add a bi conjugate gradient stabilized solver

This commit is contained in:
Gael Guennebaud 2011-09-17 10:54:14 +02:00
parent f4122e9f94
commit 9053729d68
5 changed files with 489 additions and 118 deletions

View File

@ -43,10 +43,12 @@ namespace Eigen {
#include "../../Eigen/src/misc/Solve.h"
#include "src/IterativeSolvers/IterativeSolverBase.h"
#include "src/IterativeSolvers/IterationController.h"
#include "src/IterativeSolvers/ConstrainedConjGrad.h"
#include "src/IterativeSolvers/BasicPreconditioners.h"
#include "src/IterativeSolvers/ConjugateGradient.h"
#include "src/IterativeSolvers/BiCGSTAB.h"
//@}

View File

@ -0,0 +1,275 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_BICGSTAB_H
#define EIGEN_BICGSTAB_H
namespace internal {
/** \internal Low-level bi conjugate gradient stabilized algorithm
* \param mat The matrix A
* \param rhs The right hand side vector b
* \param x On input and initial solution, on output the computed solution.
* \param precond A preconditioner being able to efficiently solve for an
* approximation of Ax=b (regardless of b)
* \param iters On input the max number of iteration, on output the number of performed iterations.
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
*/
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
void bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
const Preconditioner& precond, int& iters,
typename Dest::RealScalar& tol_error)
{
using std::sqrt;
using std::abs;
typedef typename Dest::RealScalar RealScalar;
typedef typename Dest::Scalar Scalar;
typedef Dest VectorType;
RealScalar tol = tol_error;
int maxIters = iters;
int n = mat.cols();
VectorType r = rhs - mat * x;
VectorType r0 = r;
RealScalar r0_sqnorm = r0.squaredNorm();
Scalar rho = 1;
Scalar alpha = 1;
Scalar w = 1;
VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
VectorType y(n), z(n);
VectorType kt(n), ks(n);
VectorType s(n), t(n);
RealScalar tol2 = tol*tol;
int i = 0;
do
{
Scalar rho_old = rho;
rho = r0.dot(r);
Scalar beta = (rho/rho_old) * (alpha / w);
p = r + beta * (p - w * v);
y = precond.solve(p);
v.noalias() = mat * y;
alpha = rho / r0.dot(v);
s = r - alpha * v;
z = precond.solve(s);
t.noalias() = mat * z;
kt = precond.solve(t);
ks = precond.solve(s);
w = kt.dot(ks) / kt.squaredNorm();
x += alpha * y + w * z;
r = s - w * t;
++i;
} while ( r.squaredNorm()/r0_sqnorm > tol2 && i<maxIters );
tol_error = sqrt(r.squaredNorm()/r0_sqnorm);
//tol_error = sqrt(abs(absNew / absInit));
iters = i;
}
}
template< typename _MatrixType,
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
class BiCGSTAB;
namespace internal {
template<typename CG, typename Rhs, typename Guess>
class bicgstab_solve_retval_with_guess;
template< typename _MatrixType, typename _Preconditioner>
struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
{
typedef _MatrixType MatrixType;
typedef _Preconditioner Preconditioner;
};
}
/** \brief A bi conjugate gradient stabilized solver for sparse square problems
*
* This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient
* stabilized algorithm. The vectors x and b can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
*
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
* and setTolerance() methods. The default are 1000 max iterations and NumTraits<Scalar>::epsilon()
* for the tolerance.
*
* This class can be used as the direct solver classes. Here is a typical usage example:
* \code
* int n = 10000;
* VectorXd x(n), b(n);
* SparseMatrix<double> A(n,n);
* // fill A and b
* BiCGSTAB<SparseMatrix<double> > solver;
* solver(A);
* x = solver.solve(b);
* std::cout << "#iterations: " << solver.iterations() << std::endl;
* std::cout << "estimated error: " << solver.error() << std::endl;
* // update b, and solve again
* x = solver.solve(b);
* \endcode
*
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method. Here is a step by
* step execution example starting with a random guess and printing the evolution
* of the estimated error:
* * \code
* x = VectorXd::Random(n);
* solver.setMaxIterations(1);
* int i = 0;
* do {
* x = solver.solveWithGuess(b,x);
* std::cout << i << " : " << solver.error() << std::endl;
* ++i;
* } while (solver.info()!=Success && i<100);
* \endcode
* Note that such a step by step excution is slightly slower.
*
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename _MatrixType, typename _Preconditioner>
class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
{
typedef IterativeSolverBase<BiCGSTAB> Base;
using Base::mp_matrix;
using Base::m_error;
using Base::m_iterations;
using Base::m_info;
using Base::m_isInitialized;
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef typename MatrixType::RealScalar RealScalar;
typedef _Preconditioner Preconditioner;
public:
/** Default constructor. */
BiCGSTAB() : Base() {}
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
*
* This constructor is a shortcut for the default constructor followed
* by a call to compute().
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
BiCGSTAB(const MatrixType& A) : Base(A) {}
~BiCGSTAB() {}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
* \a x0 as an initial solution.
*
* \sa compute()
*/
template<typename Rhs,typename Guess>
inline const internal::bicgstab_solve_retval_with_guess<BiCGSTAB, Rhs, Guess>
solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
{
eigen_assert(m_isInitialized && "BiCGSTAB is not initialized.");
eigen_assert(Base::rows()==b.rows()
&& "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b");
return internal::bicgstab_solve_retval_with_guess
<BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0);
}
/** \internal */
template<typename Rhs,typename Dest>
void _solve(const Rhs& b, Dest& x) const
{
m_iterations = Base::m_maxIterations;
m_error = Base::m_tolerance;
internal::bicgstab(*mp_matrix, b, x, Base::m_preconditioner, m_iterations, m_error);
m_isInitialized = true;
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
}
protected:
};
namespace internal {
template<typename _MatrixType, typename _Preconditioner, typename Rhs>
struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
: solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
{
typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dst.setZero();
dec()._solve(rhs(),dst);
}
};
template<typename CG, typename Rhs, typename Guess>
class bicgstab_solve_retval_with_guess
: public solve_retval_base<CG, Rhs>
{
typedef Eigen::internal::solve_retval_base<CG,Rhs> Base;
using Base::dec;
using Base::rhs;
public:
bicgstab_solve_retval_with_guess(const CG& cg, const Rhs& rhs, const Guess& guess)
: Base(cg, rhs), m_guess(guess)
{}
template<typename Dest> void evalTo(Dest& dst) const
{
dst = m_guess;
dec()._solve(rhs(), dst);
}
protected:
const Guess& m_guess;
};
}
#endif // EIGEN_BICGSTAB_H

