mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-21 17:19:36 +08:00
Clean source code and unit tests with respect to -Wunused-local-typedefs
This commit is contained in:
parent
7e04d7db02
commit
899c0c2b6c
@ -51,7 +51,6 @@ void cholmod_configure_matrix(CholmodType& mat)
|
||||
template<typename _Scalar, int _Options, typename _Index>
|
||||
cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat)
|
||||
{
|
||||
typedef SparseMatrix<_Scalar,_Options,_Index> MatrixType;
|
||||
cholmod_sparse res;
|
||||
res.nzmax = mat.nonZeros();
|
||||
res.nrow = mat.rows();;
|
||||
|
@ -596,7 +596,6 @@ struct copy_using_evaluator_impl<DstXprType, SrcXprType, AllAtOnceTraversal, NoU
|
||||
{
|
||||
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
|
||||
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
|
||||
typedef typename DstXprType::Index Index;
|
||||
|
||||
DstEvaluatorType dstEvaluator(dst);
|
||||
SrcEvaluatorType srcEvaluator(src);
|
||||
|
@ -238,7 +238,6 @@ struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,false>
|
||||
{
|
||||
static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
typedef typename internal::remove_all<typename ProductType::LhsNested>::type Lhs;
|
||||
|
@ -44,7 +44,6 @@ EIGEN_DONT_INLINE void selfadjoint_matrix_vector_product<Scalar,Index,StorageOrd
|
||||
Scalar alpha)
|
||||
{
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
const Index PacketSize = sizeof(Packet)/sizeof(Scalar);
|
||||
|
||||
enum {
|
||||
|
@ -457,7 +457,6 @@ template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *
|
||||
template<typename Scalar, typename Index>
|
||||
static inline Index first_aligned(const Scalar* array, Index size)
|
||||
{
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
enum { PacketSize = packet_traits<Scalar>::size,
|
||||
PacketAlignedMask = PacketSize-1
|
||||
};
|
||||
|
@ -364,7 +364,6 @@ struct complex_schur_reduce_to_hessenberg<MatrixType, false>
|
||||
static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
|
||||
{
|
||||
typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
|
||||
typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType;
|
||||
|
||||
// Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
|
||||
_this.m_hess.compute(matrix);
|
||||
|
@ -426,8 +426,6 @@ struct tridiagonalization_inplace_selector;
|
||||
template<typename MatrixType, typename DiagonalType, typename SubDiagonalType>
|
||||
void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
//Index n = mat.rows();
|
||||
eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1);
|
||||
tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ);
|
||||
}
|
||||
|
@ -91,7 +91,6 @@ template<typename Scalar, typename Index>
|
||||
void minimum_degree_ordering(SparseMatrix<Scalar,ColMajor,Index>& C, PermutationMatrix<Dynamic,Dynamic,Index>& perm)
|
||||
{
|
||||
using std::sqrt;
|
||||
typedef SparseMatrix<Scalar,ColMajor,Index> CCS;
|
||||
|
||||
int d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1,
|
||||
k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi,
|
||||
|
@ -241,7 +241,6 @@ void householder_qr_inplace_blocked(MatrixQR& mat, HCoeffs& hCoeffs,
|
||||
{
|
||||
typedef typename MatrixQR::Index Index;
|
||||
typedef typename MatrixQR::Scalar Scalar;
|
||||
typedef typename MatrixQR::RealScalar RealScalar;
|
||||
typedef Block<MatrixQR,Dynamic,Dynamic> BlockType;
|
||||
|
||||
Index rows = mat.rows();
|
||||
|
@ -909,7 +909,6 @@ void set_from_triplets(const InputIterator& begin, const InputIterator& end, Spa
|
||||
EIGEN_UNUSED_VARIABLE(Options);
|
||||
enum { IsRowMajor = SparseMatrixType::IsRowMajor };
|
||||
