Complete docs and add ostream operator for EulerAngles.

This commit is contained in:
Tal Hadad 2016-06-19 20:42:45 +03:00
parent 6edfe8771b
commit 8e198d6835
5 changed files with 132 additions and 42 deletions

View File

@ -1608,7 +1608,10 @@ EXPAND_AS_DEFINED = EIGEN_MAKE_TYPEDEFS \
EIGEN_MATHFUNC_IMPL \
_EIGEN_GENERIC_PUBLIC_INTERFACE \
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY \
EIGEN_EMPTY
EIGEN_EMPTY \
EIGEN_EULER_ANGLES_TYPEDEFS \
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF \
EIGEN_EULER_SYSTEM_TYPEDEF
# If the SKIP_FUNCTION_MACROS tag is set to YES (the default) then
# doxygen's preprocessor will remove all references to function-like macros

View File

@ -24,14 +24,13 @@ namespace Eigen {
*
* Euler angles are a way to represent 3D rotation.
*
* !TODO! More about the purpose of this module and examples.
*
* See EulerAngles for more information.
*
* In order to use this module in your code, include this header:
* \code
* #include <unsupported/Eigen/EulerAngles>
* \endcode
*
* See \ref EulerAngles for more information.
*
*/
}

View File

@ -18,6 +18,8 @@ namespace Eigen
struct ei_eulerangles_assign_impl;*/
/** \class EulerAngles
*
* \ingroup EulerAngles_Module
*
* \brief Represents a rotation in a 3 dimensional space as three Euler angles.
*
@ -29,7 +31,7 @@ namespace Eigen
* - then, rotate the axes system over the gamma axis(which was rotated in the two stages above) in angle gamma
*
* \note This class support only intrinsic Euler angles for simplicity,
* see EulerSystem how to easily overcome it for extrinsic systems.
* see EulerSystem how to easily overcome this for extrinsic systems.
*
* ### Rotation representation and conversions ###
*
@ -52,17 +54,48 @@ namespace Eigen
* and this class take care for the math.
* Additionally, some axes related computation is done in compile time.
*
* #### Euler angles ranges in conversions ####
*
* When converting some rotation to Euler angles, there are some ways you can guarantee
* the Euler angles ranges.
*
* #### implicit ranges ####
* When using implicit ranges, all angles are guarantee to be in the range [-PI, +PI],
* unless you convert from some other Euler angles.
* In this case, the range is __undefined__ (might be even less than -PI or greater than +2*PI).
* \sa EulerAngles(const MatrixBase<Derived>&)
* \sa EulerAngles(const RotationBase<Derived, 3>&)
*
* #### explicit ranges ####
* When using explicit ranges, all angles are guarantee to be in the range you choose.
* In the range Boolean parameter, you're been ask whether you prefer the positive range or not:
* - _true_ - force the range between [0, +2*PI]
* - _false_ - force the range between [-PI, +PI]
*
* ##### compile time ranges #####
* This is when you have compile time ranges and you prefer to
* use template parameter. (e.g. for performance)
* \sa FromRotation()
*
* ##### run-time time ranges #####
* Run-time ranges are also supported.
* \sa EulerAngles(const MatrixBase<Derived>&, bool, bool, bool)
* \sa EulerAngles(const RotationBase<Derived, 3>&, bool, bool, bool)
*
* ### Convenient user typedefs ###
*
* Convenient typedefs for EulerAngles exist for float and double scalar,
* in a form of EulerAngles{A}{B}{C}{scalar},
* e.g. EulerAnglesXYZd, EulerAnglesZYZf.
* e.g. \ref EulerAnglesXYZd, \ref EulerAnglesZYZf.
*
* !TODO! Add examples
*
* Only for positive axes{+x,+y,+z} euler systems are have convenient typedef.
* Only for positive axes{+x,+y,+z} Euler systems are have convenient typedef.
* If you need negative axes{-x,-y,-z}, it is recommended to create you own typedef with
* a word that represent what you need, e.g. EulerAnglesUTM (!TODO! make it more clear with example code).
* a word that represent what you need.
*
* ### Example ###
*
* \include EulerAngles.cpp
* Output: \verbinclude EulerAngles.out
*
* ### Additional reading ###
*
@ -80,12 +113,14 @@ namespace Eigen
public:
/** the scalar type of the angles */
typedef _Scalar Scalar;
/** the EulerSystem to use, which represents the axes of rotation. */
typedef _System System;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,3,1> Vector3;
typedef Quaternion<Scalar> QuaternionType;
