backporting accuracy fixes in QR module

This commit is contained in:
Gael Guennebaud 2009-06-11 16:24:54 +02:00
parent 287c7b8818
commit 8817798273
3 changed files with 190 additions and 27 deletions

View File

@ -1,5 +1,5 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
@ -53,9 +53,18 @@ template<typename _MatrixType> class EigenSolver
typedef Matrix<RealScalar, MatrixType::ColsAtCompileTime, 1> RealVectorType;
typedef Matrix<RealScalar, Dynamic, 1> RealVectorTypeX;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via EigenSolver::compute(const MatrixType&).
*/
EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false) {}
EigenSolver(const MatrixType& matrix)
: m_eivec(matrix.rows(), matrix.cols()),
m_eivalues(matrix.cols())
m_eivalues(matrix.cols()),
m_isInitialized(false)
{
compute(matrix);
}
@ -94,12 +103,20 @@ template<typename _MatrixType> class EigenSolver
*
* \sa pseudoEigenvalueMatrix()
*/
const MatrixType& pseudoEigenvectors() const { return m_eivec; }
const MatrixType& pseudoEigenvectors() const
{
ei_assert(m_isInitialized && "EigenSolver is not initialized.");
return m_eivec;
}
MatrixType pseudoEigenvalueMatrix() const;
/** \returns the eigenvalues as a column vector */
EigenvalueType eigenvalues() const { return m_eivalues; }
EigenvalueType eigenvalues() const
{
ei_assert(m_isInitialized && "EigenSolver is not initialized.");
return m_eivalues;
}
void compute(const MatrixType& matrix);
@ -111,6 +128,7 @@ template<typename _MatrixType> class EigenSolver
protected:
MatrixType m_eivec;
EigenvalueType m_eivalues;
bool m_isInitialized;
};
/** \returns the real block diagonal matrix D of the eigenvalues.
@ -120,6 +138,7 @@ template<typename _MatrixType> class EigenSolver
template<typename MatrixType>
MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
{
ei_assert(m_isInitialized && "EigenSolver is not initialized.");
int n = m_eivec.cols();
MatrixType matD = MatrixType::Zero(n,n);
for (int i=0; i<n; ++i)
@ -143,6 +162,7 @@ MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
template<typename MatrixType>
typename EigenSolver<MatrixType>::EigenvectorType EigenSolver<MatrixType>::eigenvectors(void) const
{
ei_assert(m_isInitialized && "EigenSolver is not initialized.");
int n = m_eivec.cols();
EigenvectorType matV(n,n);
for (int j=0; j<n; ++j)
@ -183,6 +203,8 @@ void EigenSolver<MatrixType>::compute(const MatrixType& matrix)
// Reduce Hessenberg to real Schur form.
hqr2(matH);
m_isInitialized = true;
}
// Nonsymmetric reduction to Hessenberg form.

