Fix numerous doxygen shortcomings, and workaround some clang -Wdocumentation warnings

This commit is contained in:
Gael Guennebaud 2016-01-01 21:45:06 +01:00
parent 9900782e88
commit 8b0d1eb0f7
48 changed files with 486 additions and 501 deletions

View File

@ -28,8 +28,8 @@ namespace internal {
*
* \brief Robust Cholesky decomposition of a matrix with pivoting
*
* \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
* \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
* \tparam _MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
* \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
* The other triangular part won't be read.
*
* Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite

View File

@ -22,8 +22,8 @@ template<typename MatrixType, int UpLo> struct LLT_Traits;
*
* \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
*
* \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
* \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
* \tparam _MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
* \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
* The other triangular part won't be read.
*
* This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
@ -436,10 +436,7 @@ void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
*
* \param bAndX represents both the right-hand side matrix b and result x.
*
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
*
* This version avoids a copy when the right hand side matrix b is not
* needed anymore.
* This version avoids a copy when the right hand side matrix b is not needed anymore.
*
* \sa LLT::solve(), MatrixBase::llt()
*/

View File

@ -12,7 +12,16 @@
namespace Eigen {
/** \class Array
namespace internal {
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
typedef ArrayXpr XprKind;
typedef ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > XprBase;
};
}
/** \class Array
* \ingroup Core_Module
*
* \brief General-purpose arrays with easy API for coefficient-wise operations
@ -26,21 +35,12 @@ namespace Eigen {
*
* See documentation of class Matrix for detailed information on the template parameters
* storage layout.
*
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN.
*
* \sa \ref TutorialArrayClass, \ref TopicClassHierarchy
* \sa \blank \ref TutorialArrayClass, \ref TopicClassHierarchy
*/
namespace internal {
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
typedef ArrayXpr XprKind;
typedef ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > XprBase;
};
}
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
class Array
: public PlainObjectBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >

View File

@ -161,15 +161,15 @@ class BandMatrixBase : public EigenBase<Derived>
*
* \brief Represents a rectangular matrix with a banded storage
*
* \param _Scalar Numeric type, i.e. float, double, int
* \param Rows Number of rows, or \b Dynamic
* \param Cols Number of columns, or \b Dynamic
* \param Supers Number of super diagonal
* \param Subs Number of sub diagonal
* \param _Options A combination of either \b #RowMajor or \b #ColMajor, and of \b #SelfAdjoint
* The former controls \ref TopicStorageOrders "storage order", and defaults to
* column-major. The latter controls whether the matrix represents a selfadjoint
* matrix in which case either Supers of Subs have to be null.
* \tparam _Scalar Numeric type, i.e. float, double, int
* \tparam _Rows Number of rows, or \b Dynamic
* \tparam _Cols Number of columns, or \b Dynamic
* \tparam _Supers Number of super diagonal
* \tparam _Subs Number of sub diagonal
* \tparam _Options A combination of either \b #RowMajor or \b #ColMajor, and of \b #SelfAdjoint
* The former controls \ref TopicStorageOrders "storage order", and defaults to
* column-major. The latter controls whether the matrix represents a selfadjoint
* matrix in which case either Supers of Subs have to be null.
*
* \sa class TridiagonalMatrix
*/
@ -302,9 +302,9 @@ class BandMatrixWrapper : public BandMatrixBase<BandMatrixWrapper<_CoefficientsT
*
* \brief Represents a tridiagonal matrix with a compact banded storage
*
* \param _Scalar Numeric type, i.e. float, double, int
* \param Size Number of rows and cols, or \b Dynamic
* \param _Options Can be 0 or \b SelfAdjoint
* \tparam Scalar Numeric type, i.e. float, double, int
* \tparam Size Number of rows and cols, or \b Dynamic
* \tparam Options Can be 0 or \b SelfAdjoint
*
* \sa class BandMatrix
*/

View File

@ -13,41 +13,6 @@
namespace Eigen {
/** \class Block
* \ingroup Core_Module
*
* \brief Expression of a fixed-size or dynamic-size block
*
* \param XprType the type of the expression in which we are taking a block
* \param BlockRows the number of rows of the block we are taking at compile time (optional)
* \param BlockCols the number of columns of the block we are taking at compile time (optional)
* \param InnerPanel is true, if the block maps to a set of rows of a row major matrix or
* to set of columns of a column major matrix (optional). The parameter allows to determine
* at compile time whether aligned access is possible on the block expression.
*
* This class represents an expression of either a fixed-size or dynamic-size block. It is the return
* type of DenseBase::block(Index,Index,Index,Index) and DenseBase::block<int,int>(Index,Index) and
* most of the time this is the only way it is used.
*
* However, if you want to directly maniputate block expressions,
* for instance if you want to write a function returning such an expression, you
* will need to use this class.
*
* Here is an example illustrating the dynamic case:
* \include class_Block.cpp
* Output: \verbinclude class_Block.out
*
* \note Even though this expression has dynamic size, in the case where \a XprType
* has fixed size, this expression inherits a fixed maximal size which means that evaluating
* it does not cause a dynamic memory allocation.
*
* Here is an example illustrating the fixed-size case:
* \include class_FixedBlock.cpp
* Output: \verbinclude class_FixedBlock.out
*
* \sa DenseBase::block(Index,Index,Index,Index), DenseBase::block(Index,Index), class VectorBlock
*/
namespace internal {
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprType>
@ -101,6 +66,40 @@ template<typename XprType, int BlockRows=Dynamic, int BlockCols=Dynamic, bool In
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, typename StorageKind> class BlockImpl;
/** \class Block
* \ingroup Core_Module
*
* \brief Expression of a fixed-size or dynamic-size block
*
* \tparam XprType the type of the expression in which we are taking a block
* \tparam BlockRows the number of rows of the block we are taking at compile time (optional)
* \tparam BlockCols the number of columns of the block we are taking at compile time (optional)
* \tparam InnerPanel is true, if the block maps to a set of rows of a row major matrix or
* to set of columns of a column major matrix (optional). The parameter allows to determine
* at compile time whether aligned access is possible on the block expression.
*
* This class represents an expression of either a fixed-size or dynamic-size block. It is the return
* type of DenseBase::block(Index,Index,Index,Index) and DenseBase::block<int,int>(Index,Index) and
* most of the time this is the only way it is used.
*
* However, if you want to directly maniputate block expressions,
* for instance if you want to write a function returning such an expression, you
* will need to use this class.
*
* Here is an example illustrating the dynamic case:
* \include class_Block.cpp
* Output: \verbinclude class_Block.out
*
* \note Even though this expression has dynamic size, in the case where \a XprType
* has fixed size, this expression inherits a fixed maximal size which means that evaluating
* it does not cause a dynamic memory allocation.
*
* Here is an example illustrating the fixed-size case:
* \include class_FixedBlock.cpp
* Output: \verbinclude class_FixedBlock.out
*
* \sa DenseBase::block(Index,Index,Index,Index), DenseBase::block(Index,Index), class VectorBlock
*/
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel> class Block
: public BlockImpl<XprType, BlockRows, BlockCols, InnerPanel, typename internal::traits<XprType>::StorageKind>
{

