some documentation fixes (Cwise* and Cholesky)

This commit is contained in:
Gael Guennebaud 2008-05-22 16:31:00 +00:00
parent 94e1629a1b
commit 8f1fc80a77
9 changed files with 24 additions and 30 deletions

View File

@ -109,7 +109,7 @@ void Cholesky<MatrixType>::compute(const MatrixType& a)
/** \returns the solution of A x = \a b using the current decomposition of A.
* In other words, it returns \code A^-1 b \endcode computing
* \code L^-* L^1 b \code from right to left.
* \code L^-* L^1 b \endcode from right to left.
*/
template<typename MatrixType>
template<typename Derived>

View File

@ -119,9 +119,10 @@ void CholeskyWithoutSquareRoot<MatrixType>::compute(const MatrixType& a)
}
}
/** \returns the solution of A x = \a b using the current decomposition of A.
* In other words, it returns \code A^-1 b \endcode computing
* \code (L^-*) (D^-1) (L^-1) b \code from right to left.
/** \returns the solution of \f$ A x = b \f$ using the current decomposition of A.
* In other words, it returns \f$ A^{-1} b \f$ computing
* \f$ {L^{*}}^{-1} D^{-1} L^{-1} b \f$ from right to left.
* \param vecB the vector \f$ b \f$ (or an array of vectors)
*/
template<typename MatrixType>
template<typename Derived>

View File

@ -41,10 +41,7 @@
* However, if you want to write a function returning such an expression, you
* will need to use this class.
*
* Here is an example illustrating this:
* \include class_CwiseBinaryOp.cpp
*
* \sa class ei_scalar_product_op, class ei_scalar_quotient_op
* \sa MatrixBase::cwise(const MatrixBase<OtherDerived> &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp
*/
template<typename BinaryOp, typename Lhs, typename Rhs>
struct ei_traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
@ -220,6 +217,10 @@ MatrixBase<Derived>::cwiseMax(const MatrixBase<OtherDerived> &other) const
* The template parameter \a CustomBinaryOp is the type of the functor
* of the custom operator (see class CwiseBinaryOp for an example)
*
* Here is an example illustrating the use of custom functors:
* \include class_CwiseBinaryOp.cpp
* Output: \verbinclude class_CwiseBinaryOp.out
*
* \sa class CwiseBinaryOp, MatrixBase::operator+, MatrixBase::operator-, MatrixBase::cwiseProduct, MatrixBase::cwiseQuotient
*/
template<typename Derived>

View File

@ -38,6 +38,7 @@
* However, if you want to write a function returning such an expression, you
* will need to use this class.
*
* \sa class CwiseUnaryOp, class CwiseBinaryOp, MatrixBase::create()
*/
template<typename NullaryOp, typename MatrixType>
struct ei_traits<CwiseNullaryOp<NullaryOp, MatrixType> >

View File

@ -37,7 +37,7 @@
* It is the return type of the unary operator-, of a matrix or a vector, and most
* of the time this is the only way it is used.
*
* \sa class CwiseBinaryOp
* \sa MatrixBase::cwise(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp
*/
template<typename UnaryOp, typename MatrixType>
struct ei_traits<CwiseUnaryOp<UnaryOp, MatrixType> >
@ -100,6 +100,7 @@ class CwiseUnaryOp : ei_no_assignment_operator,
*
* Here is an example:
* \include class_CwiseUnaryOp.cpp
* Output: \verbinclude class_CwiseUnaryOp.out
*
* \sa class CwiseUnaryOp, class CwiseBinarOp, MatrixBase::operator-, MatrixBase::cwiseAbs
*/

View File

@ -39,10 +39,11 @@ class BenchTimer
{
public:
BenchTimer() : m_best(1e99) {}
BenchTimer() : m_best(1e12) {}
~BenchTimer() {}
inline void reset(void) {m_best = 1e12;}
inline void start(void) {m_start = getTime();}
inline void stop(void)
{

View File

@ -143,6 +143,7 @@ DISABLE_INDEX = NO
ENUM_VALUES_PER_LINE = 1
GENERATE_TREEVIEW = NO
TREEVIEW_WIDTH = 250
FORMULA_FONTSIZE = 12
#---------------------------------------------------------------------------
# configuration options related to the LaTeX output
#---------------------------------------------------------------------------

View File

@ -1,29 +1,17 @@
// FIXME - this example is not too good as that functionality is provided in the Eigen API
// additionally it's quite heavy. the CwiseUnaryOp example is better.
#include <Eigen/Core>
USING_PART_OF_NAMESPACE_EIGEN
using namespace std;
// define a custom template binary functor
template<typename Scalar> struct CwiseMinOp EIGEN_EMPTY_STRUCT {
Scalar operator()(const Scalar& a, const Scalar& b) const { return std::min(a,b); }
enum { Cost = Eigen::ConditionalJumpCost + Eigen::NumTraits<Scalar>::AddCost };
template<typename Scalar> struct MakeComplexOp EIGEN_EMPTY_STRUCT {
typedef complex<Scalar> result_type;
complex<Scalar> operator()(const Scalar& a, const Scalar& b) const { return complex<Scalar>(a,b); }
enum { Cost = 0 };
};
// define a custom binary operator between two matrices
template<typename Derived1, typename Derived2>
const Eigen::CwiseBinaryOp<CwiseMinOp<typename Derived1::Scalar>, Derived1, Derived2>
cwiseMin(const MatrixBase<Derived1> &mat1, const MatrixBase<Derived2> &mat2)
{
return Eigen::CwiseBinaryOp<CwiseMinOp<typename Derived1::Scalar>, Derived1, Derived2>(mat1, mat2);
}
int main(int, char**)
{
Matrix4d m1 = Matrix4d::random(), m2 = Matrix4d::random();
cout << cwiseMin(m1,m2) << endl; // use our new global operator
cout << m1.cwise<CwiseMinOp<double> >(m2) << endl; // directly use the generic expression member
cout << m1.cwise(m2, CwiseMinOp<double>()) << endl; // directly use the generic expression member (variant)
cout << m1.cwise(m2, MakeComplexOp<double>()) << endl;
return 0;
}

View File

@ -2,9 +2,9 @@
USING_PART_OF_NAMESPACE_EIGEN
using namespace std;
// define a custom template binary functor
// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp EIGEN_EMPTY_STRUCT {
struct CwiseClampOp {
CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
Scalar m_inf, m_sup;
@ -14,6 +14,6 @@ struct CwiseClampOp EIGEN_EMPTY_STRUCT {
int main(int, char**)
{
Matrix4d m1 = Matrix4d::random();
cout << m1.cwise(CwiseClampOp<double>(-0.5,0.5)) << endl;
cout << m1 << endl << "becomes: " << endl << m1.cwise(CwiseClampOp<double>(-0.5,0.5)) << endl;
return 0;
}