View File

@ -1,5 +1,5 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
@ -49,51 +49,146 @@ template<typename MatrixType> class QR
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixTypeR;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via QR::compute(const MatrixType&).
*/
QR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {}
QR(const MatrixType& matrix)
: m_qr(matrix.rows(), matrix.cols()),
m_hCoeffs(matrix.cols())
m_hCoeffs(matrix.cols()),
m_isInitialized(false)
{
_compute(matrix);
compute(matrix);
}
/** \deprecated use isInjective()
* \returns whether or not the matrix is of full rank
*
* \note Since the rank is computed only once, i.e. the first time it is needed, this
* method almost does not perform any further computation.
*/
EIGEN_DEPRECATED bool isFullRank() const
{
ei_assert(m_isInitialized && "QR is not initialized.");
return rank() == m_qr.cols();
}
/** \returns the rank of the matrix of which *this is the QR decomposition.
*
* \note Since the rank is computed only once, i.e. the first time it is needed, this
* method almost does not perform any further computation.
*/
int rank() const;
/** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
*
* \note Since the rank is computed only once, i.e. the first time it is needed, this
* method almost does not perform any further computation.
*/
inline int dimensionOfKernel() const
{
ei_assert(m_isInitialized && "QR is not initialized.");
return m_qr.cols() - rank();
}
/** \returns true if the matrix of which *this is the QR decomposition represents an injective
* linear map, i.e. has trivial kernel; false otherwise.
*
* \note Since the rank is computed only once, i.e. the first time it is needed, this
* method almost does not perform any further computation.
*/
inline bool isInjective() const
{
ei_assert(m_isInitialized && "QR is not initialized.");
return rank() == m_qr.cols();
}
/** \returns true if the matrix of which *this is the QR decomposition represents a surjective
* linear map; false otherwise.
*
* \note Since the rank is computed only once, i.e. the first time it is needed, this
* method almost does not perform any further computation.
*/
inline bool isSurjective() const
{
ei_assert(m_isInitialized && "QR is not initialized.");
return rank() == m_qr.rows();
}
/** \returns whether or not the matrix is of full rank */
bool isFullRank() const { return rank() == std::min(m_qr.rows(),m_qr.cols()); }
/** \returns true if the matrix of which *this is the QR decomposition is invertible.
*
* \note Since the rank is computed only once, i.e. the first time it is needed, this
* method almost does not perform any further computation.
*/
inline bool isInvertible() const
{
ei_assert(m_isInitialized && "QR is not initialized.");
return isInjective() && isSurjective();
}
int rank() const;
/** \returns a read-only expression of the matrix R of the actual the QR decomposition */
const Part<NestByValue<MatrixRBlockType>, UpperTriangular>
matrixR(void) const
{
ei_assert(m_isInitialized && "QR is not initialized.");
int cols = m_qr.cols();
return MatrixRBlockType(m_qr, 0, 0, cols, cols).nestByValue().template part<UpperTriangular>();
}
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
* *this is the QR decomposition, if any exists.
*
* \param b the right-hand-side of the equation to solve.
*
* \param result a pointer to the vector/matrix in which to store the solution, if any exists.
* Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
* If no solution exists, *result is left with undefined coefficients.
*
* \returns true if any solution exists, false if no solution exists.
*
* \note If there exist more than one solution, this method will arbitrarily choose one.
* If you need a complete analysis of the space of solutions, take the one solution obtained
* by this method and add to it elements of the kernel, as determined by kernel().
*
* \note The case where b is a matrix is not yet implemented. Also, this
* code is space inefficient.
*
* Example: \include QR_solve.cpp
* Output: \verbinclude QR_solve.out
*
* \sa MatrixBase::solveTriangular(), kernel(), computeKernel(), inverse(), computeInverse()