typedef AngleAxis<Scalar> AngleAxisType;
typedef Matrix<Scalar,3,3> Matrix3; /*!< the equivalent rotation matrix type */
typedef Matrix<Scalar,3,1> Vector3; /*!< the equivalent 3 dimension vector type */
typedef Quaternion<Scalar> QuaternionType; /*!< the equivalent quaternion type */
typedef AngleAxis<Scalar> AngleAxisType; /*!< the equivalent angle-axis type */
/** \returns the axis vector of the first (alpha) rotation */
static Vector3 AlphaAxisVector() {
@ -125,7 +160,7 @@ namespace Eigen
/** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
* with options to choose for each angle the requested range.
*
* If possitive range is true, then the specified angle will be in the range [0, +2*PI].
* If positive range is true, then the specified angle will be in the range [0, +2*PI].
* Otherwise, the specified angle will be in the range [-PI, +PI].
*
* \param m The 3x3 rotation matrix to convert
@ -146,7 +181,7 @@ namespace Eigen
/** Constructs and initialize Euler angles from a rotation \p rot.
*
* \note All angles will be in the range [-PI, PI], unless \p rot is an EulerAngles.
* If rot is an EulerAngles, expected EulerAngles range is undefined.
* If rot is an EulerAngles, expected EulerAngles range is __undefined__.
* (Use other functions here for enforcing range if this effect is desired)
*/
template<typename Derived>
@ -155,7 +190,7 @@ namespace Eigen
/** Constructs and initialize Euler angles from a rotation \p rot,
* with options to choose for each angle the requested range.
*
* If possitive range is true, then the specified angle will be in the range [0, +2*PI].
* If positive range is true, then the specified angle will be in the range [0, +2*PI].
* Otherwise, the specified angle will be in the range [-PI, +PI].
*
* \param rot The 3x3 rotation matrix to convert
@ -214,7 +249,7 @@ namespace Eigen
/** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
* with options to choose for each angle the requested range (__only in compile time__).
*
* If possitive range is true, then the specified angle will be in the range [0, +2*PI].
* If positive range is true, then the specified angle will be in the range [0, +2*PI].
* Otherwise, the specified angle will be in the range [-PI, +PI].
*
* \param m The 3x3 rotation matrix to convert
@ -232,14 +267,15 @@ namespace Eigen
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
EulerAngles e;
System::CalcEulerAngles<PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma>(e, m);
System::template CalcEulerAngles<
PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma, _Scalar>(e, m);
return e;
}
/** Constructs and initialize Euler angles from a rotation \p rot,
* with options to choose for each angle the requested range (__only in compile time__).
*
* If possitive range is true, then the specified angle will be in the range [0, +2*PI].
* If positive range is true, then the specified angle will be in the range [0, +2*PI].
* Otherwise, the specified angle will be in the range [-PI, +PI].
*
* \param rot The 3x3 rotation matrix to convert
@ -252,7 +288,7 @@ namespace Eigen
bool PositiveRangeBeta,
bool PositiveRangeGamma,
typename Derived>
static EulerAngles& FromRotation(const RotationBase<Derived, 3>& rot)
static EulerAngles FromRotation(const RotationBase<Derived, 3>& rot)
{
return FromRotation<PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma>(rot.toRotationMatrix());
}
@ -305,10 +341,17 @@ namespace Eigen
AngleAxisType(beta(), BetaAxisVector()) *
AngleAxisType(gamma(), GammaAxisVector());
}
friend std::ostream& operator<<(std::ostream& s, const EulerAngles<Scalar, System>& eulerAngles)
{
s << eulerAngles.angles().transpose();
return s;
}
};
#define EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(AXES, SCALAR_TYPE, SCALAR_POSTFIX) \
typedef EulerAngles<SCALAR_TYPE, EulerSystem##AXES> EulerSystem##AXES##SCALAR_POSTFIX;
/** \ingroup EulerAngles_Module */ \
typedef EulerAngles<SCALAR_TYPE, EulerSystem##AXES> EulerAngles##AXES##SCALAR_POSTFIX;
#define EIGEN_EULER_ANGLES_TYPEDEFS(SCALAR_TYPE, SCALAR_POSTFIX) \
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYZ, SCALAR_TYPE, SCALAR_POSTFIX) \

