mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-09-25 15:53:19 +08:00
add a bi conjugate gradient stabilized solver
This commit is contained in:
parent
f4122e9f94
commit
9053729d68
@ -43,10 +43,12 @@ namespace Eigen {
|
|||||||
|
|
||||||
#include "../../Eigen/src/misc/Solve.h"
|
#include "../../Eigen/src/misc/Solve.h"
|
||||||
|
|
||||||
|
#include "src/IterativeSolvers/IterativeSolverBase.h"
|
||||||
#include "src/IterativeSolvers/IterationController.h"
|
#include "src/IterativeSolvers/IterationController.h"
|
||||||
#include "src/IterativeSolvers/ConstrainedConjGrad.h"
|
#include "src/IterativeSolvers/ConstrainedConjGrad.h"
|
||||||
#include "src/IterativeSolvers/BasicPreconditioners.h"
|
#include "src/IterativeSolvers/BasicPreconditioners.h"
|
||||||
#include "src/IterativeSolvers/ConjugateGradient.h"
|
#include "src/IterativeSolvers/ConjugateGradient.h"
|
||||||
|
#include "src/IterativeSolvers/BiCGSTAB.h"
|
||||||
|
|
||||||
//@}
|
//@}
|
||||||
|
|
||||||
|
275
unsupported/Eigen/src/IterativeSolvers/BiCGSTAB.h
Normal file
275
unsupported/Eigen/src/IterativeSolvers/BiCGSTAB.h
Normal file
@ -0,0 +1,275 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||||
|
//
|
||||||
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
// License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Alternatively, you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU General Public License as
|
||||||
|
// published by the Free Software Foundation; either version 2 of
|
||||||
|
// the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||||
|
// GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// You should have received a copy of the GNU Lesser General Public
|
||||||
|
// License and a copy of the GNU General Public License along with
|
||||||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
#ifndef EIGEN_BICGSTAB_H
|
||||||
|
#define EIGEN_BICGSTAB_H
|
||||||
|
|
||||||
|
namespace internal {
|
||||||
|
|
||||||
|
/** \internal Low-level bi conjugate gradient stabilized algorithm
|
||||||
|
* \param mat The matrix A
|
||||||
|
* \param rhs The right hand side vector b
|
||||||
|
* \param x On input and initial solution, on output the computed solution.
|
||||||
|
* \param precond A preconditioner being able to efficiently solve for an
|
||||||
|
* approximation of Ax=b (regardless of b)
|
||||||
|
* \param iters On input the max number of iteration, on output the number of performed iterations.
|
||||||
|
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
|
||||||
|
*/
|
||||||
|
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
||||||
|
void bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
||||||
|
const Preconditioner& precond, int& iters,
|
||||||
|
typename Dest::RealScalar& tol_error)
|
||||||
|
{
|
||||||
|
using std::sqrt;
|
||||||
|
using std::abs;
|
||||||
|
typedef typename Dest::RealScalar RealScalar;
|
||||||
|
typedef typename Dest::Scalar Scalar;
|
||||||
|
typedef Dest VectorType;
|
||||||
|
|
||||||
|
RealScalar tol = tol_error;
|
||||||
|
int maxIters = iters;
|
||||||
|
|
||||||
|
int n = mat.cols();
|
||||||
|
VectorType r = rhs - mat * x;
|
||||||
|
VectorType r0 = r;
|
||||||
|
RealScalar r0_sqnorm = r0.squaredNorm();
|
||||||
|
Scalar rho = 1;
|
||||||
|
Scalar alpha = 1;
|
||||||
|
Scalar w = 1;
|
||||||
|
|
||||||
|
VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
|
||||||
|
VectorType y(n), z(n);
|
||||||
|
VectorType kt(n), ks(n);
|
||||||
|
|
||||||
|
VectorType s(n), t(n);
|
||||||
|
|
||||||
|
RealScalar tol2 = tol*tol;