typedef typename SparseMatrixType::Scalar Scalar;
|
||||
typedef typename SparseMatrixType::Index Index;
|
||||
SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor> trMat(mat.rows(),mat.cols());
|
||||
|
||||
// pass 1: count the nnz per inner-vector
|
||||
|
@ -213,7 +213,6 @@ class SparseSelfAdjointTimeDenseProduct
|
||||
// TODO use alpha
|
||||
eigen_assert(alpha==Scalar(1) && "alpha != 1 is not implemented yet, sorry");
|
||||
typedef typename internal::remove_all<Lhs>::type _Lhs;
|
||||
typedef typename internal::remove_all<Rhs>::type _Rhs;
|
||||
typedef typename _Lhs::InnerIterator LhsInnerIterator;
|
||||
enum {
|
||||
LhsIsRowMajor = (_Lhs::Flags&RowMajorBit)==RowMajorBit,
|
||||
|
@ -13,7 +13,6 @@ template<typename ArrayType> void array(const ArrayType& m)
|
||||
{
|
||||
typedef typename ArrayType::Index Index;
|
||||
typedef typename ArrayType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType;
|
||||
typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;
|
||||
|
||||
@ -90,7 +89,6 @@ template<typename ArrayType> void comparisons(const ArrayType& m)
|
||||
typedef typename ArrayType::Index Index;
|
||||
typedef typename ArrayType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> VectorType;
|
||||
|
||||
Index rows = m.rows();
|
||||
Index cols = m.cols();
|
||||
|
@ -13,7 +13,6 @@ template<typename MatrixType> void array_for_matrix(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
|
||||
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
|
||||
|
||||
@ -77,7 +76,6 @@ template<typename MatrixType> void comparisons(const MatrixType& m)
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
|
||||
Index rows = m.rows();
|
||||
Index cols = m.cols();
|
||||
|
@ -16,7 +16,6 @@ template<typename MatrixType> void replicate(const MatrixType& m)
|
||||
*/
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
|
||||
typedef Matrix<Scalar, Dynamic, 1> VectorX;
|
||||
|
@ -68,7 +68,6 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
|
||||
Index cols = m.cols();
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
|
||||
|
@ -60,7 +60,6 @@ template<typename MatrixType>
|
||||
typename Eigen::internal::enable_if<NumTraits<typename MatrixType::Scalar>::IsInteger,typename MatrixType::Scalar>::type
|
||||
cwiseops_real_only(MatrixType& , MatrixType& , MatrixType& , MatrixType& )
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -68,7 +67,6 @@ template<typename MatrixType> void cwiseops(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
|
||||
Index rows = m.rows();
|
||||
|
@ -13,9 +13,6 @@ template<typename MatrixType> void diagonal(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
|
||||
|
||||
Index rows = m.rows();
|
||||
Index cols = m.cols();
|
||||
|
@ -13,7 +13,6 @@ template<typename MatrixType> void diagonalmatrices(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
|
||||
typedef Matrix<Scalar, Rows, 1> VectorType;
|
||||
typedef Matrix<Scalar, 1, Cols> RowVectorType;
|
||||
|
@ -41,9 +41,6 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
|
||||
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
|
||||
|
||||
MatrixType a = MatrixType::Random(rows,cols);
|
||||
MatrixType symmA = a.adjoint() * a;
|
||||
|
@ -21,10 +21,7 @@ template<typename MatrixType> void generalized_eigensolver_real(const MatrixType
|
||||
Index cols = m.cols();
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
|
||||
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
|
||||
|
||||
MatrixType a = MatrixType::Random(rows,cols);
|
||||
MatrixType b = MatrixType::Random(rows,cols);
|
||||
|
@ -23,7 +23,6 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
|
||||