View File

@ -40,17 +40,17 @@ namespace Eigen
#define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1]
/** \brief Representation of a fixed signed rotation axis for EulerAngles.
/** \brief Representation of a fixed signed rotation axis for EulerSystem.
*
* \ingroup EulerAngles_Module
*
* Values here represent:
* - The axis of the rotation: X, Y or Z.
* - The sign (i.e. direction of the rotation along the axis): possitive(+) or negative(-)
* - The sign (i.e. direction of the rotation along the axis): positive(+) or negative(-)
*
* Therefore, this could express all the axes {+X,+Y,+Z,-X,-Y,-Z}
*
* For positive axis, use +EULER_{axis}, and for negative axis use -EULER_{axis}.
*
* !TODO! Add examples
*/
enum EulerAxis
{
@ -60,6 +60,8 @@ namespace Eigen
};
/** \class EulerSystem
*
* \ingroup EulerAngles_Module
*
* \brief Represents a fixed Euler rotation system.
*
@ -69,8 +71,8 @@ namespace Eigen
* - Build an Euler system, and then pass it as a template parameter to EulerAngles.
* - Query some compile time data about an Euler system. (e.g. Whether it's tait bryan)
*
* Euler rotation is a set of three rotation on fixed axes. (see EulerAngles)
* This meta-class store constantly those signed axes. (see EulerAxis)
* Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles)
* This meta-class store constantly those signed axes. (see \ref EulerAxis)
*
* ### Types of Euler systems ###
*
@ -78,35 +80,31 @@ namespace Eigen
* signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported:
* - all axes X, Y, Z in each valid order (see below what order is valid)
* - rotation over the axis is supported both over the positive and negative directions.
* - both tait bryan and classic Euler angles (i.e. the opposite).
* - both tait bryan and proper/classic Euler angles (i.e. the opposite).
*
* Since EulerSystem support both positive and negative directions,
* you may call this rotation distinction in other names:
* - right handed or left handed
* - counterclockwise or clockwise
* - _right handed_ or _left handed_
* - _counterclockwise_ or _clockwise_
*
* Notice all axed combination are valid, and would trigger a static assertion.
* Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid.
* This yield two and only two classes:
* - tait bryan - all unsigned axes are distinct, e.g. {X,Y,Z}
* - proper/classic Euler angles - The first and the third unsigned axes is equal,
* - _tait bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
* - _proper/classic Euler angles_ - The first and the third unsigned axes is equal,
* and the second is different, e.g. {X,Y,X}
*
* !TODO! Add some example code.
*
* ### Intrinsic vs extrinsic Euler systems ###
*
* Only intrinsic Euler systems are supported for simplicity.
* If you want to use extrinsic Euler systems,
* just use the equal intrinsic opposite order for axes and angles.
* I.E axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a).
* !TODO! Make it more clear and add some example code.
* I.e axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a).
*
* ### Convenient user typedefs ###
*
* Convenient typedefs for EulerSystem exist (only for positive axes Euler systems),
* in a form of EulerSystem{A}{B}{C}, e.g. EulerSystemXYZd.
* !TODO! Make it more clear
* in a form of EulerSystem{A}{B}{C}, e.g. \ref EulerSystemXYZ.
*
* ### Additional reading ###
*
@ -248,10 +246,10 @@ namespace Eigen
}
template<
typename Scalar,
bool PositiveRangeAlpha,
bool PositiveRangeBeta,
bool PositiveRangeGamma>
bool PositiveRangeGamma,
typename Scalar>
static void CalcEulerAngles(
EulerAngles<Scalar, EulerSystem>& res,
const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
@ -296,6 +294,7 @@ namespace Eigen
};
#define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \
/** \ingroup EulerAngles_Module */ \
typedef EulerSystem<EULER_##A, EULER_##B, EULER_##C> EulerSystem##A##B##C;
EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,Z)

View File

@ -0,0 +1,46 @@
#include <unsupported/Eigen/EulerAngles>
#include <iostream>
using namespace Eigen;
int main()
{
// A common Euler system by many armies around the world,
// where the first one is the azimuth(the angle from the north -
// the same angle that is show in compass)
// and the second one is elevation(the angle from the horizon)
// and the third one is roll(the angle between the horizontal body
// direction and the plane ground surface)
// Keep remembering we're using radian angles here!
typedef EulerSystem<-EULER_Z, EULER_Y, EULER_X> MyArmySystem;
typedef EulerAngles<double, MyArmySystem> MyArmyAngles;
MyArmyAngles vehicleAngles(
3.14/*PI*/ / 2, /* heading to east, notice that this angle is counter-clockwise */
-0.3, /* going down from a mountain */
0.1); /* slightly rolled to the right */
// Some Euler angles representation that our plane use.
EulerAnglesZYZd planeAngles(0.78474, 0.5271, -0.513794);
MyArmyAngles planeAnglesInMyArmyAngles = MyArmyAngles::FromRotation<true, false, false>(planeAngles);
std::cout << "vehicle angles(MyArmy): " << vehicleAngles << std::endl;
std::cout << "plane angles(ZYZ): " << planeAngles << std::endl;
std::cout << "plane angles(MyArmy): " << planeAnglesInMyArmyAngles << std::endl;
// Now lets rotate the plane a little bit
std::cout << "==========================================================\n";
std::cout << "rotating plane now!\n";
std::cout << "==========================================================\n";
Quaterniond planeRotated = AngleAxisd(-0.342, Vector3d::UnitY()) * planeAngles;
planeAngles = planeRotated;
planeAnglesInMyArmyAngles = MyArmyAngles::FromRotation<true, false, false>(planeRotated);
std::cout << "new plane angles(ZYZ): " << planeAngles << std::endl;
std::cout << "new plane angles(MyArmy): " << planeAnglesInMyArmyAngles << std::endl;
return 0;
}