|
||||||
|
int i = 0;
|
||||||
|
|
||||||
|
do
|
||||||
|
{
|
||||||
|
Scalar rho_old = rho;
|
||||||
|
|
||||||
|
rho = r0.dot(r);
|
||||||
|
Scalar beta = (rho/rho_old) * (alpha / w);
|
||||||
|
p = r + beta * (p - w * v);
|
||||||
|
|
||||||
|
y = precond.solve(p);
|
||||||
|
v.noalias() = mat * y;
|
||||||
|
|
||||||
|
alpha = rho / r0.dot(v);
|
||||||
|
s = r - alpha * v;
|
||||||
|
|
||||||
|
z = precond.solve(s);
|
||||||
|
t.noalias() = mat * z;
|
||||||
|
|
||||||
|
kt = precond.solve(t);
|
||||||
|
ks = precond.solve(s);
|
||||||
|
|
||||||
|
w = kt.dot(ks) / kt.squaredNorm();
|
||||||
|
x += alpha * y + w * z;
|
||||||
|
r = s - w * t;
|
||||||
|
++i;
|
||||||
|
} while ( r.squaredNorm()/r0_sqnorm > tol2 && i<maxIters );
|
||||||
|
|
||||||
|
tol_error = sqrt(r.squaredNorm()/r0_sqnorm);
|
||||||
|
//tol_error = sqrt(abs(absNew / absInit));
|
||||||
|
iters = i;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
template< typename _MatrixType,
|
||||||
|
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
|
||||||
|
class BiCGSTAB;
|
||||||
|
|
||||||
|
namespace internal {
|
||||||
|
|
||||||
|
template<typename CG, typename Rhs, typename Guess>
|
||||||
|
class bicgstab_solve_retval_with_guess;
|
||||||
|
|
||||||
|
template< typename _MatrixType, typename _Preconditioner>
|
||||||
|
struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
|
||||||
|
{
|
||||||
|
typedef _MatrixType MatrixType;
|
||||||
|
typedef _Preconditioner Preconditioner;
|
||||||
|
};
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
/** \brief A bi conjugate gradient stabilized solver for sparse square problems
|
||||||
|
*
|
||||||
|
* This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient
|
||||||
|
* stabilized algorithm. The vectors x and b can be either dense or sparse.
|
||||||
|
*
|
||||||
|
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
|
||||||
|
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
|
||||||
|
*
|
||||||
|
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
|
||||||
|
* and setTolerance() methods. The default are 1000 max iterations and NumTraits<Scalar>::epsilon()
|
||||||
|
* for the tolerance.
|
||||||
|
*
|
||||||
|
* This class can be used as the direct solver classes. Here is a typical usage example:
|
||||||
|
* \code
|
||||||
|
* int n = 10000;
|
||||||
|
* VectorXd x(n), b(n);
|
||||||
|
* SparseMatrix<double> A(n,n);
|
||||||
|
* // fill A and b
|
||||||
|
* BiCGSTAB<SparseMatrix<double> > solver;
|
||||||
|
* solver(A);
|
||||||
|
* x = solver.solve(b);
|
||||||
|
* std::cout << "#iterations: " << solver.iterations() << std::endl;
|
||||||
|
* std::cout << "estimated error: " << solver.error() << std::endl;
|
||||||
|
* // update b, and solve again
|
||||||
|
* x = solver.solve(b);
|
||||||
|
* \endcode
|
||||||
|
*
|
||||||
|
* By default the iterations start with x=0 as an initial guess of the solution.
|
||||||
|
* One can control the start using the solveWithGuess() method. Here is a step by
|
||||||
|
* step execution example starting with a random guess and printing the evolution
|
||||||
|
* of the estimated error:
|
||||||
|
* * \code
|
||||||
|
* x = VectorXd::Random(n);
|
||||||
|
* solver.setMaxIterations(1);
|
||||||
|
* int i = 0;
|
||||||
|
* do {
|
||||||
|
* x = solver.solveWithGuess(b,x);
|
||||||
|
* std::cout << i << " : " << solver.error() << std::endl;
|
||||||
|
* ++i;
|
||||||
|
* } while (solver.info()!=Success && i<100);
|
||||||
|
* \endcode
|
||||||
|
* Note that such a step by step excution is slightly slower.