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
|
||||
|
||||
|
@ -23,9 +23,6 @@ template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
|
||||
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
|
||||
|
||||
RealScalar largerEps = 10*test_precision<RealScalar>();
|
||||
|
||||
|
@ -71,7 +71,6 @@ void alignedboxCastTests(const BoxType& _box)
|
||||
// casting
|
||||
typedef typename BoxType::Index Index;
|
||||
typedef typename BoxType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
|
||||
|
||||
const Index dim = _box.dim();
|
||||
|
@ -22,7 +22,6 @@ template<typename HyperplaneType> void hyperplane(const HyperplaneType& _plane)
|
||||
const Index dim = _plane.dim();
|
||||
enum { Options = HyperplaneType::Options };
|
||||
typedef typename HyperplaneType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, 1> VectorType;
|
||||
typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime,
|
||||
HyperplaneType::AmbientDimAtCompileTime> MatrixType;
|
||||
|
@ -24,8 +24,6 @@ template<typename LineType> void parametrizedline(const LineType& _line)
|
||||
typedef typename LineType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, LineType::AmbientDimAtCompileTime, 1> VectorType;
|
||||
typedef Matrix<Scalar, LineType::AmbientDimAtCompileTime,
|
||||
LineType::AmbientDimAtCompileTime> MatrixType;
|
||||
typedef Hyperplane<Scalar,LineType::AmbientDimAtCompileTime> HyperplaneType;
|
||||
|
||||
VectorType p0 = VectorType::Random(dim);
|
||||
|
@ -25,7 +25,6 @@ template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType&
|
||||
{
|
||||
using std::abs;
|
||||
typedef typename QuatType::Scalar Scalar;
|
||||
typedef Matrix<Scalar,3,1> VectorType;
|
||||
typedef AngleAxis<Scalar> AA;
|
||||
|
||||
Scalar largeEps = test_precision<Scalar>();
|
||||
@ -49,7 +48,6 @@ template<typename Scalar, int Options> void quaternion(void)
|
||||
Quaternion.h
|
||||
*/
|
||||
using std::abs;
|
||||
typedef Matrix<Scalar,3,3> Matrix3;
|
||||
typedef Matrix<Scalar,3,1> Vector3;
|
||||
typedef Matrix<Scalar,4,1> Vector4;
|
||||
typedef Quaternion<Scalar,Options> Quaternionx;
|
||||
|
@ -17,22 +17,11 @@ template<typename Scalar, int Mode, int Options> void non_projective_only()
|
||||
/* this test covers the following files:
|
||||
Cross.h Quaternion.h, Transform.cpp
|
||||
*/
|
||||
typedef Matrix<Scalar,2,2> Matrix2;
|
||||
typedef Matrix<Scalar,3,3> Matrix3;
|
||||
typedef Matrix<Scalar,4,4> Matrix4;
|
||||
typedef Matrix<Scalar,2,1> Vector2;
|
||||
typedef Matrix<Scalar,3,1> Vector3;
|
||||
typedef Matrix<Scalar,4,1> Vector4;
|
||||
typedef Quaternion<Scalar> Quaternionx;
|
||||
typedef AngleAxis<Scalar> AngleAxisx;
|
||||
typedef Transform<Scalar,2,Mode,Options> Transform2;
|
||||
typedef Transform<Scalar,3,Mode,Options> Transform3;
|
||||
typedef Transform<Scalar,2,Isometry,Options> Isometry2;
|
||||
typedef Transform<Scalar,3,Isometry,Options> Isometry3;
|
||||
typedef typename Transform3::MatrixType MatrixType;
|
||||
typedef DiagonalMatrix<Scalar,2> AlignedScaling2;
|
||||
typedef DiagonalMatrix<Scalar,3> AlignedScaling3;
|
||||
typedef Translation<Scalar,2> Translation2;
|
||||
typedef Translation<Scalar,3> Translation3;
|
||||
|
||||
Vector3 v0 = Vector3::Random(),
|
||||
@ -90,7 +79,6 @@ template<typename Scalar, int Mode, int Options> void transformations()
|
||||
*/
|
||||
using std::cos;
|
||||
using std::abs;
|
||||
typedef Matrix<Scalar,2,2> Matrix2;
|
||||
typedef Matrix<Scalar,3,3> Matrix3;
|
||||
typedef Matrix<Scalar,4,4> Matrix4;
|
||||
typedef Matrix<Scalar,2,1> Vector2;
|
||||
@ -100,10 +88,7 @@ template<typename Scalar, int Mode, int Options> void transformations()
|
||||
