mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-13 20:26:03 +08:00
Rename Complex in ComplexSchur and ComplexEigenSolver to ComplexScalar
for consistency with the RealScalar type; correct ComplexEigenSolver docs to take non-diagonalizable matrices into account; refactor ComplexEigenSolver::compute().
This commit is contained in:
parent
d91ffffc37
commit
8e5d2b6fc4
@ -38,11 +38,12 @@
|
||||
* instantiation of the Matrix class template.
|
||||
*
|
||||
* The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
|
||||
* \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$.
|
||||
* The eigendecomposition of a matrix is \f$ A = V D V^{-1} \f$,
|
||||
* where \f$ D \f$ is a diagonal matrix. The entries on the diagonal
|
||||
* of \f$ D \f$ are the eigenvalues and the columns of \f$ V \f$ are
|
||||
* the eigenvectors.
|
||||
* \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v
|
||||
* \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on
|
||||
* the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as
|
||||
* its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is
|
||||
* almost always invertible, in which case we have \f$ A = V D V^{-1}
|
||||
* \f$. This is called the eigendecomposition.
|
||||
*
|
||||
* The main function in this class is compute(), which computes the
|
||||
* eigenvalues and eigenvectors of a given function. The
|
||||
@ -73,21 +74,21 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
* \c float or \c double) and just \c Scalar if #Scalar is
|
||||
* complex.
|
||||
*/
|
||||
typedef std::complex<RealScalar> Complex;
|
||||
typedef std::complex<RealScalar> ComplexScalar;
|
||||
|
||||
/** \brief Type for vector of eigenvalues as returned by eigenvalues().
|
||||
*
|
||||
* This is a column vector with entries of type #Complex.
|
||||
* This is a column vector with entries of type #ComplexScalar.
|
||||
* The length of the vector is the size of \p _MatrixType.
|
||||
*/
|
||||
typedef Matrix<Complex, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> EigenvalueType;
|
||||
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> EigenvalueType;
|
||||
|
||||
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
|
||||
*
|
||||
* This is a square matrix with entries of type #Complex.
|
||||
* This is a square matrix with entries of type #ComplexScalar.
|
||||
* The size is the same as the size of \p _MatrixType.
|
||||
*/
|
||||
typedef Matrix<Complex, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, ColsAtCompileTime> EigenvectorType;
|
||||
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, ColsAtCompileTime> EigenvectorType;
|
||||
|
||||
/** \brief Default constructor.
|
||||
*
|
||||
@ -99,7 +100,7 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
|
||||
/** \brief Constructor; computes eigendecomposition of given matrix.
|
||||
*
|
||||
* \param[in] matrix %Matrix whose eigendecomposition is to be computed.
|
||||
* \param[in] matrix Sqarae matrix whose eigendecomposition is to be computed.
|
||||
*
|
||||
* This constructor calls compute() to compute the eigendecomposition.
|
||||
*/
|
||||
@ -117,11 +118,13 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
* ComplexEigenSolver(const MatrixType& matrix) or the member
|
||||
* function compute(const MatrixType& matrix) has been called
|
||||
* before to compute the eigendecomposition of a matrix. This
|
||||
* function returns the matrix \f$ V \f$ in the
|
||||
* eigendecomposition \f$ A = V D V^{-1} \f$. The columns of \f$
|
||||
* V \f$ are the eigenvectors. The eigenvectors are normalized to
|
||||
* have (Euclidean) norm equal to one, and are in the same order
|
||||
* as the eigenvalues as returned by eigenvalues().
|
||||
* function returns a matrix whose columns are the
|
||||
* eigenvectors. Column \f$ k \f$ is an eigenvector
|
||||
* corresponding to eigenvalue number \f$ k \f$ as returned by
|
||||
* eigenvalues(). The eigenvectors are normalized to have
|
||||
* (Euclidean) norm equal to one. The matrix returned by this
|
||||
* function is the matrix \f$ V \f$ in the eigendecomposition \f$
|
||||
* A = V D V^{-1} \f$, if it exists.
|
||||
*
|
||||
* Example: \include ComplexEigenSolver_eigenvectors.cpp
|
||||
* Output: \verbinclude ComplexEigenSolver_eigenvectors.out
|
||||
@ -138,7 +141,10 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
* ComplexEigenSolver(const MatrixType& matrix) or the member
|
||||
* function compute(const MatrixType& matrix) has been called
|
||||
* before to compute the eigendecomposition of a matrix. This
|
||||
* function returns a column vector containing the eigenvalues.