View File

@ -83,11 +83,22 @@ void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
}
template< typename _MatrixType, int _UpLo=Lower,
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
class ConjugateGradient;
namespace internal {
template<typename CG, typename Rhs, typename Guess>
class conjugate_gradient_solve_retval_with_guess;
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
{
typedef _MatrixType MatrixType;
typedef _Preconditioner Preconditioner;
};
}
/** \brief A conjugate gradient solver for sparse self-adjoint problems
@ -137,10 +148,15 @@ class conjugate_gradient_solve_retval_with_guess;
*
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename _MatrixType, int _UpLo=Lower,
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
class ConjugateGradient
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
{
typedef IterativeSolverBase<ConjugateGradient> Base;
using Base::mp_matrix;
using Base::m_error;
using Base::m_iterations;
using Base::m_info;
using Base::m_isInitialized;
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
@ -155,11 +171,7 @@ public:
public:
/** Default constructor. */
ConjugateGradient()
: mp_matrix(0)
{
init();
}
ConjugateGradient() : Base() {}
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
*
@ -171,90 +183,10 @@ public:
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
ConjugateGradient(const MatrixType& A)
{
init();
compute(A);
}
ConjugateGradient(const MatrixType& A) : Base(A) {}
~ConjugateGradient() {}
/** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems.
*
* Currently, this function mostly initialized/compute the preconditioner. In the future
* we might, for instance, implement column reodering for faster matrix vector products.
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
ConjugateGradient& compute(const MatrixType& A)
{
mp_matrix = &A;
m_preconditioner.compute(A);
m_isInitialized = true;
return *this;
}
/** \internal */
Index rows() const { return mp_matrix->rows(); }
/** \internal */
Index cols() const { return mp_matrix->cols(); }
/** \returns the tolerance threshold used by the stopping criteria */
RealScalar tolerance() const { return m_tolerance; }
/** Sets the tolerance threshold used by the stopping criteria */
ConjugateGradient& setTolerance(RealScalar tolerance)
{
m_tolerance = tolerance;
return *this;
}
/** \returns a read-write reference to the preconditioner for custom configuration. */
Preconditioner& preconditioner() { return m_preconditioner; }
/** \returns a read-only reference to the preconditioner. */
const Preconditioner& preconditioner() const { return m_preconditioner; }
/** \returns the max number of iterations */
int maxIterations() const { return m_maxIterations; }
/** Sets the max number of iterations */
ConjugateGradient& setMaxIterations(int maxIters)
{
m_maxIterations = maxIters;
return *this;
}
/** \returns the number of iterations performed during the last solve */
int iterations() const
{
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
return m_iterations;
}
/** \returns the tolerance error reached during the last solve */
RealScalar error() const
{
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
return m_error;
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs> inline const internal::solve_retval<ConjugateGradient, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
eigen_assert(rows()==b.rows()
&& "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<ConjugateGradient, Rhs>(*this, b.derived());
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
* \a x0 as an initial solution.
*
@ -265,50 +197,28 @@ public:
solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
{
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
eigen_assert(rows()==b.rows()
eigen_assert(Base::rows()==b.rows()
&& "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
return internal::conjugate_gradient_solve_retval_with_guess
<ConjugateGradient, Rhs, Guess>(*this, b.derived(), x0);
}
/** \returns Success if the iterations converged, and NoConvergence otherwise. */
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
return m_info;
}
/** \internal */
template<typename Rhs,typename Dest>
void _solve(const Rhs& b, Dest& x) const
{
m_iterations = m_maxIterations;
m_error = m_tolerance;
m_iterations = Base::m_maxIterations;
m_error = Base::m_tolerance;
internal::conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(), b, x,
m_preconditioner, m_iterations, m_error);
Base::m_preconditioner, m_iterations, m_error);
m_isInitialized = true;
m_info = m_error <= m_tolerance ? Success : NoConvergence;
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
}
protected:
void init()
{
m_isInitialized = false;
m_maxIterations = 1000;
m_tolerance = NumTraits<Scalar>::epsilon();
}
const MatrixType* mp_matrix;
Preconditioner m_preconditioner;
int m_maxIterations;
RealScalar m_tolerance;
mutable RealScalar m_error;
mutable int m_iterations;
mutable ComputationInfo m_info;
mutable bool m_isInitialized;
};