|
||||||
|
*
|
||||||
|
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
||||||
|
*/
|
||||||
|
template< typename _MatrixType, typename _Preconditioner>
|
||||||
|
class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
|
||||||
|
{
|
||||||
|
typedef IterativeSolverBase<BiCGSTAB> Base;
|
||||||
|
using Base::mp_matrix;
|
||||||
|
using Base::m_error;
|
||||||
|
using Base::m_iterations;
|
||||||
|
using Base::m_info;
|
||||||
|
using Base::m_isInitialized;
|
||||||
|
public:
|
||||||
|
typedef _MatrixType MatrixType;
|
||||||
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
typedef typename MatrixType::Index Index;
|
||||||
|
typedef typename MatrixType::RealScalar RealScalar;
|
||||||
|
typedef _Preconditioner Preconditioner;
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
/** Default constructor. */
|
||||||
|
BiCGSTAB() : Base() {}
|
||||||
|
|
||||||
|
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
||||||
|
*
|
||||||
|
* This constructor is a shortcut for the default constructor followed
|
||||||
|
* by a call to compute().
|
||||||
|
*
|
||||||
|
* \warning this class stores a reference to the matrix A as well as some
|
||||||
|
* precomputed values that depend on it. Therefore, if \a A is changed
|
||||||
|
* this class becomes invalid. Call compute() to update it with the new
|
||||||
|
* matrix A, or modify a copy of A.
|
||||||
|
*/
|
||||||
|
BiCGSTAB(const MatrixType& A) : Base(A) {}
|
||||||
|
|
||||||
|
~BiCGSTAB() {}
|
||||||
|
|
||||||
|
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
|
||||||
|
* \a x0 as an initial solution.
|
||||||
|
*
|
||||||
|
* \sa compute()
|
||||||
|
*/
|
||||||
|
template<typename Rhs,typename Guess>
|
||||||
|
inline const internal::bicgstab_solve_retval_with_guess<BiCGSTAB, Rhs, Guess>
|
||||||
|
solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
|
||||||
|
{
|
||||||
|
eigen_assert(m_isInitialized && "BiCGSTAB is not initialized.");
|
||||||
|
eigen_assert(Base::rows()==b.rows()
|
||||||
|
&& "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b");
|
||||||
|
return internal::bicgstab_solve_retval_with_guess
|
||||||
|
<BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0);
|
||||||
|
}
|
||||||
|
|
||||||
|
/** \internal */
|
||||||
|
template<typename Rhs,typename Dest>
|
||||||
|
void _solve(const Rhs& b, Dest& x) const
|
||||||
|
{
|
||||||
|
m_iterations = Base::m_maxIterations;
|
||||||
|
m_error = Base::m_tolerance;
|
||||||
|
|
||||||
|
internal::bicgstab(*mp_matrix, b, x, Base::m_preconditioner, m_iterations, m_error);
|
||||||
|
|
||||||
|
m_isInitialized = true;
|
||||||
|
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
namespace internal {
|
||||||
|
|
||||||
|
template<typename _MatrixType, typename _Preconditioner, typename Rhs>
|
||||||
|
struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
|
||||||
|
: solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
|
||||||
|
{
|
||||||
|
typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec;
|
||||||
|
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
|
||||||
|
|
||||||
|
template<typename Dest> void evalTo(Dest& dst) const
|
||||||
|
{
|
||||||
|
dst.setZero();
|
||||||
|
dec()._solve(rhs(),dst);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename CG, typename Rhs, typename Guess>
|
||||||
|
class bicgstab_solve_retval_with_guess
|
||||||
|
: public solve_retval_base<CG, Rhs>
|
||||||
|
{
|
||||||
|
typedef Eigen::internal::solve_retval_base<CG,Rhs> Base;
|
||||||
|
using Base::dec;
|
||||||
|
using Base::rhs;
|
||||||
|
public:
|
||||||
|
bicgstab_solve_retval_with_guess(const CG& cg, const Rhs& rhs, const Guess& guess)
|
||||||
|
: Base(cg, rhs), m_guess(guess)
|
||||||
|
{}
|
||||||