*/
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
MatrixType matrixQ(void) const;
private:
void _compute(const MatrixType& matrix);
void compute(const MatrixType& matrix);
protected:
MatrixType m_qr;
VectorType m_hCoeffs;
mutable int m_rank;
mutable bool m_rankIsUptodate;
bool m_isInitialized;
};
/** \returns the rank of the matrix of which *this is the QR decomposition. */
template<typename MatrixType>
int QR<MatrixType>::rank() const
{
ei_assert(m_isInitialized && "QR is not initialized.");
if (!m_rankIsUptodate)
{
RealScalar maxCoeff = m_qr.diagonal().maxCoeff();
int n = std::min(m_qr.rows(),m_qr.cols());
m_rank = n;
for (int i=0; i<n; ++i)
if (ei_isMuchSmallerThan(m_qr.diagonal().coeff(i), maxCoeff))
--m_rank;
RealScalar maxCoeff = m_qr.diagonal().cwise().abs().maxCoeff();
int n = m_qr.cols();
m_rank = 0;
while(m_rank<n && !ei_isMuchSmallerThan(m_qr.diagonal().coeff(m_rank), maxCoeff))
++m_rank;
m_rankIsUptodate = true;
}
return m_rank;
@ -102,12 +197,15 @@ int QR<MatrixType>::rank() const
#ifndef EIGEN_HIDE_HEAVY_CODE
template<typename MatrixType>
void QR<MatrixType>::_compute(const MatrixType& matrix)
{
void QR<MatrixType>::compute(const MatrixType& matrix)
{
m_rankIsUptodate = false;
m_qr = matrix;
m_hCoeffs.resize(matrix.cols());
int rows = matrix.rows();
int cols = matrix.cols();
RealScalar eps2 = precision<RealScalar>()*precision<RealScalar>();
for (int k = 0; k < cols; ++k)
{
@ -132,7 +230,8 @@ void QR<MatrixType>::_compute(const MatrixType& matrix)
m_hCoeffs.coeffRef(k) = 0;
}
}
else if ( (!ei_isMuchSmallerThan(beta=m_qr.col(k).end(remainingSize-1).squaredNorm(),static_cast<Scalar>(1))) || ei_imag(v0)==0 )
else if ((beta=m_qr.col(k).end(remainingSize-1).squaredNorm())>eps2)
// FIXME what about ei_imag(v0) ??
{
// form k-th Householder vector
beta = ei_sqrt(ei_abs2(v0)+beta);
@ -158,12 +257,46 @@ void QR<MatrixType>::_compute(const MatrixType& matrix)
m_hCoeffs.coeffRef(k) = 0;
}
}
m_isInitialized = true;
}
template<typename MatrixType>
template<typename OtherDerived, typename ResultType>
bool QR<MatrixType>::solve(
const MatrixBase<OtherDerived>& b,
ResultType *result
) const
{
ei_assert(m_isInitialized && "QR is not initialized.");
const int rows = m_qr.rows();
ei_assert(b.rows() == rows);
result->resize(rows, b.cols());
// TODO(keir): There is almost certainly a faster way to multiply by
// Q^T without explicitly forming matrixQ(). Investigate.
*result = matrixQ().transpose()*b;
if(!isSurjective())
{
// is result is in the image of R ?
RealScalar biggest_in_res = result->corner(TopLeft, m_rank, result->cols()).cwise().abs().maxCoeff();
for(int col = 0; col < result->cols(); ++col)
for(int row = m_rank; row < result->rows(); ++row)
if(!ei_isMuchSmallerThan(result->coeff(row,col), biggest_in_res))
return false;
}
m_qr.corner(TopLeft, m_rank, m_rank)
.template marked<UpperTriangular>()
.solveTriangularInPlace(result->corner(TopLeft, m_rank, result->cols()));
return true;
}
/** \returns the matrix Q */
template<typename MatrixType>
MatrixType QR<MatrixType>::matrixQ(void) const
MatrixType QR<MatrixType>::matrixQ() const
{
ei_assert(m_isInitialized && "QR is not initialized.");
// compute the product Q_0 Q_1 ... Q_n-1,
// where Q_k is the k-th Householder transformation I - h_k v_k v_k'
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]

View File

@ -1,5 +1,5 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
@ -52,8 +52,8 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
typedef Tridiagonalization<MatrixType> TridiagonalizationType;
SelfAdjointEigenSolver()
: m_eivec(Size, Size),
m_eivalues(Size)
: m_eivec(int(Size), int(Size)),
m_eivalues(int(Size))
{
ei_assert(Size!=Dynamic);
}
@ -189,6 +189,14 @@ void SelfAdjointEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool
assert(matrix.cols() == matrix.rows());
int n = matrix.cols();
m_eivalues.resize(n,1);
if(n==1)
{
m_eivalues.coeffRef(0,0) = ei_real(matrix.coeff(0,0));
m_eivec.setOnes();
return;
}
m_eivec = matrix;
// FIXME, should tridiag be a local variable of this function or an attribute of SelfAdjointEigenSolver ?