Added the ability to generate a tensor from a custom user defined 'generator'. This simplifies the creation of constant tensors initialized using specific regular patterns.

Created a gaussian window generator as a first use case.
This commit is contained in:
Benoit Steiner 2015-04-22 11:14:58 -07:00
parent 8838ed39f4
commit 91359e1d0a
7 changed files with 307 additions and 0 deletions

View File

@ -79,6 +79,7 @@
#include "unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h"

View File

@ -57,6 +57,13 @@ class TensorBase<Derived, ReadOnlyAccessors>
return nullaryExpr(gen);
}
// Tensor generation
template <typename Generator> EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorGeneratorOp<Generator, const Derived>
generate(const Generator& generator) const {
return TensorGeneratorOp<Generator, const Derived>(derived(), generator);
}
// Generic unary operation support.
template <typename CustomUnaryOp> EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<CustomUnaryOp, const Derived>

View File

@ -38,6 +38,7 @@ template<typename ReverseDimensions, typename XprType> class TensorReverseOp;
template<typename PaddingDimensions, typename XprType> class TensorPaddingOp;
template<typename Shuffle, typename XprType> class TensorShufflingOp;
template<typename Strides, typename XprType> class TensorStridingOp;
template<typename Generator, typename XprType> class TensorGeneratorOp;
template<typename LeftXprType, typename RightXprType> class TensorAssignOp;
template<typename XprType> class TensorEvalToOp;

View File

@ -496,6 +496,35 @@ template <typename T> class NormalRandomGenerator {
#endif
template <typename T, typename Index, size_t NumDims>
class GaussianGenerator {
public:
static const bool PacketAccess = false;
EIGEN_DEVICE_FUNC GaussianGenerator(const array<T, NumDims>& means,
const array<T, NumDims>& std_devs)
: m_means(means)
{
for (int i = 0; i < NumDims; ++i) {
m_two_sigmas[i] = std_devs[i] * std_devs[i] * 2;
}
}
T operator()(const array<Index, NumDims>& coordinates) const {
T tmp = T(0);
for (int i = 0; i < NumDims; ++i) {
T offset = coordinates[i] - m_means[i];
tmp += offset * offset / m_two_sigmas[i];
}
return std::exp(-tmp);
}
private:
array<T, NumDims> m_means;
array<T, NumDims> m_two_sigmas;
};
} // end namespace internal
} // end namespace Eigen

View File

@ -0,0 +1,181 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
#define EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
namespace Eigen {
/** \class TensorGenerator
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor generator class.
*
*
*/
namespace internal {
template<typename Generator, typename XprType>
struct traits<TensorGeneratorOp<Generator, XprType> > : public traits<XprType>
{
typedef typename XprType::Scalar Scalar;
typedef traits<XprType> XprTraits;
typedef typename packet_traits<Scalar>::type Packet;
typedef typename XprTraits::StorageKind StorageKind;
typedef typename XprTraits::Index Index;
typedef typename XprType::Nested Nested;
typedef typename remove_reference<Nested>::type _Nested;
static const int NumDimensions = XprTraits::NumDimensions;
static const int Layout = XprTraits::Layout;
};
template<typename Generator, typename XprType>
struct eval<TensorGeneratorOp<Generator, XprType>, Eigen::Dense>
{
typedef const TensorGeneratorOp<Generator, XprType>& type;
};
template<typename Generator, typename XprType>
struct nested<TensorGeneratorOp<Generator, XprType>, 1, typename eval<TensorGeneratorOp<Generator, XprType> >::type>
{
typedef TensorGeneratorOp<Generator, XprType> type;
};
} // end namespace internal
template<typename Generator, typename XprType>
class TensorGeneratorOp : public TensorBase<TensorGeneratorOp<Generator, XprType>, ReadOnlyAccessors>
{
public:
typedef typename Eigen::internal::traits<TensorGeneratorOp>::Scalar Scalar;
typedef typename Eigen::internal::traits<TensorGeneratorOp>::Packet Packet;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
typedef typename Eigen::internal::nested<TensorGeneratorOp>::type Nested;
typedef typename Eigen::internal::traits<TensorGeneratorOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorGeneratorOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorGeneratorOp(const XprType& expr, const Generator& generator)
: m_xpr(expr), m_generator(generator) {}
EIGEN_DEVICE_FUNC
const Generator& generator() const { return m_generator; }
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename XprType::Nested>::type&
expression() const { return m_xpr; }
protected:
typename XprType::Nested m_xpr;
const Generator m_generator;
};
// Eval as rvalue
template<typename Generator, typename ArgType, typename Device>
struct TensorEvaluator<const TensorGeneratorOp<Generator, ArgType>, Device>
{
typedef TensorGeneratorOp<Generator, ArgType> XprType;
typedef typename XprType::Index Index;
typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
static const int NumDims = internal::array_size<Dimensions>::value;
typedef typename XprType::Scalar Scalar;
enum {
IsAligned = false,
PacketAccess = (internal::packet_traits<Scalar>::size > 1),
BlockAccess = false,
Layout = TensorEvaluator<ArgType, Device>::Layout,
CoordAccess = false, // to be implemented
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_generator(op.generator())
{
TensorEvaluator<ArgType, Device> impl(op.expression(), device);
m_dimensions = impl.dimensions();
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_strides[0] = 1;
for (int i = 1; i < NumDims; ++i) {
m_strides[i] = m_strides[i - 1] * m_dimensions[i - 1];
}
} else {
m_strides[NumDims - 1] = 1;
for (int i = NumDims - 2; i >= 0; --i) {
m_strides[i] = m_strides[i + 1] * m_dimensions[i + 1];
}
}
}
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
array<Index, NumDims> coords;
extract_coordinates(index, coords);
return m_generator(coords);
}
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
eigen_assert(index+packetSize-1 < dimensions().TotalSize());
EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type values[packetSize];
for (int i = 0; i < packetSize; ++i) {
values[i] = coeff(index+i);
}
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
return rslt;
}
EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
protected:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void extract_coordinates(Index index, array<Index, NumDims>& coords) const {
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = NumDims - 1; i > 0; --i) {
const Index idx = index / m_strides[i];
index -= idx * m_strides[i];
coords[i] = idx;
}
coords[0] = index;
} else {
for (int i = 0; i < NumDims - 1; ++i) {
const Index idx = index / m_strides[i];
index -= idx * m_strides[i];
coords[i] = idx;
}
coords[NumDims-1] = index;
}
}
Dimensions m_dimensions;
array<Index, NumDims> m_strides;
Generator m_generator;
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H

