows() == vec2.rows());
|
||||||
for (int k = 1; k <= vec1.rows(); ++k)
|
|
||||||
{
|
Index n = vec1.rows();
|
||||||
VERIFY_IS_APPROX(vec1.array().pow(RealScalar(k)).sum(), vec2.array().pow(RealScalar(k)).sum());
|
RealScalar tol = test_precision<RealScalar>()*test_precision<RealScalar>()*numext::maxi(vec1.squaredNorm(),vec2.squaredNorm());
|
||||||
}
|
Matrix<RealScalar,Dynamic,Dynamic> diffs = (vec1.rowwise().replicate(n) - vec2.rowwise().replicate(n).transpose()).cwiseAbs2();
|
||||||
|
|
||||||
|
VERIFY( find_pivot(tol, diffs) );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user