typedef AngleAxis<Scalar> AngleAxisx;
|
||||
typedef Transform<Scalar,2,Mode,Options> Transform2;
|
||||
typedef Transform<Scalar,3,Mode,Options> Transform3;
|
||||
typedef Transform<Scalar,2,Isometry,Options> Isometry2;
|
||||
typedef Transform<Scalar,3,Isometry,Options> Isometry3;
|
||||
typedef typename Transform3::MatrixType MatrixType;
|
||||
typedef DiagonalMatrix<Scalar,2> AlignedScaling2;
|
||||
typedef DiagonalMatrix<Scalar,3> AlignedScaling3;
|
||||
typedef Translation<Scalar,2> Translation2;
|
||||
typedef Translation<Scalar,3> Translation3;
|
||||
|
@ -29,8 +29,6 @@ template<typename MatrixType> void householder(const MatrixType& m)
|
||||
typedef Matrix<Scalar, Dynamic, MatrixType::ColsAtCompileTime> HBlockMatrixType;
|
||||
typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType;
|
||||
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> RightSquareMatrixType;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, Dynamic> VBlockMatrixType;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TMatrixType;
|
||||
|
||||
Matrix<Scalar, EIGEN_SIZE_MAX(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime), 1> _tmp((std::max)(rows,cols));
|
||||
|
@ -22,8 +22,6 @@ template<typename MatrixType> void inverse(const MatrixType& m)
|
||||
Index cols = m.cols();
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||
|
||||
MatrixType m1(rows, cols),
|
||||
m2(rows, cols),
|
||||
@ -43,6 +41,9 @@ template<typename MatrixType> void inverse(const MatrixType& m)
|
||||
VERIFY_IS_APPROX(MatrixType(m1.transpose().inverse()), MatrixType(m1.inverse().transpose()));
|
||||
|
||||
#if !defined(EIGEN_TEST_PART_5) && !defined(EIGEN_TEST_PART_6)
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||
|
||||
//computeInverseAndDetWithCheck tests
|
||||
//First: an invertible matrix
|
||||
bool invertible;
|
||||
|
@ -14,7 +14,6 @@
|
||||
template<typename MatrixType, typename JacobiScalar>
|
||||
void jacobi(const MatrixType& m = MatrixType())
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
Index rows = m.rows();
|
||||
Index cols = m.cols();
|
||||
|
@ -27,11 +27,8 @@ void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPre
|
||||
};
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, 1> InputVectorType;
|
||||
|
||||
MatrixType sigma = MatrixType::Zero(rows,cols);
|
||||
sigma.diagonal() = svd.singularValues().template cast<Scalar>();
|
||||
|
@ -14,7 +14,6 @@ using namespace std;
|
||||
template<typename MatrixType> void lu_non_invertible()
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
/* this test covers the following files:
|
||||
LU.h
|
||||
@ -100,7 +99,6 @@ template<typename MatrixType> void lu_invertible()
|
||||
/* this test covers the following files:
|
||||
LU.h
|
||||
*/
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
int size = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);
|
||||
|
||||
@ -132,8 +130,6 @@ template<typename MatrixType> void lu_partial_piv()
|
||||
PartialPivLU.h
|
||||
*/
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
Index rows = internal::random<Index>(1,4);
|
||||
Index cols = rows;
|
||||
|
||||
|
@ -102,9 +102,6 @@ template<typename VectorType> void map_static_methods(const VectorType& m)
|
||||
|
||||
template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
|
||||
{
|
||||
typedef typename PlainObjectType::Index Index;
|
||||
typedef typename PlainObjectType::Scalar Scalar;
|
||||
|
||||
// there's a lot that we can't test here while still having this test compile!
|
||||
// the only possible approach would be to run a script trying to compile stuff and checking that it fails.
|
||||
// CMake can help with that.
