mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-11 03:09:01 +08:00
some documentation fixes (Cwise* and Cholesky)
This commit is contained in:
parent
94e1629a1b
commit
8f1fc80a77
@ -109,7 +109,7 @@ void Cholesky<MatrixType>::compute(const MatrixType& a)
|
||||
|
||||
/** \returns the solution of A x = \a b using the current decomposition of A.
|
||||
* In other words, it returns \code A^-1 b \endcode computing
|
||||
* \code L^-* L^1 b \code from right to left.
|
||||
* \code L^-* L^1 b \endcode from right to left.
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
template<typename Derived>
|
||||
|
@ -119,9 +119,10 @@ void CholeskyWithoutSquareRoot<MatrixType>::compute(const MatrixType& a)
|
||||
}
|
||||
}
|
||||
|
||||
/** \returns the solution of A x = \a b using the current decomposition of A.
|
||||
* In other words, it returns \code A^-1 b \endcode computing
|
||||
* \code (L^-*) (D^-1) (L^-1) b \code from right to left.
|
||||
/** \returns the solution of \f$ A x = b \f$ using the current decomposition of A.
|
||||
* In other words, it returns \f$ A^{-1} b \f$ computing
|
||||
* \f$ {L^{*}}^{-1} D^{-1} L^{-1} b \f$ from right to left.
|
||||
* \param vecB the vector \f$ b \f$ (or an array of vectors)
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
template<typename Derived>
|
||||
|
@ -41,10 +41,7 @@
|
||||
* However, if you want to write a function returning such an expression, you
|
||||
* will need to use this class.
|
||||
*
|
||||
* Here is an example illustrating this:
|
||||
* \include class_CwiseBinaryOp.cpp
|
||||
*
|
||||
* \sa class ei_scalar_product_op, class ei_scalar_quotient_op
|
||||
* \sa MatrixBase::cwise(const MatrixBase<OtherDerived> &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp
|
||||
*/
|
||||
template<typename BinaryOp, typename Lhs, typename Rhs>
|
||||
struct ei_traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
|
||||
@ -220,6 +217,10 @@ MatrixBase<Derived>::cwiseMax(const MatrixBase<OtherDerived> &other) const
|
||||
* The template parameter \a CustomBinaryOp is the type of the functor
|
||||
* of the custom operator (see class CwiseBinaryOp for an example)
|
||||
*
|
||||
* Here is an example illustrating the use of custom functors:
|
||||
* \include class_CwiseBinaryOp.cpp
|
||||
* Output: \verbinclude class_CwiseBinaryOp.out
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::operator+, MatrixBase::operator-, MatrixBase::cwiseProduct, MatrixBase::cwiseQuotient
|
||||
*/
|
||||
template<typename Derived>
|
||||
|
@ -38,6 +38,7 @@
|
||||
* However, if you want to write a function returning such an expression, you
|
||||
* will need to use this class.
|
||||
*
|
||||
* \sa class CwiseUnaryOp, class CwiseBinaryOp, MatrixBase::create()
|
||||
*/
|
||||
template<typename NullaryOp, typename MatrixType>
|
||||
struct ei_traits<CwiseNullaryOp<NullaryOp, MatrixType> >
|
||||
|
@ -37,7 +37,7 @@
|
||||
* It is the return type of the unary operator-, of a matrix or a vector, and most
|
||||
* of the time this is the only way it is used.