View File

@ -135,6 +135,7 @@ if(EIGEN_TEST_CXX11)
ei_add_test(cxx11_tensor_reverse "-std=c++0x")
ei_add_test(cxx11_tensor_layout_swap "-std=c++0x")
ei_add_test(cxx11_tensor_io "-std=c++0x")
ei_add_test(cxx11_tensor_generator "-std=c++0x")
# These tests needs nvcc
# ei_add_test(cxx11_tensor_device "-std=c++0x")

View File

@ -0,0 +1,87 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/CXX11/Tensor>
struct Generator1D {
Generator1D() { }
float operator()(const array<Eigen::DenseIndex, 1>& coordinates) const {
return coordinates[0];
}
};
template <int DataLayout>
static void test_1D()
{
Tensor<float, 1> vec(6);
Tensor<float, 1> result = vec.generate(Generator1D());
for (int i = 0; i < 6; ++i) {
VERIFY_IS_EQUAL(result(i), i);
}
}
struct Generator2D {
Generator2D() { }
float operator()(const array<Eigen::DenseIndex, 2>& coordinates) const {
return 3 * coordinates[0] + 11 * coordinates[1];
}
};
template <int DataLayout>
static void test_2D()
{
Tensor<float, 2> matrix(5, 7);
Tensor<float, 2> result = matrix.generate(Generator2D());
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 5; ++j) {
VERIFY_IS_EQUAL(result(i, j), 3*i + 11*j);
}
}
}
template <int DataLayout>
static void test_gaussian()
{
int rows = 32;
int cols = 48;
array<float, 2> means = { rows / 2.0f, cols / 2.0f };
array<float, 2> std_devs = { 3.14f, 2.7f };
internal::GaussianGenerator<float, Eigen::DenseIndex, 2> gaussian_gen(means, std_devs);
Tensor<float, 2> matrix(rows, cols);
Tensor<float, 2> result = matrix.generate(gaussian_gen);
for (int i = 0; i < rows; ++i) {
for (int j = 0; j < cols; ++j) {
float g_rows = powf(rows/2.0f - i, 2) / (3.14f * 3.14f) * 0.5f;
float g_cols = powf(cols/2.0f - j, 2) / (2.7f * 2.7f) * 0.5f;
float gaussian = expf(-g_rows - g_cols);
VERIFY_IS_EQUAL(result(i, j), gaussian);
}
}
}
void test_cxx11_tensor_generator()
{
CALL_SUBTEST(test_1D<ColMajor>());
CALL_SUBTEST(test_1D<RowMajor>());
CALL_SUBTEST(test_2D<ColMajor>());
CALL_SUBTEST(test_2D<RowMajor>());
CALL_SUBTEST(test_gaussian<ColMajor>());
CALL_SUBTEST(test_gaussian<RowMajor>());
}