View File

@ -13,26 +13,6 @@
namespace Eigen {
/** \class CwiseBinaryOp
* \ingroup Core_Module
*
* \brief Generic expression where a coefficient-wise binary operator is applied to two expressions
*
* \param BinaryOp template functor implementing the operator
* \param Lhs the type of the left-hand side
* \param Rhs the type of the right-hand side
*
* This class represents an expression where a coefficient-wise binary operator is applied to two expressions.
* It is the return type of binary operators, by which we mean only those binary operators where
* both the left-hand side and the right-hand side are Eigen expressions.
* For example, the return type of matrix1+matrix2 is a CwiseBinaryOp.
*
* Most of the time, this is the only way that it is used, so you typically don't have to name
* CwiseBinaryOp types explicitly.
*
* \sa MatrixBase::binaryExpr(const MatrixBase<OtherDerived> &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp
*/
namespace internal {
template<typename BinaryOp, typename Lhs, typename Rhs>
struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
@ -74,6 +54,25 @@ struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
template<typename BinaryOp, typename Lhs, typename Rhs, typename StorageKind>
class CwiseBinaryOpImpl;
/** \class CwiseBinaryOp
* \ingroup Core_Module
*
* \brief Generic expression where a coefficient-wise binary operator is applied to two expressions
*
* \tparam BinaryOp template functor implementing the operator
* \tparam LhsType the type of the left-hand side
* \tparam RhsType the type of the right-hand side
*
* This class represents an expression where a coefficient-wise binary operator is applied to two expressions.
* It is the return type of binary operators, by which we mean only those binary operators where
* both the left-hand side and the right-hand side are Eigen expressions.
* For example, the return type of matrix1+matrix2 is a CwiseBinaryOp.
*
* Most of the time, this is the only way that it is used, so you typically don't have to name
* CwiseBinaryOp types explicitly.
*
* \sa MatrixBase::binaryExpr(const MatrixBase<OtherDerived> &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp
*/
template<typename BinaryOp, typename LhsType, typename RhsType>
class CwiseBinaryOp :
public CwiseBinaryOpImpl<

View File

@ -12,24 +12,6 @@
namespace Eigen {
/** \class CwiseNullaryOp
* \ingroup Core_Module
*
* \brief Generic expression of a matrix where all coefficients are defined by a functor
*
* \param NullaryOp template functor implementing the operator
* \param PlainObjectType the underlying plain matrix/array type
*
* This class represents an expression of a generic nullary operator.
* It is the return type of the Ones(), Zero(), Constant(), Identity() and Random() methods,
* and most of the time this is the only way it is used.
*
* However, if you want to write a function returning such an expression, you
* will need to use this class.
*
* \sa class CwiseUnaryOp, class CwiseBinaryOp, DenseBase::NullaryExpr()
*/
namespace internal {
template<typename NullaryOp, typename PlainObjectType>
struct traits<CwiseNullaryOp<NullaryOp, PlainObjectType> > : traits<PlainObjectType>
@ -40,6 +22,23 @@ struct traits<CwiseNullaryOp<NullaryOp, PlainObjectType> > : traits<PlainObjectT
};
}
/** \class CwiseNullaryOp
* \ingroup Core_Module
*
* \brief Generic expression of a matrix where all coefficients are defined by a functor
*
* \tparam NullaryOp template functor implementing the operator
* \tparam PlainObjectType the underlying plain matrix/array type
*
* This class represents an expression of a generic nullary operator.
* It is the return type of the Ones(), Zero(), Constant(), Identity() and Random() methods,
* and most of the time this is the only way it is used.
*
* However, if you want to write a function returning such an expression, you
* will need to use this class.
*
* \sa class CwiseUnaryOp, class CwiseBinaryOp, DenseBase::NullaryExpr()
*/
template<typename NullaryOp, typename PlainObjectType>
class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp<NullaryOp, PlainObjectType> >::type, internal::no_assignment_operator
{

View File

@ -13,26 +13,6 @@
namespace Eigen {
/** \class CwiseUnaryOp
* \ingroup Core_Module
*
* \brief Generic expression where a coefficient-wise unary operator is applied to an expression
*
* \param UnaryOp template functor implementing the operator
* \param XprType the type of the expression to which we are applying the unary operator
*
* This class represents an expression where a unary operator is applied to an expression.
* It is the return type of all operations taking exactly 1 input expression, regardless of the
* presence of other inputs such as scalars. For example, the operator* in the expression 3*matrix
* is considered unary, because only the right-hand side is an expression, and its
* return type is a specialization of CwiseUnaryOp.
*
* Most of the time, this is the only way that it is used, so you typically don't have to name
* CwiseUnaryOp types explicitly.
*
* \sa MatrixBase::unaryExpr(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp
*/
namespace internal {
template<typename UnaryOp, typename XprType>
struct traits<CwiseUnaryOp<UnaryOp, XprType> >
@ -52,6 +32,25 @@ struct traits<CwiseUnaryOp<UnaryOp, XprType> >
template<typename UnaryOp, typename XprType, typename StorageKind>
class CwiseUnaryOpImpl;
/** \class CwiseUnaryOp
* \ingroup Core_Module
*
* \brief Generic expression where a coefficient-wise unary operator is applied to an expression
*
* \tparam UnaryOp template functor implementing the operator
* \tparam XprType the type of the expression to which we are applying the unary operator
*
* This class represents an expression where a unary operator is applied to an expression.
* It is the return type of all operations taking exactly 1 input expression, regardless of the
* presence of other inputs such as scalars. For example, the operator* in the expression 3*matrix
* is considered unary, because only the right-hand side is an expression, and its
* return type is a specialization of CwiseUnaryOp.
*
* Most of the time, this is the only way that it is used, so you typically don't have to name
* CwiseUnaryOp types explicitly.
*
* \sa MatrixBase::unaryExpr(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp
*/
template<typename UnaryOp, typename XprType>
class CwiseUnaryOp : public CwiseUnaryOpImpl<UnaryOp, XprType, typename internal::traits<XprType>::StorageKind>, internal::no_assignment_operator
{