|
|
||||||
|
template<typename Dest> void evalTo(Dest& dst) const
|
||||||
|
{
|
||||||
|
dst = m_guess;
|
||||||
|
dec()._solve(rhs(), dst);
|
||||||
|
}
|
||||||
|
protected:
|
||||||
|
const Guess& m_guess;
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // EIGEN_BICGSTAB_H
|
@ -83,11 +83,22 @@ void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
|||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template< typename _MatrixType, int _UpLo=Lower,
|
||||||
|
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
|
||||||
|
class ConjugateGradient;
|
||||||
|
|
||||||
namespace internal {
|
namespace internal {
|
||||||
|
|
||||||
template<typename CG, typename Rhs, typename Guess>
|
template<typename CG, typename Rhs, typename Guess>
|
||||||
class conjugate_gradient_solve_retval_with_guess;
|
class conjugate_gradient_solve_retval_with_guess;
|
||||||
|
|
||||||
|
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
|
||||||
|
struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
|
||||||
|
{
|
||||||
|
typedef _MatrixType MatrixType;
|
||||||
|
typedef _Preconditioner Preconditioner;
|
||||||
|
};
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/** \brief A conjugate gradient solver for sparse self-adjoint problems
|
/** \brief A conjugate gradient solver for sparse self-adjoint problems
|
||||||
@ -137,10 +148,15 @@ class conjugate_gradient_solve_retval_with_guess;
|
|||||||
*
|
*
|
||||||
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
||||||
*/
|
*/
|
||||||
template< typename _MatrixType, int _UpLo=Lower,
|
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
|
||||||
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
|
class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
|
||||||
class ConjugateGradient
|
|
||||||
{
|
{
|
||||||
|
typedef IterativeSolverBase<ConjugateGradient> Base;
|
||||||
|
using Base::mp_matrix;
|
||||||
|
using Base::m_error;
|
||||||
|
using Base::m_iterations;
|
||||||
|
using Base::m_info;
|
||||||
|
using Base::m_isInitialized;
|
||||||
public:
|
public:
|
||||||
typedef _MatrixType MatrixType;
|
typedef _MatrixType MatrixType;
|
||||||
typedef typename MatrixType::Scalar Scalar;
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
@ -155,11 +171,7 @@ public:
|
|||||||
public:
|
public:
|
||||||
|
|
||||||
/** Default constructor. */
|
/** Default constructor. */
|
||||||
ConjugateGradient()
|
ConjugateGradient() : Base() {}
|
||||||
: mp_matrix(0)
|
|
||||||
{
|
|
||||||
init();
|
|
||||||
}
|
|
||||||
|
|
||||||
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
||||||
*
|
*
|
||||||
@ -171,90 +183,10 @@ public:
|
|||||||
* this class becomes invalid. Call compute() to update it with the new
|
* this class becomes invalid. Call compute() to update it with the new
|
||||||
* matrix A, or modify a copy of A.
|
* matrix A, or modify a copy of A.
|
||||||
*/
|
*/
|
||||||
ConjugateGradient(const MatrixType& A)
|
ConjugateGradient(const MatrixType& A) : Base(A) {}
|
||||||
{
|
|
||||||
init();
|
|
||||||
compute(A);
|
|
||||||
}
|
|
||||||
|
|
||||||
~ConjugateGradient() {}
|
~ConjugateGradient() {}
|
||||||
|
|
||||||
/** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems.
|
|
||||||
*
|
|
||||||
* Currently, this function mostly initialized/compute the preconditioner. In the future
|
|
||||||
* we might, for instance, implement column reodering for faster matrix vector products.
|
|
||||||
*
|
|
||||||
* \warning this class stores a reference to the matrix A as well as some
|
|
||||||
* precomputed values that depend on it. Therefore, if \a A is changed
|
|
||||||
* this class becomes invalid. Call compute() to update it with the new
|
|
||||||
* matrix A, or modify a copy of A.