|
||||
|
@ -11,9 +11,6 @@
|
||||
|
||||
void test_meta()
|
||||
{
|
||||
typedef float & FloatRef;
|
||||
typedef const float & ConstFloatRef;
|
||||
|
||||
VERIFY((internal::conditional<(3<4),internal::true_type, internal::false_type>::type::value));
|
||||
VERIFY(( internal::is_same<float,float>::value));
|
||||
VERIFY((!internal::is_same<float,double>::value));
|
||||
|
@ -17,7 +17,6 @@ template<typename MatrixType> void miscMatrices(const MatrixType& m)
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
|
||||
Index rows = m.rows();
|
||||
Index cols = m.cols();
|
||||
|
||||
|
@ -12,7 +12,6 @@
|
||||
template <typename MatrixType> void run_nesting_ops(const MatrixType& _m)
|
||||
{
|
||||
typename MatrixType::Nested m(_m);
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
||||
#ifdef NDEBUG
|
||||
const bool is_debug = false;
|
||||
|
@ -36,7 +36,6 @@ template<typename MatrixType> void nomalloc(const MatrixType& m)
|
||||
*/
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
|
||||
Index rows = m.rows();
|
||||
Index cols = m.cols();
|
||||
|
@ -14,7 +14,6 @@ template<typename MatrixType> void permutationmatrices(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options };
|
||||
typedef PermutationMatrix<Rows> LeftPermutationType;
|
||||
|
@ -14,7 +14,6 @@
|
||||
template<typename MatrixType> void inverse_permutation_4x4()
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
Vector4i indices(0,1,2,3);
|
||||
for(int i = 0; i < 24; ++i)
|
||||
{
|
||||
|
@ -24,7 +24,6 @@ template<typename MatrixType> void product(const MatrixType& m)
|
||||
*/
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::NonInteger NonInteger;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType;
|
||||
|
@ -13,7 +13,6 @@ template<typename MatrixType> void product_extra(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::NonInteger NonInteger;
|
||||
typedef Matrix<Scalar, 1, Dynamic> RowVectorType;
|
||||
typedef Matrix<Scalar, Dynamic, 1> ColVectorType;
|
||||
typedef Matrix<Scalar, Dynamic, Dynamic,
|
||||
|
@ -19,8 +19,6 @@
|
||||
|
||||
template<typename Scalar> void mmtr(int size)
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> MatrixColMaj;
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic,RowMajor> MatrixRowMaj;
|
||||
|
||||
|
@ -13,7 +13,6 @@ template<typename MatrixType> void product_selfadjoint(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
typedef Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> RowVectorType;
|
||||
|
||||
|
@ -11,8 +11,6 @@
|
||||
|
||||
template<typename Scalar, int Size, int OtherSize> void symm(int size = Size, int othersize = OtherSize)
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
typedef Matrix<Scalar, Size, Size> MatrixType;
|
||||
typedef Matrix<Scalar, Size, OtherSize> Rhs1;
|
||||
typedef Matrix<Scalar, OtherSize, Size> Rhs2;
|
||||
|
@ -13,7 +13,6 @@ template<typename MatrixType> void syrk(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, RowMajor> RMatrixType;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic> Rhs1;
|
||||
typedef Matrix<Scalar, Dynamic, MatrixType::RowsAtCompileTime> Rhs2;
|
||||
|
@ -14,8 +14,6 @@ void trmm(int rows=internal::random<int>(1,EIGEN_TEST_MAX_SIZE),
|
||||
int cols=internal::random<int>(1,EIGEN_TEST_MAX_SIZE),
|
||||
int otherCols = OtherCols==Dynamic?internal::random<int>(1,EIGEN_TEST_MAX_SIZE):OtherCols)
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic,TriOrder> TriMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,OtherCols,OtherCols==1?ColMajor:OtherOrder> OnTheRight;
|
||||
typedef Matrix<Scalar,OtherCols,Dynamic,OtherCols==1?RowMajor:OtherOrder> OnTheLeft;
|
||||
|
@ -19,7 +19,6 @@ template<typename MatrixType> void qr(const MatrixType& m)
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||
|
||||
MatrixType a = MatrixType::Random(rows,cols);
|
||||
HouseholderQR<MatrixType> qrOfA(a);
|
||||
|
@ -19,9 +19,7 @@ template<typename MatrixType> void qr()
|
||||
Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||
MatrixType m1;
|
||||
createRandomPIMatrixOfRank(rank,rows,cols,m1);
|
||||
ColPivHouseholderQR<MatrixType> qr(m1);
|
||||
|
@ -20,7 +20,6 @@ template<typename MatrixType> void qr()
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||
MatrixType m1;
|
||||
createRandomPIMatrixOfRank(rank,rows,cols,m1);
|
||||
FullPivHouseholderQR<MatrixType> qr(m1);
|
||||
|
@ -19,10 +19,6 @@ template<typename MatrixType> void real_qz(const MatrixType& m)