View File

@ -12,20 +12,6 @@
namespace Eigen {
/** \class CwiseUnaryView
* \ingroup Core_Module
*
* \brief Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector
*
* \param ViewOp template functor implementing the view
* \param MatrixType the type of the matrix we are applying the unary operator
*
* This class represents a lvalue expression of a generic unary view operator of a matrix or a vector.
* It is the return type of real() and imag(), and most of the time this is the only way it is used.
*
* \sa MatrixBase::unaryViewExpr(const CustomUnaryOp &) const, class CwiseUnaryOp
*/
namespace internal {
template<typename ViewOp, typename MatrixType>
struct traits<CwiseUnaryView<ViewOp, MatrixType> >
@ -55,6 +41,19 @@ struct traits<CwiseUnaryView<ViewOp, MatrixType> >
template<typename ViewOp, typename MatrixType, typename StorageKind>
class CwiseUnaryViewImpl;
/** \class CwiseUnaryView
* \ingroup Core_Module
*
* \brief Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector
*
* \tparam ViewOp template functor implementing the view
* \tparam MatrixType the type of the matrix we are applying the unary operator
*
* This class represents a lvalue expression of a generic unary view operator of a matrix or a vector.
* It is the return type of real() and imag(), and most of the time this is the only way it is used.
*
* \sa MatrixBase::unaryViewExpr(const CustomUnaryOp &) const, class CwiseUnaryOp
*/
template<typename ViewOp, typename MatrixType>
class CwiseUnaryView : public CwiseUnaryViewImpl<ViewOp, MatrixType, typename internal::traits<MatrixType>::StorageKind>
{

View File

@ -80,7 +80,7 @@ struct IOFormat
*
* \brief Pseudo expression providing matrix output with given format
*
* \param ExpressionType the type of the object on which IO stream operations are performed
* \tparam ExpressionType the type of the object on which IO stream operations are performed
*
* This class represents an expression with stream operators controlled by a given IOFormat.
* It is the return type of DenseBase::format()

View File

@ -13,6 +13,28 @@
namespace Eigen {
namespace internal {
template<typename PlainObjectType, int MapOptions, typename StrideType>
struct traits<Map<PlainObjectType, MapOptions, StrideType> >
: public traits<PlainObjectType>
{
typedef traits<PlainObjectType> TraitsBase;
enum {
InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0
? int(PlainObjectType::InnerStrideAtCompileTime)
: int(StrideType::InnerStrideAtCompileTime),
OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0
? int(PlainObjectType::OuterStrideAtCompileTime)
: int(StrideType::OuterStrideAtCompileTime),
Alignment = int(MapOptions)&int(AlignedMask),
Flags0 = TraitsBase::Flags & (~NestByRefBit),
Flags = is_lvalue<PlainObjectType>::value ? int(Flags0) : (int(Flags0) & ~LvalueBit)
};
private:
enum { Options }; // Expressions don't have Options
};
}
/** \class Map
* \ingroup Core_Module
*
@ -63,29 +85,6 @@ namespace Eigen {
*
* \sa PlainObjectBase::Map(), \ref TopicStorageOrders
*/
namespace internal {
template<typename PlainObjectType, int MapOptions, typename StrideType>
struct traits<Map<PlainObjectType, MapOptions, StrideType> >
: public traits<PlainObjectType>
{
typedef traits<PlainObjectType> TraitsBase;
enum {
InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0
? int(PlainObjectType::InnerStrideAtCompileTime)
: int(StrideType::InnerStrideAtCompileTime),
OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0
? int(PlainObjectType::OuterStrideAtCompileTime)
: int(StrideType::OuterStrideAtCompileTime),
Alignment = int(MapOptions)&int(AlignedMask),
Flags0 = TraitsBase::Flags & (~NestByRefBit),
Flags = is_lvalue<PlainObjectType>::value ? int(Flags0) : (int(Flags0) & ~LvalueBit)
};
private:
enum { Options }; // Expressions don't have Options
};
}
template<typename PlainObjectType, int MapOptions, typename StrideType> class Map
: public MapBase<Map<PlainObjectType, MapOptions, StrideType> >
{

View File

@ -26,7 +26,7 @@ long double abs(long double x) { return (fabsl(x)); }
namespace internal {
/** \internal \struct global_math_functions_filtering_base
/** \internal \class global_math_functions_filtering_base
*
* What it does:
* Defines a typedef 'type' as follows:

View File

@ -13,6 +13,45 @@
namespace Eigen {
namespace internal {
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
private:
enum { size = internal::size_at_compile_time<_Rows,_Cols>::ret };
typedef typename find_best_packet<_Scalar,size>::type PacketScalar;
enum {
row_major_bit = _Options&RowMajor ? RowMajorBit : 0,
is_dynamic_size_storage = _MaxRows==Dynamic || _MaxCols==Dynamic,
max_size = is_dynamic_size_storage ? Dynamic : _MaxRows*_MaxCols,
default_alignment = compute_default_alignment<_Scalar,max_size>::value,
actual_alignment = ((_Options&DontAlign)==0) ? default_alignment : 0,
required_alignment = unpacket_traits<PacketScalar>::alignment,
packet_access_bit = packet_traits<_Scalar>::Vectorizable && (actual_alignment>=required_alignment) ? PacketAccessBit : 0
};
public:
typedef _Scalar Scalar;
typedef Dense StorageKind;
typedef Eigen::Index StorageIndex;
typedef MatrixXpr XprKind;
enum {
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _MaxRows,
MaxColsAtCompileTime = _MaxCols,
Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
Options = _Options,
InnerStrideAtCompileTime = 1,
OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime,
// FIXME, the following flag in only used to define NeedsToAlign in PlainObjectBase
EvaluatorFlags = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit,
Alignment = actual_alignment
};
};
}
/** \class Matrix
* \ingroup Core_Module
*
@ -98,7 +137,7 @@ namespace Eigen {
* </dl>
*
* <i><b>ABI and storage layout</b></i>
*
*
* The table below summarizes the ABI of some possible Matrix instances which is fixed thorough the lifetime of Eigen 3.
* <table class="manual">
* <tr><th>Matrix type</th><th>Equivalent C structure</th></tr>
@ -130,50 +169,11 @@ namespace Eigen {
* </table>
* Note that in this table Rows, Cols, MaxRows and MaxCols are all positive integers. A(S) is defined to the largest possible power-of-two
* smaller to EIGEN_MAX_STATIC_ALIGN_BYTES.
*
* \see MatrixBase for the majority of the API methods for matrices, \ref TopicClassHierarchy,
* \ref TopicStorageOrders
*
* \see MatrixBase for the majority of the API methods for matrices, \ref TopicClassHierarchy,
* \ref TopicStorageOrders
*/
namespace internal {
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
private:
enum { size = internal::size_at_compile_time<_Rows,_Cols>::ret };
typedef typename find_best_packet<_Scalar,size>::type PacketScalar;
enum {
row_major_bit = _Options&RowMajor ? RowMajorBit : 0,
is_dynamic_size_storage = _MaxRows==Dynamic || _MaxCols==Dynamic,
max_size = is_dynamic_size_storage ? Dynamic : _MaxRows*_MaxCols,
default_alignment = compute_default_alignment<_Scalar,max_size>::value,
actual_alignment = ((_Options&DontAlign)==0) ? default_alignment : 0,
required_alignment = unpacket_traits<PacketScalar>::alignment,
packet_access_bit = packet_traits<_Scalar>::Vectorizable && (actual_alignment>=required_alignment) ? PacketAccessBit : 0
};
public:
typedef _Scalar Scalar;
typedef Dense StorageKind;
typedef Eigen::Index StorageIndex;
typedef MatrixXpr XprKind;
enum {
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _MaxRows,
MaxColsAtCompileTime = _MaxCols,
Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
Options = _Options,
InnerStrideAtCompileTime = 1,
OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime,
// FIXME, the following flag in only used to define NeedsToAlign in PlainObjectBase
EvaluatorFlags = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit,
Alignment = actual_alignment
};
};
}
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
class Matrix
: public PlainObjectBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >

View File

@ -13,25 +13,24 @@
namespace Eigen {
/** \class NestByValue
* \ingroup Core_Module
*
* \brief Expression which must be nested by value
*
* \param ExpressionType the type of the object of which we are requiring nesting-by-value
*
* This class is the return type of MatrixBase::nestByValue()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::nestByValue()
*/
namespace internal {
template<typename ExpressionType>
struct traits<NestByValue<ExpressionType> > : public traits<ExpressionType>
{};
}
/** \class NestByValue
* \ingroup Core_Module
*
* \brief Expression which must be nested by value
*
* \tparam ExpressionType the type of the object of which we are requiring nesting-by-value
*
* This class is the return type of MatrixBase::nestByValue()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::nestByValue()
*/
template<typename ExpressionType> class NestByValue
: public internal::dense_xpr_base< NestByValue<ExpressionType> >::type
{

View File

@ -17,7 +17,7 @@ namespace Eigen {
*
* \brief Pseudo expression providing an operator = assuming no aliasing
*
* \param ExpressionType the type of the object on which to do the lazy assignment
* \tparam ExpressionType the type of the object on which to do the lazy assignment
*
* This class represents an expression with special assignment operators
* assuming no aliasing between the target expression and the source expression.

View File

@ -17,7 +17,7 @@ namespace Eigen {
*
* \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
*
* \param T the numeric type at hand
* \tparam T the numeric type at hand
*
* This class stores enums, typedefs and static methods giving information about a numeric type.
*

View File

@ -13,12 +13,18 @@
namespace Eigen {
namespace internal {
enum PermPermProduct_t {PermPermProduct};
} // end namespace internal
/** \class PermutationBase
* \ingroup Core_Module
*
* \brief Base class for permutations
*
* \param Derived the derived class
* \tparam Derived the derived class
*
* This class is the base class for all expressions representing a permutation matrix,
* internally stored as a vector of integers.
@ -36,13 +42,6 @@ namespace Eigen {
*
* \sa class PermutationMatrix, class PermutationWrapper
*/
namespace internal {
enum PermPermProduct_t {PermPermProduct};
} // end namespace internal
template<typename Derived>
class PermutationBase : public EigenBase<Derived>
{
@ -280,20 +279,6 @@ class PermutationBase : public EigenBase<Derived>
};
/** \class PermutationMatrix
* \ingroup Core_Module
*
* \brief Permutation matrix
*
* \param SizeAtCompileTime the number of rows/cols, or Dynamic
* \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
* \param StorageIndex the integer type of the indices
*
* This class represents a permutation matrix, internally stored as a vector of integers.
*
* \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix
*/
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex> >
@ -306,6 +291,19 @@ struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _Storag
};
}
/** \class PermutationMatrix
* \ingroup Core_Module
*
* \brief Permutation matrix
*
* \tparam SizeAtCompileTime the number of rows/cols, or Dynamic
* \tparam MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
* \tparam _StorageIndex the integer type of the indices
*
* This class represents a permutation matrix, internally stored as a vector of integers.
*
* \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix
*/
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex> >
{
@ -482,18 +480,6 @@ class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageInd
IndicesType m_indices;
};
/** \class PermutationWrapper
* \ingroup Core_Module
*
* \brief Class to view a vector of integers as a permutation matrix
*
* \param _IndicesType the type of the vector of integer (can be any compatible expression)
*
* This class allows to view any vector expression of integers as a permutation matrix.
*
* \sa class PermutationBase, class PermutationMatrix
*/
template<typename _IndicesType> class TranspositionsWrapper;
namespace internal {
template<typename _IndicesType>
@ -513,6 +499,17 @@ struct traits<PermutationWrapper<_IndicesType> >
};
}
/** \class PermutationWrapper
* \ingroup Core_Module
*
* \brief Class to view a vector of integers as a permutation matrix
*
* \tparam _IndicesType the type of the vector of integer (can be any compatible expression)
*
* This class allows to view any vector expression of integers as a permutation matrix.
*
* \sa class PermutationBase, class PermutationMatrix
*/
template<typename _IndicesType>
class PermutationWrapper : public PermutationBase<PermutationWrapper<_IndicesType> >
{

View File

@ -14,22 +14,6 @@ namespace Eigen {
template<typename Lhs, typename Rhs, int Option, typename StorageKind> class ProductImpl;
/** \class Product
* \ingroup Core_Module
*
* \brief Expression of the product of two arbitrary matrices or vectors
*
* \param Lhs the type of the left-hand side expression
* \param Rhs the type of the right-hand side expression
*
* This class represents an expression of the product of two arbitrary matrices.
*
* The other template parameters are:
* \tparam Option can be DefaultProduct, AliasFreeProduct, or LazyProduct
*
*/
namespace internal {
// Determine the scalar of Product<Lhs, Rhs>. This is normally the same as Lhs::Scalar times
@ -102,7 +86,20 @@ struct traits<Product<Lhs, Rhs, Option> >
} // end namespace internal
/** \class Product
* \ingroup Core_Module
*
* \brief Expression of the product of two arbitrary matrices or vectors
*
* \tparam _Lhs the type of the left-hand side expression
* \tparam _Rhs the type of the right-hand side expression
*
* This class represents an expression of the product of two arbitrary matrices.
*
* The other template parameters are:
* \tparam Option can be DefaultProduct, AliasFreeProduct, or LazyProduct
*
*/
template<typename _Lhs, typename _Rhs, int Option>
class Product : public ProductImpl<_Lhs,_Rhs,Option,
typename internal::product_promote_storage_type<typename internal::traits<_Lhs>::StorageKind,