|
|
||||||
*/
|
|
||||||
ConjugateGradient& compute(const MatrixType& A)
|
|
||||||
{
|
|
||||||
mp_matrix = &A;
|
|
||||||
m_preconditioner.compute(A);
|
|
||||||
m_isInitialized = true;
|
|
||||||
return *this;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** \internal */
|
|
||||||
Index rows() const { return mp_matrix->rows(); }
|
|
||||||
/** \internal */
|
|
||||||
Index cols() const { return mp_matrix->cols(); }
|
|
||||||
|
|
||||||
/** \returns the tolerance threshold used by the stopping criteria */
|
|
||||||
RealScalar tolerance() const { return m_tolerance; }
|
|
||||||
|
|
||||||
/** Sets the tolerance threshold used by the stopping criteria */
|
|
||||||
ConjugateGradient& setTolerance(RealScalar tolerance)
|
|
||||||
{
|
|
||||||
m_tolerance = tolerance;
|
|
||||||
return *this;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** \returns a read-write reference to the preconditioner for custom configuration. */
|
|
||||||
Preconditioner& preconditioner() { return m_preconditioner; }
|
|
||||||
|
|
||||||
/** \returns a read-only reference to the preconditioner. */
|
|
||||||
const Preconditioner& preconditioner() const { return m_preconditioner; }
|
|
||||||
|
|
||||||
/** \returns the max number of iterations */
|
|
||||||
int maxIterations() const { return m_maxIterations; }
|
|
||||||
|
|
||||||
/** Sets the max number of iterations */
|
|
||||||
ConjugateGradient& setMaxIterations(int maxIters)
|
|
||||||
{
|
|
||||||
m_maxIterations = maxIters;
|
|
||||||
return *this;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** \returns the number of iterations performed during the last solve */
|
|
||||||
int iterations() const
|
|
||||||
{
|
|
||||||
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
|
||||||
return m_iterations;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** \returns the tolerance error reached during the last solve */
|
|
||||||
RealScalar error() const
|
|
||||||
{
|
|
||||||
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
|
||||||
return m_error;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
|
||||||
*
|
|
||||||
* \sa compute()
|
|
||||||
*/
|
|
||||||
template<typename Rhs> inline const internal::solve_retval<ConjugateGradient, Rhs>
|
|
||||||
solve(const MatrixBase<Rhs>& b) const
|
|
||||||
{
|
|
||||||
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
|
||||||
eigen_assert(rows()==b.rows()
|
|
||||||
&& "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
|
|
||||||
return internal::solve_retval<ConjugateGradient, Rhs>(*this, b.derived());
|
|
||||||
}
|
|
||||||
|
|
||||||
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
|
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
|
||||||
* \a x0 as an initial solution.
|
* \a x0 as an initial solution.
|
||||||
*
|
*
|
||||||
@ -265,50 +197,28 @@ public:
|
|||||||
solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
|
solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
|
||||||
{
|
{
|
||||||
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
||||||
eigen_assert(rows()==b.rows()
|
eigen_assert(Base::rows()==b.rows()
|
||||||
&& "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
|
&& "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
|
||||||
return internal::conjugate_gradient_solve_retval_with_guess
|
return internal::conjugate_gradient_solve_retval_with_guess
|
||||||
<ConjugateGradient, Rhs, Guess>(*this, b.derived(), x0);
|
<ConjugateGradient, Rhs, Guess>(*this, b.derived(), x0);
|
||||||
}
|
}
|
||||||
|
|
||||||
/** \returns Success if the iterations converged, and NoConvergence otherwise. */
|
|
||||||
ComputationInfo info() const
|
|
||||||
{
|
|
||||||
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
|
||||||
return m_info;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** \internal */
|
/** \internal */
|
||||||
template<typename Rhs,typename Dest>
|
template<typename Rhs,typename Dest>
|
||||||
void _solve(const Rhs& b, Dest& x) const
|
void _solve(const Rhs& b, Dest& x) const
|
||||||
{
|
{
|
||||||
m_iterations = m_maxIterations;
|
m_iterations = Base::m_maxIterations;
|
||||||
m_error = m_tolerance;
|
m_error = Base::m_tolerance;
|
||||||
|
|
||||||
internal::conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(), b, x,
|
internal::conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(), b, x,
|
||||||
m_preconditioner, m_iterations, m_error);
|
Base::m_preconditioner, m_iterations, m_error);
|
||||||
|
|
||||||
m_isInitialized = true;
|
m_isInitialized = true;
|
||||||