View File

@ -0,0 +1,176 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ITERATIVE_SOLVER_BASE_H
#define EIGEN_ITERATIVE_SOLVER_BASE_H
/** \brief Base class for linear iterative solvers
*
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename Derived>
class IterativeSolverBase
{
public:
typedef typename internal::traits<Derived>::MatrixType MatrixType;
typedef typename internal::traits<Derived>::Preconditioner Preconditioner;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef typename MatrixType::RealScalar RealScalar;
public:
Derived& derived() { return *static_cast<Derived*>(this); }
const Derived& derived() const { return *static_cast<const Derived*>(this); }
/** Default constructor. */
IterativeSolverBase()
: mp_matrix(0)
{
init();
}
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
*
* This constructor is a shortcut for the default constructor followed
* by a call to compute().
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
IterativeSolverBase(const MatrixType& A)
{
init();
compute(A);
}
~IterativeSolverBase() {}
/** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems.
*
* Currently, this function mostly initialized/compute the preconditioner. In the future
* we might, for instance, implement column reodering for faster matrix vector products.
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
Derived& compute(const MatrixType& A)
{
mp_matrix = &A;
m_preconditioner.compute(A);
m_isInitialized = true;
return derived();
}
/** \internal */
Index rows() const { return mp_matrix->rows(); }
/** \internal */
Index cols() const { return mp_matrix->cols(); }
/** \returns the tolerance threshold used by the stopping criteria */
RealScalar tolerance() const { return m_tolerance; }
/** Sets the tolerance threshold used by the stopping criteria */
Derived& setTolerance(RealScalar tolerance)
{
m_tolerance = tolerance;
return derived();
}
/** \returns a read-write reference to the preconditioner for custom configuration. */
Preconditioner& preconditioner() { return m_preconditioner; }
/** \returns a read-only reference to the preconditioner. */
const Preconditioner& preconditioner() const { return m_preconditioner; }
/** \returns the max number of iterations */
int maxIterations() const { return m_maxIterations; }
/** Sets the max number of iterations */
Derived& setMaxIterations(int maxIters)
{
m_maxIterations = maxIters;
return derived();
}
/** \returns the number of iterations performed during the last solve */
int iterations() const
{
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
return m_iterations;
}
/** \returns the tolerance error reached during the last solve */
RealScalar error() const
{
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
return m_error;
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs> inline const internal::solve_retval<Derived, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
eigen_assert(rows()==b.rows()
&& "IterativeSolverBase::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<Derived, Rhs>(derived(), b.derived());
}
/** \returns Success if the iterations converged, and NoConvergence otherwise. */
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
return m_info;
}
protected:
void init()
{
m_isInitialized = false;
m_maxIterations = 1000;
m_tolerance = NumTraits<Scalar>::epsilon();
}
const MatrixType* mp_matrix;
Preconditioner m_preconditioner;
int m_maxIterations;
RealScalar m_tolerance;
mutable RealScalar m_error;
mutable int m_iterations;
mutable ComputationInfo m_info;
mutable bool m_isInitialized;
};
#endif // EIGEN_ITERATIVE_SOLVER_BASE_H

View File

@ -38,7 +38,7 @@ template<typename Scalar,typename Index> void cg(int size)
DenseVector b = DenseVector::Random(size);
DenseVector ref_x(size), x(size);
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, 0, 0);
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, 0, 0);
// for(int i=0; i<rows; ++i)
// m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i)));
@ -79,6 +79,14 @@ template<typename Scalar,typename Index> void cg(int size)
x = ConjugateGradient<SparseMatrixType, Upper, IdentityPreconditioner>(m3_up).solve(b);
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "ConjugateGradient: solve, upper only, single dense rhs");
ref_x = refMat2.lu().solve(b);
x = BiCGSTAB<SparseMatrixType, IdentityPreconditioner>(m2).solve(b);
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "BiCGSTAB: solve, I, single dense rhs");
x = BiCGSTAB<SparseMatrixType>(m2).solve(b);
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "BiCGSTAB: solve, diag, single dense rhs");
}
void test_cg()