View File

@ -12,76 +12,6 @@
namespace Eigen {
/** \class Ref
* \ingroup Core_Module
*
* \brief A matrix or vector expression mapping an existing expression
*
* \tparam PlainObjectType the equivalent matrix type of the mapped data
* \tparam MapOptions specifies the pointer alignment in bytes. It can be: \c #Aligned128, , \c #Aligned64, \c #Aligned32, \c #Aligned16, \c #Aligned8 or \c #Unaligned.
* The default is \c #Unaligned.
* \tparam StrideType optionally specifies strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1),
* but accepts a variable outer stride (leading dimension).
* This can be overridden by specifying strides.
* The type passed here must be a specialization of the Stride template, see examples below.
*
* This class provides a way to write non-template functions taking Eigen objects as parameters while limiting the number of copies.
* A Ref<> object can represent either a const expression or a l-value:
* \code
* // in-out argument:
* void foo1(Ref<VectorXf> x);
*
* // read-only const argument:
* void foo2(const Ref<const VectorXf>& x);
* \endcode
*
* In the in-out case, the input argument must satisfy the constraints of the actual Ref<> type, otherwise a compilation issue will be triggered.
* By default, a Ref<VectorXf> can reference any dense vector expression of float having a contiguous memory layout.
* Likewise, a Ref<MatrixXf> can reference any column-major dense matrix expression of float whose column's elements are contiguously stored with
* the possibility to have a constant space in-between each column, i.e. the inner stride must be equal to 1, but the outer stride (or leading dimension)
* can be greater than the number of rows.
*
* In the const case, if the input expression does not match the above requirement, then it is evaluated into a temporary before being passed to the function.
* Here are some examples:
* \code
* MatrixXf A;
* VectorXf a;
* foo1(a.head()); // OK
* foo1(A.col()); // OK
* foo1(A.row()); // Compilation error because here innerstride!=1
* foo2(A.row()); // Compilation error because A.row() is a 1xN object while foo2 is expecting a Nx1 object
* foo2(A.row().transpose()); // The row is copied into a contiguous temporary
* foo2(2*a); // The expression is evaluated into a temporary
* foo2(A.col().segment(2,4)); // No temporary
* \endcode
*
* The range of inputs that can be referenced without temporary can be enlarged using the last two template parameters.
* Here is an example accepting an innerstride!=1:
* \code
* // in-out argument:
* void foo3(Ref<VectorXf,0,InnerStride<> > x);
* foo3(A.row()); // OK
* \endcode
* The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to exploit vectorization, and will involve more
* expensive address computations even if the input is contiguously stored in memory. To overcome this issue, one might propose to overload internally calling a
* template function, e.g.:
* \code
* // in the .h:
* void foo(const Ref<MatrixXf>& A);
* void foo(const Ref<MatrixXf,0,Stride<> >& A);
*
* // in the .cpp:
* template<typename TypeOfA> void foo_impl(const TypeOfA& A) {
* ... // crazy code goes here
* }
* void foo(const Ref<MatrixXf>& A) { foo_impl(A); }
* void foo(const Ref<MatrixXf,0,Stride<> >& A) { foo_impl(A); }
* \endcode
*
*
* \sa PlainObjectBase::Map(), \ref TopicStorageOrders
*/
namespace internal {
template<typename _PlainObjectType, int _Options, typename _StrideType>
@ -182,7 +112,75 @@ protected:
StrideBase m_stride;
};
/** \class Ref
* \ingroup Core_Module
*
* \brief A matrix or vector expression mapping an existing expression
*
* \tparam PlainObjectType the equivalent matrix type of the mapped data
* \tparam Options specifies the pointer alignment in bytes. It can be: \c #Aligned128, , \c #Aligned64, \c #Aligned32, \c #Aligned16, \c #Aligned8 or \c #Unaligned.
* The default is \c #Unaligned.
* \tparam StrideType optionally specifies strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1),
* but accepts a variable outer stride (leading dimension).
* This can be overridden by specifying strides.
* The type passed here must be a specialization of the Stride template, see examples below.
*
* This class provides a way to write non-template functions taking Eigen objects as parameters while limiting the number of copies.
* A Ref<> object can represent either a const expression or a l-value:
* \code
* // in-out argument:
* void foo1(Ref<VectorXf> x);
*
* // read-only const argument:
* void foo2(const Ref<const VectorXf>& x);
* \endcode
*
* In the in-out case, the input argument must satisfy the constraints of the actual Ref<> type, otherwise a compilation issue will be triggered.
* By default, a Ref<VectorXf> can reference any dense vector expression of float having a contiguous memory layout.
* Likewise, a Ref<MatrixXf> can reference any column-major dense matrix expression of float whose column's elements are contiguously stored with
* the possibility to have a constant space in-between each column, i.e. the inner stride must be equal to 1, but the outer stride (or leading dimension)
* can be greater than the number of rows.
*
* In the const case, if the input expression does not match the above requirement, then it is evaluated into a temporary before being passed to the function.
* Here are some examples:
* \code
* MatrixXf A;
* VectorXf a;
* foo1(a.head()); // OK
* foo1(A.col()); // OK
* foo1(A.row()); // Compilation error because here innerstride!=1
* foo2(A.row()); // Compilation error because A.row() is a 1xN object while foo2 is expecting a Nx1 object
* foo2(A.row().transpose()); // The row is copied into a contiguous temporary
* foo2(2*a); // The expression is evaluated into a temporary
* foo2(A.col().segment(2,4)); // No temporary
* \endcode
*
* The range of inputs that can be referenced without temporary can be enlarged using the last two template parameters.
* Here is an example accepting an innerstride!=1:
* \code
* // in-out argument:
* void foo3(Ref<VectorXf,0,InnerStride<> > x);
* foo3(A.row()); // OK
* \endcode
* The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to exploit vectorization, and will involve more
* expensive address computations even if the input is contiguously stored in memory. To overcome this issue, one might propose to overload internally calling a
* template function, e.g.:
* \code
* // in the .h:
* void foo(const Ref<MatrixXf>& A);
* void foo(const Ref<MatrixXf,0,Stride<> >& A);
*
* // in the .cpp:
* template<typename TypeOfA> void foo_impl(const TypeOfA& A) {
* ... // crazy code goes here
* }
* void foo(const Ref<MatrixXf>& A) { foo_impl(A); }
* void foo(const Ref<MatrixXf,0,Stride<> >& A) { foo_impl(A); }
* \endcode
*
*
* \sa PlainObjectBase::Map(), \ref TopicStorageOrders
*/
template<typename PlainObjectType, int Options, typename StrideType> class Ref
: public RefBase<Ref<PlainObjectType, Options, StrideType> >
{

View File

@ -12,21 +12,6 @@
namespace Eigen {
/**
* \class Replicate
* \ingroup Core_Module
*
* \brief Expression of the multiple replication of a matrix or vector
*
* \param MatrixType the type of the object we are replicating
*
* This class represents an expression of the multiple replication of a matrix or vector.
* It is the return type of DenseBase::replicate() and most of the time
* this is the only way it is used.
*
* \sa DenseBase::replicate()
*/
namespace internal {
template<typename MatrixType,int RowFactor,int ColFactor>
struct traits<Replicate<MatrixType,RowFactor,ColFactor> >
@ -57,6 +42,22 @@ struct traits<Replicate<MatrixType,RowFactor,ColFactor> >
};
}
/**
* \class Replicate
* \ingroup Core_Module
*
* \brief Expression of the multiple replication of a matrix or vector
*
* \tparam MatrixType the type of the object we are replicating
* \tparam RowFactor number of repetitions at compile time along the vertical direction, can be Dynamic.
* \tparam ColFactor number of repetitions at compile time along the horizontal direction, can be Dynamic.
*
* This class represents an expression of the multiple replication of a matrix or vector.
* It is the return type of DenseBase::replicate() and most of the time
* this is the only way it is used.
*
* \sa DenseBase::replicate()
*/
template<typename MatrixType,int RowFactor,int ColFactor> class Replicate
: public internal::dense_xpr_base< Replicate<MatrixType,RowFactor,ColFactor> >::type
{