m_info = m_error <= m_tolerance ? Success : NoConvergence;
|
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
|
||||||
}
|
}
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
void init()
|
|
||||||
{
|
|
||||||
m_isInitialized = false;
|
|
||||||
m_maxIterations = 1000;
|
|
||||||
m_tolerance = NumTraits<Scalar>::epsilon();
|
|
||||||
}
|
|
||||||
const MatrixType* mp_matrix;
|
|
||||||
Preconditioner m_preconditioner;
|
|
||||||
|
|
||||||
int m_maxIterations;
|
|
||||||
RealScalar m_tolerance;
|
|
||||||
|
|
||||||
mutable RealScalar m_error;
|
|
||||||
mutable int m_iterations;
|
|
||||||
mutable ComputationInfo m_info;
|
|
||||||
mutable bool m_isInitialized;
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
176
unsupported/Eigen/src/IterativeSolvers/IterativeSolverBase.h
Normal file
176
unsupported/Eigen/src/IterativeSolvers/IterativeSolverBase.h
Normal file
@ -0,0 +1,176 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||||
|
//
|
||||||
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
// License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Alternatively, you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU General Public License as
|
||||||
|
// published by the Free Software Foundation; either version 2 of
|
||||||
|
// the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||||
|
// GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// You should have received a copy of the GNU Lesser General Public
|
||||||
|
// License and a copy of the GNU General Public License along with
|
||||||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
#ifndef EIGEN_ITERATIVE_SOLVER_BASE_H
|
||||||
|
#define EIGEN_ITERATIVE_SOLVER_BASE_H
|
||||||
|
|
||||||
|
|
||||||
|
/** \brief Base class for linear iterative solvers
|
||||||
|
*
|
||||||
|
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
||||||
|
*/
|
||||||
|
template< typename Derived>
|
||||||
|
class IterativeSolverBase
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
typedef typename internal::traits<Derived>::MatrixType MatrixType;
|
||||||
|
typedef typename internal::traits<Derived>::Preconditioner Preconditioner;
|
||||||
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
typedef typename MatrixType::Index Index;
|
||||||
|
typedef typename MatrixType::RealScalar RealScalar;
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
Derived& derived() { return *static_cast<Derived*>(this); }
|
||||||
|
const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||||
|
|
||||||
|
/** Default constructor. */
|
||||||
|
IterativeSolverBase()
|
||||||
|
: mp_matrix(0)
|
||||||
|
{
|
||||||
|
init();
|
||||||
|
}
|
||||||
|
|
||||||
|
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
||||||
|
*
|
||||||
|
* This constructor is a shortcut for the default constructor followed
|
||||||
|
* by a call to compute().
|
||||||
|
*
|
||||||
|
* \warning this class stores a reference to the matrix A as well as some
|
||||||
|
* precomputed values that depend on it. Therefore, if \a A is changed
|
||||||
|
* this class becomes invalid. Call compute() to update it with the new
|
||||||
|
* matrix A, or modify a copy of A.
|
||||||
|
*/
|
||||||
|
IterativeSolverBase(const MatrixType& A)
|
||||||
|
{
|
||||||
|
init();
|
||||||
|
compute(A);
|
||||||
|
}
|
||||||
|
|
||||||
|
~IterativeSolverBase() {}
|
||||||
|
|
||||||
|
/** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems.
|
||||||
|
*
|
||||||
|
* Currently, this function mostly initialized/compute the preconditioner. In the future
|
||||||
|
* we might, for instance, implement column reodering for faster matrix vector products.
|
||||||
|
*
|
||||||
|
* \warning this class stores a reference to the matrix A as well as some
|
||||||
|
* precomputed values that depend on it. Therefore, if \a A is changed
|
||||||
|
* this class becomes invalid. Call compute() to update it with the new
|
||||||
|
* matrix A, or modify a copy of A.
|
||||||
|
*/
|
||||||
|
Derived& compute(const MatrixType& A)
|
||||||
|
{
|
||||||
|
mp_matrix = &A;
|
||||||
|
m_preconditioner.compute(A);
|
||||||
|
m_isInitialized = true;
|
||||||
|
return derived();
|
||||||
|
}
|
||||||
|
|
||||||
|
/** \internal */
|
||||||
|
Index rows() const { return mp_matrix->rows(); }
|
||||||
|
/** \internal */
|
||||||
|
Index cols() const { return mp_matrix->cols(); }
|
||||||
|
|
||||||
|
/** \returns the tolerance threshold used by the stopping criteria */
|
||||||
|
RealScalar tolerance() const { return m_tolerance; }
|
||||||
|
|
||||||
|