|
||||
*
|
||||
* \sa class CwiseBinaryOp
|
||||
* \sa MatrixBase::cwise(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp
|
||||
*/
|
||||
template<typename UnaryOp, typename MatrixType>
|
||||
struct ei_traits<CwiseUnaryOp<UnaryOp, MatrixType> >
|
||||
@ -100,6 +100,7 @@ class CwiseUnaryOp : ei_no_assignment_operator,
|
||||
*
|
||||
* Here is an example:
|
||||
* \include class_CwiseUnaryOp.cpp
|
||||
* Output: \verbinclude class_CwiseUnaryOp.out
|
||||
*
|
||||
* \sa class CwiseUnaryOp, class CwiseBinarOp, MatrixBase::operator-, MatrixBase::cwiseAbs
|
||||
*/
|
||||
|
@ -39,10 +39,11 @@ class BenchTimer
|
||||
{
|
||||
public:
|
||||
|
||||
BenchTimer() : m_best(1e99) {}
|
||||
BenchTimer() : m_best(1e12) {}
|
||||
|
||||
~BenchTimer() {}
|
||||
|
||||
inline void reset(void) {m_best = 1e12;}
|
||||
inline void start(void) {m_start = getTime();}
|
||||
inline void stop(void)
|
||||
{
|
||||
|
@ -143,6 +143,7 @@ DISABLE_INDEX = NO
|
||||
ENUM_VALUES_PER_LINE = 1
|
||||
GENERATE_TREEVIEW = NO
|
||||
TREEVIEW_WIDTH = 250
|
||||
FORMULA_FONTSIZE = 12
|
||||
#---------------------------------------------------------------------------
|
||||
# configuration options related to the LaTeX output
|
||||
#---------------------------------------------------------------------------
|
||||
|
@ -1,29 +1,17 @@
|
||||
// FIXME - this example is not too good as that functionality is provided in the Eigen API
|
||||
// additionally it's quite heavy. the CwiseUnaryOp example is better.
|
||||
|
||||
#include <Eigen/Core>
|
||||
USING_PART_OF_NAMESPACE_EIGEN
|
||||
using namespace std;
|
||||
|
||||
// define a custom template binary functor
|
||||
template<typename Scalar> struct CwiseMinOp EIGEN_EMPTY_STRUCT {
|
||||
Scalar operator()(const Scalar& a, const Scalar& b) const { return std::min(a,b); }
|
||||
enum { Cost = Eigen::ConditionalJumpCost + Eigen::NumTraits<Scalar>::AddCost };
|
||||
template<typename Scalar> struct MakeComplexOp EIGEN_EMPTY_STRUCT {
|
||||
typedef complex<Scalar> result_type;
|
||||
complex<Scalar> operator()(const Scalar& a, const Scalar& b) const { return complex<Scalar>(a,b); }
|
||||
enum { Cost = 0 };
|
||||
};
|
||||
|
||||
// define a custom binary operator between two matrices
|
||||
template<typename Derived1, typename Derived2>
|
||||
const Eigen::CwiseBinaryOp<CwiseMinOp<typename Derived1::Scalar>, Derived1, Derived2>
|
||||
cwiseMin(const MatrixBase<Derived1> &mat1, const MatrixBase<Derived2> &mat2)
|
||||
{
|
||||
return Eigen::CwiseBinaryOp<CwiseMinOp<typename Derived1::Scalar>, Derived1, Derived2>(mat1, mat2);
|
||||
}
|
||||
|
||||
int main(int, char**)
|
||||
{
|
||||
Matrix4d m1 = Matrix4d::random(), m2 = Matrix4d::random();
|
||||
cout << cwiseMin(m1,m2) << endl; // use our new global operator
|
||||
cout << m1.cwise<CwiseMinOp<double> >(m2) << endl; // directly use the generic expression member
|
||||
cout << m1.cwise(m2, CwiseMinOp<double>()) << endl; // directly use the generic expression member (variant)
|
||||
cout << m1.cwise(m2, MakeComplexOp<double>()) << endl;
|
||||
return 0;
|
||||
}
|
||||
|
@ -2,9 +2,9 @@
|
||||
USING_PART_OF_NAMESPACE_EIGEN
|
||||
using namespace std;
|
||||
|
||||
// define a custom template binary functor
|
||||
// define a custom template unary functor
|
||||
template<typename Scalar>
|
||||
struct CwiseClampOp EIGEN_EMPTY_STRUCT {
|
||||
struct CwiseClampOp {
|
||||
CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
|
||||
const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
|
||||
Scalar m_inf, m_sup;
|
||||
@ -14,6 +14,6 @@ struct CwiseClampOp EIGEN_EMPTY_STRUCT {
|
||||
int main(int, char**)
|
||||
{
|
||||
Matrix4d m1 = Matrix4d::random();
|
||||
cout << m1.cwise(CwiseClampOp<double>(-0.5,0.5)) << endl;
|
||||
cout << m1 << endl << "becomes: " << endl << m1.cwise(CwiseClampOp<double>(-0.5,0.5)) << endl;
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user