View File

@ -13,11 +13,6 @@
namespace Eigen {
/** \class ReturnByValue
* \ingroup Core_Module
*
*/
namespace internal {
template<typename Derived>
@ -48,6 +43,10 @@ struct nested_eval<ReturnByValue<Derived>, n, PlainObject>
} // end namespace internal
/** \class ReturnByValue
* \ingroup Core_Module
*
*/
template<typename Derived> class ReturnByValue
: public internal::dense_xpr_base< ReturnByValue<Derived> >::type, internal::no_assignment_operator
{

View File

@ -14,20 +14,6 @@
namespace Eigen {
/** \class Reverse
* \ingroup Core_Module
*
* \brief Expression of the reverse of a vector or matrix
*
* \param MatrixType the type of the object of which we are taking the reverse
*
* This class represents an expression of the reverse of a vector.
* It is the return type of MatrixBase::reverse() and VectorwiseOp::reverse()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::reverse(), VectorwiseOp::reverse()
*/
namespace internal {
template<typename MatrixType, int Direction>
@ -60,6 +46,20 @@ template<typename PacketType> struct reverse_packet_cond<PacketType,false>
} // end namespace internal
/** \class Reverse
* \ingroup Core_Module
*
* \brief Expression of the reverse of a vector or matrix
*
* \tparam MatrixType the type of the object of which we are taking the reverse
* \tparam Direction defines the direction of the reverse operation, can be Vertical, Horizontal, or BothDirections
*
* This class represents an expression of the reverse of a vector.
* It is the return type of MatrixBase::reverse() and VectorwiseOp::reverse()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::reverse(), VectorwiseOp::reverse()
*/
template<typename MatrixType, int Direction> class Reverse
: public internal::dense_xpr_base< Reverse<MatrixType, Direction> >::type
{

View File

@ -31,8 +31,8 @@ namespace Eigen {
* arguments to the constructor.
*
* Indeed, this class takes two template parameters:
* \param _OuterStrideAtCompileTime the outer stride, or Dynamic if you want to specify it at runtime.
* \param _InnerStrideAtCompileTime the inner stride, or Dynamic if you want to specify it at runtime.
* \tparam _OuterStrideAtCompileTime the outer stride, or Dynamic if you want to specify it at runtime.
* \tparam _InnerStrideAtCompileTime the inner stride, or Dynamic if you want to specify it at runtime.
*
* Here is an example:
* \include Map_general_stride.cpp

View File

@ -13,20 +13,6 @@
namespace Eigen {
/** \class Transpose
* \ingroup Core_Module
*
* \brief Expression of the transpose of a matrix
*
* \param MatrixType the type of the object of which we are taking the transpose
*
* This class represents an expression of the transpose of a matrix.
* It is the return type of MatrixBase::transpose() and MatrixBase::adjoint()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::transpose(), MatrixBase::adjoint()
*/
namespace internal {
template<typename MatrixType>
struct traits<Transpose<MatrixType> > : public traits<MatrixType>
@ -50,6 +36,19 @@ struct traits<Transpose<MatrixType> > : public traits<MatrixType>
template<typename MatrixType, typename StorageKind> class TransposeImpl;
/** \class Transpose
* \ingroup Core_Module
*
* \brief Expression of the transpose of a matrix
*
* \tparam MatrixType the type of the object of which we are taking the transpose
*
* This class represents an expression of the transpose of a matrix.
* It is the return type of MatrixBase::transpose() and MatrixBase::adjoint()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::transpose(), MatrixBase::adjoint()
*/
template<typename MatrixType> class Transpose
: public TransposeImpl<MatrixType,typename internal::traits<MatrixType>::StorageKind>
{

View File

@ -12,35 +12,6 @@
namespace Eigen {
/** \class Transpositions
* \ingroup Core_Module
*
* \brief Represents a sequence of transpositions (row/column interchange)
*
* \param SizeAtCompileTime the number of transpositions, or Dynamic
* \param MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
*
* This class represents a permutation transformation as a sequence of \em n transpositions
* \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices.
* Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges
* the rows \c i and \c indices[i] of the matrix \c M.
* A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange.
*
* Compared to the class PermutationMatrix, such a sequence of transpositions is what is
* computed during a decomposition with pivoting, and it is faster when applying the permutation in-place.
*
* To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example:
* \code
* Transpositions tr;
* MatrixXf mat;
* mat = tr * mat;
* \endcode
* In this example, we detect that the matrix appears on both side, and so the transpositions
* are applied in-place without any temporary or extra copy.
*
* \sa class PermutationMatrix
*/
template<typename Derived>
class TranspositionsBase
{
@ -154,6 +125,35 @@ struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageInde
};
}
/** \class Transpositions
* \ingroup Core_Module
*
* \brief Represents a sequence of transpositions (row/column interchange)
*
* \tparam SizeAtCompileTime the number of transpositions, or Dynamic
* \tparam MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
*
* This class represents a permutation transformation as a sequence of \em n transpositions
* \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices.
* Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges
* the rows \c i and \c indices[i] of the matrix \c M.
* A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange.
*
* Compared to the class PermutationMatrix, such a sequence of transpositions is what is
* computed during a decomposition with pivoting, and it is faster when applying the permutation in-place.
*
* To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example:
* \code
* Transpositions tr;
* MatrixXf mat;
* mat = tr * mat;
* \endcode
* In this example, we detect that the matrix appears on both side, and so the transpositions
* are applied in-place without any temporary or extra copy.
*
* \sa class PermutationMatrix
*/
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> >
{

View File

@ -13,13 +13,23 @@
namespace Eigen {
namespace internal {
template<typename VectorType, int Size>
struct traits<VectorBlock<VectorType, Size> >
: public traits<Block<VectorType,
traits<VectorType>::Flags & RowMajorBit ? 1 : Size,
traits<VectorType>::Flags & RowMajorBit ? Size : 1> >
{
};
}
/** \class VectorBlock
* \ingroup Core_Module
*
* \brief Expression of a fixed-size or dynamic-size sub-vector
*
* \param VectorType the type of the object in which we are taking a sub-vector
* \param Size size of the sub-vector we are taking at compile time (optional)
* \tparam VectorType the type of the object in which we are taking a sub-vector
* \tparam Size size of the sub-vector we are taking at compile time (optional)
*
* This class represents an expression of either a fixed-size or dynamic-size sub-vector.
* It is the return type of DenseBase::segment(Index,Index) and DenseBase::segment<int>(Index) and
@ -43,17 +53,6 @@ namespace Eigen {
*
* \sa class Block, DenseBase::segment(Index,Index,Index,Index), DenseBase::segment(Index,Index)
*/
namespace internal {
template<typename VectorType, int Size>
struct traits<VectorBlock<VectorType, Size> >
: public traits<Block<VectorType,
traits<VectorType>::Flags & RowMajorBit ? 1 : Size,
traits<VectorType>::Flags & RowMajorBit ? Size : 1> >
{
};
}
template<typename VectorType, int Size> class VectorBlock
: public Block<VectorType,
internal::traits<VectorType>::Flags & RowMajorBit ? 1 : Size,