|
||||
* function returns a column vector containing the
|
||||
* eigenvalues. Eigenvalues are repeated according to their
|
||||
* algebraic multiplicity, so there are as many eigenvalues as
|
||||
* rows in the matrix.
|
||||
*
|
||||
* Example: \include ComplexEigenSolver_eigenvalues.cpp
|
||||
* Output: \verbinclude ComplexEigenSolver_eigenvalues.out
|
||||
@ -151,7 +157,7 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
|
||||
/** \brief Computes eigendecomposition of given matrix.
|
||||
*
|
||||
* \param[in] matrix %Matrix whose eigendecomposition is to be computed.
|
||||
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
|
||||
*
|
||||
* This function computes the eigenvalues and eigenvectors of \p
|
||||
* matrix. The eigenvalues() and eigenvectors() functions can be
|
||||
@ -182,56 +188,56 @@ void ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
// this code is inspired from Jampack
|
||||
assert(matrix.cols() == matrix.rows());
|
||||
int n = matrix.cols();
|
||||
m_eivalues.resize(n,1);
|
||||
m_eivec.resize(n,n);
|
||||
const int n = matrix.cols();
|
||||
const RealScalar matrixnorm = matrix.norm();
|
||||
|
||||
RealScalar eps = NumTraits<RealScalar>::epsilon();
|
||||
|
||||
// Reduce to complex Schur form
|
||||
// Step 1: Do a complex Schur decomposition, A = U T U^*
|
||||
// The eigenvalues are on the diagonal of T.
|
||||
ComplexSchur<MatrixType> schur(matrix);
|
||||
|
||||
m_eivalues = schur.matrixT().diagonal();
|
||||
|
||||
m_eivec.setZero();
|
||||
|
||||
Complex d2, z;
|
||||
RealScalar norm = matrix.norm();
|
||||
|
||||
// compute the (normalized) eigenvectors
|
||||
// Step 2: Compute X such that T = X D X^(-1), where D is the diagonal of T.
|
||||
// The matrix X is unit triangular.
|
||||
EigenvectorType X = EigenvectorType::Zero(n, n);
|
||||
for(int k=n-1 ; k>=0 ; k--)
|
||||
{
|
||||
d2 = schur.matrixT().coeff(k,k);
|
||||
m_eivec.coeffRef(k,k) = Complex(1.0,0.0);
|
||||
X.coeffRef(k,k) = ComplexScalar(1.0,0.0);
|
||||
// Compute X(i,k) using the (i,k) entry of the equation X T = D X
|
||||
for(int i=k-1 ; i>=0 ; i--)
|
||||
{
|
||||
m_eivec.coeffRef(i,k) = -schur.matrixT().coeff(i,k);
|
||||
X.coeffRef(i,k) = -schur.matrixT().coeff(i,k);
|
||||
if(k-i-1>0)
|
||||
m_eivec.coeffRef(i,k) -= (schur.matrixT().row(i).segment(i+1,k-i-1) * m_eivec.col(k).segment(i+1,k-i-1)).value();
|
||||
z = schur.matrixT().coeff(i,i) - d2;
|
||||
if(z==Complex(0))
|
||||
ei_real_ref(z) = eps * norm;
|
||||
m_eivec.coeffRef(i,k) = m_eivec.coeff(i,k) / z;
|
||||
|
||||
X.coeffRef(i,k) -= (schur.matrixT().row(i).segment(i+1,k-i-1) * X.col(k).segment(i+1,k-i-1)).value();
|
||||
ComplexScalar z = schur.matrixT().coeff(i,i) - schur.matrixT().coeff(k,k);
|
||||
if(z==ComplexScalar(0))
|
||||
{
|
||||
// If the i-th and k-th eigenvalue are equal, then z equals 0.
|
||||
// Use a small value instead, to prevent division by zero.