|
||||
using std::abs;
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
|
||||
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
|
||||
|
||||
Index dim = m.cols();
|
||||
|
||||
|
@ -146,9 +146,6 @@ template<typename VectorType> void ref_vector(const VectorType& m)
|
||||
|
||||
template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
|
||||
{
|
||||
typedef typename PlainObjectType::Index Index;
|
||||
typedef typename PlainObjectType::Scalar Scalar;
|
||||
|
||||
// verify that ref-to-const don't have LvalueBit
|
||||
typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
|
||||
VERIFY( !(internal::traits<Ref<ConstPlainObjectType> >::Flags & LvalueBit) );
|
||||
|
@ -16,7 +16,6 @@ template<typename MatrixType> void selfadjoint(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
Index rows = m.rows();
|
||||
Index cols = m.cols();
|
||||
|
@ -112,7 +112,6 @@ void check_sparse_determinant(Solver& solver, const typename Solver::MatrixType&
|
||||
{
|
||||
typedef typename Solver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
typedef typename Mat::RealScalar RealScalar;
|
||||
|
||||
solver.compute(A);
|
||||
if (solver.info() != Success)
|
||||
@ -168,7 +167,6 @@ template<typename Solver> void check_sparse_spd_solving(Solver& solver)
|
||||
{
|
||||
typedef typename Solver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
typedef typename Mat::Index Index;
|
||||
typedef SparseMatrix<Scalar,ColMajor> SpMat;
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
@ -247,7 +245,6 @@ int generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, Dens
|
||||
{
|
||||
typedef typename Solver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
|
||||
int size = internal::random<int>(1,maxSize);
|
||||
double density = (std::max)(8./(size*size), 0.01);
|
||||
|
@ -123,9 +123,6 @@ template<typename MatrixType> void triangular_rect(const MatrixType& m)
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
|
||||
typedef Matrix<Scalar, Rows, 1> VectorType;
|
||||
typedef Matrix<Scalar, Rows, Rows> RMatrixType;
|
||||
|
||||
|
||||
Index rows = m.rows();
|
||||
Index cols = m.cols();
|
||||
|
@ -22,8 +22,6 @@ template <typename T>
|
||||
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixUnitary(int size)
|
||||
{
|
||||
typedef T Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType;
|
||||
|
||||
MatrixType Q;
|
||||
@ -77,7 +75,6 @@ template <typename T>
|
||||
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixSpecialUnitary(int size)
|
||||
{
|
||||
typedef T Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType;
|
||||
|
||||
|
@ -15,7 +15,6 @@ template<typename MatrixType> void upperbidiag(const MatrixType& m)
|
||||
const typename MatrixType::Index rows = m.rows();
|
||||
const typename MatrixType::Index cols = m.cols();
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef Matrix<typename MatrixType::RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
|
||||
|
||||
MatrixType a = MatrixType::Random(rows,cols);
|
||||
|
@ -15,7 +15,6 @@ template<typename ArrayType> void vectorwiseop_array(const ArrayType& m)
|
||||
{
|
||||
typedef typename ArrayType::Index Index;
|
||||
typedef typename ArrayType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType;
|
||||
typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;
|
||||
|
||||
|
@ -61,7 +61,6 @@ bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Precondition
|
||||
|
||||
typedef typename Dest::RealScalar RealScalar;
|
||||
typedef typename Dest::Scalar Scalar;
|
||||
typedef Matrix < RealScalar, Dynamic, 1 > RealVectorType;
|
||||
typedef Matrix < Scalar, Dynamic, 1 > VectorType;
|
||||
typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType;
|
||||
|
||||
|
@ -20,7 +20,6 @@ template<typename FunctorType>
|
||||
LevenbergMarquardtSpace::Status
|
||||
LevenbergMarquardt<FunctorType>::minimizeOneStep(FVectorType &x)
|
||||
{
|
||||
typedef typename FunctorType::JacobianType JacobianType;
|
||||
using std::abs;
|
||||
using std::sqrt;
|
||||
RealScalar temp, temp1,temp2;
|
||||
|
@ -110,7 +110,6 @@ void testMatrixLogarithm(const MatrixType& A)
|
||||
{
|
||||
typedef typename internal::traits<MatrixType>::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef std::complex<RealScalar> ComplexScalar;
|
||||
|
||||
MatrixType scaledA;
|
||||
RealScalar maxImagPartOfSpectrum = A.eigenvalues().imag().cwiseAbs().maxCoeff();
|
||||
|
Loading…
x
Reference in New Issue
Block a user