View File

@ -141,8 +141,8 @@ struct member_redux {
*
* \brief Pseudo expression providing partial reduction operations
*
* \param ExpressionType the type of the object on which to do partial reductions
* \param Direction indicates the direction of the redux (#Vertical or #Horizontal)
* \tparam ExpressionType the type of the object on which to do partial reductions
* \tparam Direction indicates the direction of the redux (#Vertical or #Horizontal)
*
* This class represents a pseudo expression with partial reduction features.
* It is the return type of DenseBase::colwise() and DenseBase::rowwise()
@ -187,11 +187,11 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
protected:
/** \internal
* \returns the i-th subvector according to the \c Direction */
typedef typename internal::conditional<isVertical,
typename ExpressionType::ColXpr,
typename ExpressionType::RowXpr>::type SubVector;
/** \internal
* \returns the i-th subvector according to the \c Direction */
EIGEN_DEVICE_FUNC
SubVector subVector(Index i)
{

View File

@ -390,9 +390,9 @@ struct transfer_constness
* a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes
* many coefficient accesses in the nested expressions -- as is the case with matrix product for example.
*
* \param T the type of the expression being nested.
* \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
* \param PlainObject the type of the temporary if needed.
* \tparam T the type of the expression being nested.
* \tparam n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
* \tparam PlainObject the type of the temporary if needed.
*/
template<typename T, int n, typename PlainObject = typename plain_object_eval<T>::type> struct nested_eval
{
@ -575,7 +575,7 @@ template <int ProductTag> struct product_promote_storage_type<Dense,
template <int ProductTag> struct product_promote_storage_type<PermutationStorage, Dense, ProductTag> { typedef Dense ret; };
/** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type.
* \param Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType.
* \tparam Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType.
*/
template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
struct plain_row_type

View File

@ -375,8 +375,12 @@ namespace internal {
* Performs a QR step on a tridiagonal symmetric matrix represented as a
* pair of two vectors \a diag and \a subdiag.
*
* \param matA the input selfadjoint matrix
* \param hCoeffs returned Householder coefficients
* \param diag the diagonal part of the input selfadjoint tridiagonal matrix
* \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix
* \param start starting index of the submatrix to work on
* \param end last+1 index of the submatrix to work on
* \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0
* \param n size of the input matrix
*
* For compilation efficiency reasons, this procedure does not use eigen expression
* for its arguments.
@ -467,9 +471,10 @@ namespace internal {
* \brief Compute the eigendecomposition from a tridiagonal matrix
*
* \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues
* \param[in] subdiag : The subdiagonal part of the matrix.
* \param[in,out] : On input, the maximum number of iterations, on output, the effective number of iterations.
* \param[out] eivec : The matrix to store the eigenvectors... if needed. allocated on input
* \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition)
* \param[in] maxIterations : the maximum number of iterations
* \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not
* \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input.
* \returns \c Success or \c NoConvergence
*/
template<typename MatrixType, typename DiagType, typename SubDiagType>

View File

@ -22,8 +22,8 @@ namespace Eigen {
* A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
* For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
* \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
* \tparam _Scalar the scalar type, i.e., the type of the coefficients
* \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
* Notice that the dimension of the hyperplane is _AmbientDim-1.
*
* This class represents an hyperplane as the zero set of the implicit equation

View File

@ -23,8 +23,8 @@ namespace Eigen {
* direction vector \f$ \mathbf{d} \f$ such that the line corresponds to
* the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ t \in \mathbf{R} \f$.
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
* \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
* \tparam _Scalar the scalar type, i.e., the type of the coefficients
* \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
*/
template <typename _Scalar, int _AmbientDim, int _Options>
class ParametrizedLine

View File

@ -18,7 +18,7 @@ namespace Eigen {
*
* \brief Represents a rotation/orientation in a 2 dimensional space.
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
* \tparam _Scalar the scalar type, i.e., the type of the coefficients
*
* This class is equivalent to a single scalar representing a counter clock wise rotation
* as a single angle in radian. It provides some additional features such as the automatic

View File

@ -22,8 +22,8 @@ struct rotation_base_generic_product_selector;
*
* \brief Common base class for compact rotation representations
*
* \param Derived is the derived type, i.e., a rotation type
* \param _Dim the dimension of the space
* \tparam Derived is the derived type, i.e., a rotation type
* \tparam _Dim the dimension of the space
*/
template<typename Derived, int _Dim>
class RotationBase
@ -164,8 +164,8 @@ namespace internal {
*
* Helper function to return an arbitrary rotation object to a rotation matrix.
*
* \param Scalar the numeric type of the matrix coefficients
* \param Dim the dimension of the current space
* \tparam Scalar the numeric type of the matrix coefficients
* \tparam Dim the dimension of the current space
*
* It returns a Dim x Dim fixed size matrix.
*

View File

@ -18,7 +18,7 @@ namespace Eigen {
*
* \brief Represents a generic uniform scaling transformation
*
* \param _Scalar the scalar type, i.e., the type of the coefficients.
* \tparam _Scalar the scalar type, i.e., the type of the coefficients.
*
* This class represent a uniform scaling transformation. It is the return
* type of Scaling(Scalar), and most of the time this is the only way it

View File

@ -18,8 +18,8 @@ namespace Eigen {
*
* \brief Represents a translation transformation
*
* \param _Scalar the scalar type, i.e., the type of the coefficients.
* \param _Dim the dimension of the space, can be a compile time value or Dynamic
* \tparam _Scalar the scalar type, i.e., the type of the coefficients.
* \tparam _Dim the dimension of the space, can be a compile time value or Dynamic
*
* \note This class is not aimed to be used to store a translation transformation,
* but rather to make easier the constructions and updates of Transform objects.