|
||||
ei_real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm;
|
||||
}
|
||||
X.coeffRef(i,k) = X.coeff(i,k) / z;
|
||||
}
|
||||
m_eivec.col(k).normalize();
|
||||
}
|
||||
|
||||
m_eivec = schur.matrixU() * m_eivec;
|
||||
// Step 3: Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1)
|
||||
m_eivec = schur.matrixU() * X;
|
||||
// .. and normalize the eigenvectors
|
||||
for(int k=0 ; k<n ; k++)
|
||||
{
|
||||
m_eivec.col(k).normalize();
|
||||
}
|
||||
m_isInitialized = true;
|
||||
|
||||
// sort the eigenvalues
|
||||
// Step 4: Sort the eigenvalues
|
||||
for (int i=0; i<n; i++)
|
||||
{
|
||||
for (int i=0; i<n; i++)
|
||||
int k;
|
||||
m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k);
|
||||
if (k != 0)
|
||||
{
|
||||
int k;
|
||||
m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k);
|
||||
if (k != 0)
|
||||
{
|
||||
k += i;
|
||||
std::swap(m_eivalues[k],m_eivalues[i]);
|
||||
m_eivec.col(i).swap(m_eivec.col(k));
|
||||
}
|
||||
k += i;
|
||||
std::swap(m_eivalues[k],m_eivalues[i]);
|
||||
m_eivec.col(i).swap(m_eivec.col(k));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -54,8 +54,8 @@ template<typename _MatrixType> class ComplexSchur
|
||||
};
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef std::complex<RealScalar> Complex;
|
||||
typedef Matrix<Complex, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
|
||||
typedef std::complex<RealScalar> ComplexScalar;
|
||||
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
|
||||
enum {
|
||||
Size = MatrixType::RowsAtCompileTime
|
||||
};
|
||||
@ -158,8 +158,8 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool skipU)
|
||||
// TODO skip Q if skipU = true
|
||||
HessenbergDecomposition<MatrixType> hess(matrix);
|
||||
|
||||
m_matT = hess.matrixH().template cast<Complex>();
|
||||
if(!skipU) m_matU = hess.matrixQ().template cast<Complex>();
|
||||
m_matT = hess.matrixH().template cast<ComplexScalar>();
|
||||
if(!skipU) m_matU = hess.matrixQ().template cast<ComplexScalar>();
|
||||
|
||||
|
||||
// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
|
||||
@ -172,7 +172,7 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool skipU)
|
||||
int iu = m_matT.cols() - 1;
|
||||
int il;
|
||||
RealScalar d,sd,sf;
|
||||
Complex c,b,disc,r1,r2,kappa;
|
||||
ComplexScalar c,b,disc,r1,r2,kappa;
|
||||
|
||||
RealScalar eps = NumTraits<RealScalar>::epsilon();
|
||||
|
||||
@ -188,7 +188,7 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool skipU)
|
||||
if(!ei_isMuchSmallerThan(sd,d,eps))
|
||||
break;
|
||||
|
||||
m_matT.coeffRef(iu,iu-1) = Complex(0);
|
||||
m_matT.coeffRef(iu,iu-1) = ComplexScalar(0);
|
||||
iter = 0;
|
||||
--iu;
|
||||
}
|
||||
@ -216,12 +216,12 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool skipU)
|
||||
--il;
|
||||
}
|
||||
|
||||
if( il != 0 ) m_matT.coeffRef(il,il-1) = Complex(0);
|
||||
if( il != 0 ) m_matT.coeffRef(il,il-1) = ComplexScalar(0);
|
||||
|
||||
// compute the shift kappa as one of the eigenvalues of the 2x2
|
||||
// diagonal block on the bottom of the active submatrix
|
||||
|
||||
Matrix<Complex,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
|
||||
Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
|
||||
sf = t.cwiseAbs().sum();
|
||||
t /= sf; // the normalization by sf is to avoid under/overflow
|
||||
|
||||
@ -251,7 +251,7 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool skipU)
|
||||
}
|
||||
|
||||
// perform the QR step using Givens rotations
|
||||
PlanarRotation<Complex> rot;
|
||||
PlanarRotation<ComplexScalar> rot;
|
||||
rot.makeGivens(m_matT.coeff(il,il) - kappa, m_matT.coeff(il+1,il));
|
||||
|
||||
for(int i=il ; i<iu ; i++)
|
||||
@ -266,7 +266,7 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool skipU)
|
||||
int i2 = i+2;
|
||||
|
||||
rot.makeGivens(m_matT.coeffRef(i1,i), m_matT.coeffRef(i2,i), &m_matT.coeffRef(i1,i));
|
||||
m_matT.coeffRef(i2,i) = Complex(0);
|
||||
m_matT.coeffRef(i2,i) = ComplexScalar(0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user