/** Sets the tolerance threshold used by the stopping criteria */
|
||||||
|
Derived& setTolerance(RealScalar tolerance)
|
||||||
|
{
|
||||||
|
m_tolerance = tolerance;
|
||||||
|
return derived();
|
||||||
|
}
|
||||||
|
|
||||||
|
/** \returns a read-write reference to the preconditioner for custom configuration. */
|
||||||
|
Preconditioner& preconditioner() { return m_preconditioner; }
|
||||||
|
|
||||||
|
/** \returns a read-only reference to the preconditioner. */
|
||||||
|
const Preconditioner& preconditioner() const { return m_preconditioner; }
|
||||||
|
|
||||||
|
/** \returns the max number of iterations */
|
||||||
|
int maxIterations() const { return m_maxIterations; }
|
||||||
|
|
||||||
|
/** Sets the max number of iterations */
|
||||||
|
Derived& setMaxIterations(int maxIters)
|
||||||
|
{
|
||||||
|
m_maxIterations = maxIters;
|
||||||
|
return derived();
|
||||||
|
}
|
||||||
|
|
||||||
|
/** \returns the number of iterations performed during the last solve */
|
||||||
|
int iterations() const
|
||||||
|
{
|
||||||
|
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
||||||
|
return m_iterations;
|
||||||
|
}
|
||||||
|
|
||||||
|
/** \returns the tolerance error reached during the last solve */
|
||||||
|
RealScalar error() const
|
||||||
|
{
|
||||||
|
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
||||||
|
return m_error;
|
||||||
|
}
|
||||||
|
|
||||||
|
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||||||
|
*
|
||||||
|
* \sa compute()
|
||||||
|
*/
|
||||||
|
template<typename Rhs> inline const internal::solve_retval<Derived, Rhs>
|
||||||
|
solve(const MatrixBase<Rhs>& b) const
|
||||||
|
{
|
||||||
|
eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
|
||||||
|
eigen_assert(rows()==b.rows()
|
||||||
|
&& "IterativeSolverBase::solve(): invalid number of rows of the right hand side matrix b");
|
||||||
|
return internal::solve_retval<Derived, Rhs>(derived(), b.derived());
|
||||||
|
}
|
||||||
|
|
||||||
|
/** \returns Success if the iterations converged, and NoConvergence otherwise. */
|
||||||
|
ComputationInfo info() const
|
||||||
|
{
|
||||||
|
eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
|
||||||
|
return m_info;
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void init()
|
||||||
|
{
|
||||||
|
m_isInitialized = false;
|
||||||
|
m_maxIterations = 1000;
|
||||||
|
m_tolerance = NumTraits<Scalar>::epsilon();
|
||||||
|
}
|
||||||
|
const MatrixType* mp_matrix;
|
||||||
|
Preconditioner m_preconditioner;
|
||||||
|
|
||||||
|
int m_maxIterations;
|
||||||
|
RealScalar m_tolerance;
|
||||||
|
|
||||||
|
mutable RealScalar m_error;
|
||||||
|
mutable int m_iterations;
|
||||||
|
mutable ComputationInfo m_info;
|
||||||
|
mutable bool m_isInitialized;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
#endif // EIGEN_ITERATIVE_SOLVER_BASE_H
|
@ -38,7 +38,7 @@ template<typename Scalar,typename Index> void cg(int size)
|
|||||||
DenseVector b = DenseVector::Random(size);
|
DenseVector b = DenseVector::Random(size);
|
||||||
DenseVector ref_x(size), x(size);
|
DenseVector ref_x(size), x(size);
|
||||||
|
|
||||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, 0, 0);
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, 0, 0);
|
||||||
// for(int i=0; i<rows; ++i)
|
// for(int i=0; i<rows; ++i)
|
||||||
// m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i)));
|
// m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i)));
|
||||||
|
|
||||||
@ -79,6 +79,14 @@ template<typename Scalar,typename Index> void cg(int size)
|
|||||||
|
|
||||||
x = ConjugateGradient<SparseMatrixType, Upper, IdentityPreconditioner>(m3_up).solve(b);
|
x = ConjugateGradient<SparseMatrixType, Upper, IdentityPreconditioner>(m3_up).solve(b);
|
||||||
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "ConjugateGradient: solve, upper only, single dense rhs");
|
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "ConjugateGradient: solve, upper only, single dense rhs");
|
||||||
|
|
||||||
|
ref_x = refMat2.lu().solve(b);
|
||||||
|
|
||||||
|
x = BiCGSTAB<SparseMatrixType, IdentityPreconditioner>(m2).solve(b);
|
||||||
|
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "BiCGSTAB: solve, I, single dense rhs");
|
||||||
|
|
||||||
|
x = BiCGSTAB<SparseMatrixType>(m2).solve(b);
|
||||||
|
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "BiCGSTAB: solve, diag, single dense rhs");
|
||||||
}
|
}
|
||||||
|
|
||||||
void test_cg()
|
void test_cg()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user