View File

@ -21,7 +21,7 @@ namespace Eigen {
* References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
* Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
*
* \tparam _MatrixType The type of the sparse matrix. It is advised to give a row-oriented sparse matrix
* \tparam Scalar the scalar type of the input matrices
* \tparam _UpLo The triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
* \tparam _OrderingType The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<int>,

View File

@ -29,7 +29,7 @@ template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> >
*
* \brief LU decomposition of a matrix with complete pivoting, and related features
*
* \param MatrixType the type of the matrix of which we are computing the LU decomposition
* \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
*
* This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
* decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is

View File

@ -34,7 +34,7 @@ template<typename _MatrixType> struct traits<PartialPivLU<_MatrixType> >
*
* \brief LU decomposition of a matrix with partial pivoting, and related features
*
* \param MatrixType the type of the matrix of which we are computing the LU decomposition
* \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
*
* This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
* is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P

View File

@ -84,8 +84,11 @@ StorageIndex cs_tdfs(StorageIndex j, StorageIndex k, StorageIndex *head, const S
/** \internal
* \ingroup OrderingMethods_Module
* Approximate minimum degree ordering algorithm.
* \returns the permutation P reducing the fill-in of the input matrix \a C
* The input matrix \a C must be a selfadjoint compressed column major SparseMatrix object. Both the upper and lower parts have to be stored, but the diagonal entries are optional.
*
* \param[in] C the input selfadjoint matrix stored in compressed column major format.
* \param[out] perm the permutation P reducing the fill-in of the input matrix \a C
*
* Note that the input matrix \a C must be complete, that is both the upper and lower parts have to be stored, as well as the diagonal entries.
* On exit the values of C are destroyed */
template<typename Scalar, typename StorageIndex>
void minimum_degree_ordering(SparseMatrix<Scalar,ColMajor,StorageIndex>& C, PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm)

View File

@ -19,20 +19,21 @@ namespace internal {
/** \internal
* \ingroup OrderingMethods_Module
* \returns the symmetric pattern A^T+A from the input matrix A.
* \param[in] A the input non-symmetric matrix
* \param[out] symmat the symmetric pattern A^T+A from the input matrix \a A.
* FIXME: The values should not be considered here
*/
template<typename MatrixType>
void ordering_helper_at_plus_a(const MatrixType& mat, MatrixType& symmat)
void ordering_helper_at_plus_a(const MatrixType& A, MatrixType& symmat)
{
MatrixType C;
C = mat.transpose(); // NOTE: Could be costly
C = A.transpose(); // NOTE: Could be costly
for (int i = 0; i < C.rows(); i++)
{
for (typename MatrixType::InnerIterator it(C, i); it; ++it)
it.valueRef() = 0.0;
}
symmat = C + mat;
symmat = C + A;
}
}

View File

@ -28,7 +28,7 @@ template<typename _MatrixType> struct traits<ColPivHouseholderQR<_MatrixType> >
*
* \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting
*
* \param MatrixType the type of the matrix of which we are computing the QR decomposition
* \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
*
* This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
* such that

View File

@ -37,7 +37,7 @@ struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
*
* \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
*
* \param MatrixType the type of the matrix of which we are computing the QR decomposition
* \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
*
* This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b P', \b Q and \b R
* such that

View File

@ -21,7 +21,7 @@ namespace Eigen {
*
* \brief Householder QR decomposition of a matrix
*
* \param MatrixType the type of the matrix of which we are computing the QR decomposition
* \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
*
* This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R
* such that

View File

@ -47,9 +47,8 @@ struct traits<BDCSVD<_MatrixType> >
*
* \brief class Bidiagonal Divide and Conquer SVD
*
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
* We plan to have a very similar interface to JacobiSVD on this class.
* It should be used to speed up the calcul of SVD for big matrices.
* \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition
*
*/
template<typename _MatrixType>
class BDCSVD : public SVDBase<BDCSVD<_MatrixType> >

View File

@ -449,8 +449,8 @@ struct traits<JacobiSVD<_MatrixType,QRPreconditioner> >
*
* \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
*
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
* \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
* \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition
* \tparam QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
* for the R-SVD step for non-square matrices. See discussion of possible values below.
*
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product

View File

@ -39,18 +39,16 @@ namespace internal {
} // end namespace internal
/** \ingroup SparseCholesky_Module
* \brief A direct sparse Cholesky factorizations
* \brief A base class for direct sparse Cholesky factorizations
*
* These classes provide LL^T and LDL^T Cholesky factorizations of sparse matrices that are
* selfadjoint and positive definite. The factorization allows for solving A.X = B where
* This is a base class for LL^T and LDL^T Cholesky factorizations of sparse matrices that are
* selfadjoint and positive definite. These factorizations allow for solving A.X = B where
* X and B can be either dense or sparse.
*
* In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization
* such that the factorized matrix is P A P^-1.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
* \tparam Derived the type of the derived class, that is the actual factorization type.
*
*/
template<typename Derived>

View File

@ -14,22 +14,21 @@
namespace Eigen {
namespace internal {
/**
* \brief Performs numeric block updates from a given supernode to a single column
*
* \param segsize Size of the segment (and blocks ) to use for updates
* \param[in,out] dense Packed values of the original matrix
* \param tempv temporary vector to use for updates
* \param lusup array containing the supernodes
* \param lda Leading dimension in the supernode
* \param nrow Number of rows in the rectangular part of the supernode
* \param lsub compressed row subscripts of supernodes
* \param lptr pointer to the first column of the current supernode in lsub
* \param no_zeros Number of nonzeros elements before the diagonal part of the supernode
* \return 0 on success
*/
template <int SegSizeAtCompileTime> struct LU_kernel_bmod
{
/** \internal
* \brief Performs numeric block updates from a given supernode to a single column
*
* \param segsize Size of the segment (and blocks ) to use for updates
* \param[in,out] dense Packed values of the original matrix
* \param tempv temporary vector to use for updates
* \param lusup array containing the supernodes
* \param lda Leading dimension in the supernode
* \param nrow Number of rows in the rectangular part of the supernode
* \param lsub compressed row subscripts of supernodes
* \param lptr pointer to the first column of the current supernode in lsub
* \param no_zeros Number of nonzeros elements before the diagonal part of the supernode
*/
template <typename BlockScalarVector, typename ScalarVector, typename IndexVector>
static EIGEN_DONT_INLINE void run(const Index segsize, BlockScalarVector& dense, ScalarVector& tempv, ScalarVector& lusup, Index& luptr, const Index lda,
const Index nrow, IndexVector& lsub, const Index lptr, const Index no_zeros);

View File

@ -95,10 +95,10 @@ template<typename Scalar> struct GoogleSparseHashMapTraits
*
* \brief The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access
*
* \param SparseMatrixType the type of the sparse matrix we are updating
* \param MapTraits a traits class representing the map implementation used for the temporary sparse storage.
* \tparam SparseMatrixType the type of the sparse matrix we are updating
* \tparam MapTraits a traits class representing the map implementation used for the temporary sparse storage.
* Its default value depends on the system.
* \param OuterPacketBits defines the number of rows (or columns) manage by a single map object
* \tparam OuterPacketBits defines the number of rows (or columns) manage by a single map object
* as a power of two exponent.
*
* This class temporarily represents a sparse matrix object using a generic map implementation allowing for