mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-11 19:29:02 +08:00
Added the ability to generate a tensor from a custom user defined 'generator'. This simplifies the creation of constant tensors initialized using specific regular patterns.
Created a gaussian window generator as a first use case.
This commit is contained in:
parent
8838ed39f4
commit
91359e1d0a
@ -79,6 +79,7 @@
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h"
|
||||
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h"
|
||||
|
@ -57,6 +57,13 @@ class TensorBase<Derived, ReadOnlyAccessors>
|
||||
return nullaryExpr(gen);
|
||||
}
|
||||
|
||||
// Tensor generation
|
||||
template <typename Generator> EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE const TensorGeneratorOp<Generator, const Derived>
|
||||
generate(const Generator& generator) const {
|
||||
return TensorGeneratorOp<Generator, const Derived>(derived(), generator);
|
||||
}
|
||||
|
||||
// Generic unary operation support.
|
||||
template <typename CustomUnaryOp> EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<CustomUnaryOp, const Derived>
|
||||
|
@ -38,6 +38,7 @@ template<typename ReverseDimensions, typename XprType> class TensorReverseOp;
|
||||
template<typename PaddingDimensions, typename XprType> class TensorPaddingOp;
|
||||
template<typename Shuffle, typename XprType> class TensorShufflingOp;
|
||||
template<typename Strides, typename XprType> class TensorStridingOp;
|
||||
template<typename Generator, typename XprType> class TensorGeneratorOp;
|
||||
template<typename LeftXprType, typename RightXprType> class TensorAssignOp;
|
||||
|
||||
template<typename XprType> class TensorEvalToOp;
|
||||
|
@ -496,6 +496,35 @@ template <typename T> class NormalRandomGenerator {
|
||||
#endif
|
||||
|
||||
|
||||
template <typename T, typename Index, size_t NumDims>
|
||||
class GaussianGenerator {
|
||||
public:
|
||||
static const bool PacketAccess = false;
|
||||
|
||||
EIGEN_DEVICE_FUNC GaussianGenerator(const array<T, NumDims>& means,
|
||||
const array<T, NumDims>& std_devs)
|
||||
: m_means(means)
|
||||
{
|
||||
for (int i = 0; i < NumDims; ++i) {
|
||||
m_two_sigmas[i] = std_devs[i] * std_devs[i] * 2;
|
||||
}
|
||||
}
|
||||
|
||||
T operator()(const array<Index, NumDims>& coordinates) const {
|
||||
T tmp = T(0);
|
||||
for (int i = 0; i < NumDims; ++i) {
|
||||
T offset = coordinates[i] - m_means[i];
|
||||
tmp += offset * offset / m_two_sigmas[i];
|
||||
}
|
||||
return std::exp(-tmp);
|
||||
}
|
||||
|
||||
private:
|
||||
array<T, NumDims> m_means;
|
||||
array<T, NumDims> m_two_sigmas;
|
||||
};
|
||||
|
||||
|
||||
} // end namespace internal
|
||||
} // end namespace Eigen
|
||||
|
||||
|
181
unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h
Normal file
181
unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h
Normal file
@ -0,0 +1,181 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
|
||||
#define EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorGenerator
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor generator class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template<typename Generator, typename XprType>
|
||||
struct traits<TensorGeneratorOp<Generator, XprType> > : public traits<XprType>
|
||||
{
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef traits<XprType> XprTraits;
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
typedef typename XprTraits::StorageKind StorageKind;
|
||||
typedef typename XprTraits::Index Index;
|
||||
typedef typename XprType::Nested Nested;
|
||||
typedef typename remove_reference<Nested>::type _Nested;
|
||||
static const int NumDimensions = XprTraits::NumDimensions;
|
||||
static const int Layout = XprTraits::Layout;
|
||||
};
|
||||
|
||||
template<typename Generator, typename XprType>
|
||||
struct eval<TensorGeneratorOp<Generator, XprType>, Eigen::Dense>
|
||||
{
|
||||
typedef const TensorGeneratorOp<Generator, XprType>& type;
|
||||
};
|
||||
|
||||
template<typename Generator, typename XprType>
|
||||
struct nested<TensorGeneratorOp<Generator, XprType>, 1, typename eval<TensorGeneratorOp<Generator, XprType> >::type>
|
||||
{
|
||||
typedef TensorGeneratorOp<Generator, XprType> type;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
|
||||
|
||||
template<typename Generator, typename XprType>
|
||||
class TensorGeneratorOp : public TensorBase<TensorGeneratorOp<Generator, XprType>, ReadOnlyAccessors>
|
||||
{
|
||||
public:
|
||||
typedef typename Eigen::internal::traits<TensorGeneratorOp>::Scalar Scalar;
|
||||
typedef typename Eigen::internal::traits<TensorGeneratorOp>::Packet Packet;
|
||||
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
typedef typename XprType::PacketReturnType PacketReturnType;
|
||||
typedef typename Eigen::internal::nested<TensorGeneratorOp>::type Nested;
|
||||
typedef typename Eigen::internal::traits<TensorGeneratorOp>::StorageKind StorageKind;
|
||||
typedef typename Eigen::internal::traits<TensorGeneratorOp>::Index Index;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorGeneratorOp(const XprType& expr, const Generator& generator)
|
||||
: m_xpr(expr), m_generator(generator) {}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const Generator& generator() const { return m_generator; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const typename internal::remove_all<typename XprType::Nested>::type&
|
||||
expression() const { return m_xpr; }
|
||||
|
||||
protected:
|
||||
typename XprType::Nested m_xpr;
|
||||
const Generator m_generator;
|
||||
};
|
||||
|
||||
|
||||
// Eval as rvalue
|
||||
template<typename Generator, typename ArgType, typename Device>
|
||||
struct TensorEvaluator<const TensorGeneratorOp<Generator, ArgType>, Device>
|
||||
{
|
||||
typedef TensorGeneratorOp<Generator, ArgType> XprType;
|
||||
typedef typename XprType::Index Index;
|
||||
typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
|
||||
static const int NumDims = internal::array_size<Dimensions>::value;
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
|
||||
enum {
|
||||
IsAligned = false,
|
||||
PacketAccess = (internal::packet_traits<Scalar>::size > 1),
|
||||
BlockAccess = false,
|
||||
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||
CoordAccess = false, // to be implemented
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||
: m_generator(op.generator())
|
||||
{
|
||||
TensorEvaluator<ArgType, Device> impl(op.expression(), device);
|
||||
m_dimensions = impl.dimensions();
|
||||
|
||||
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
||||
m_strides[0] = 1;
|
||||
for (int i = 1; i < NumDims; ++i) {
|
||||
m_strides[i] = m_strides[i - 1] * m_dimensions[i - 1];
|
||||
}
|
||||
} else {
|
||||
m_strides[NumDims - 1] = 1;
|
||||
for (int i = NumDims - 2; i >= 0; --i) {
|
||||
m_strides[i] = m_strides[i + 1] * m_dimensions[i + 1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
typedef typename XprType::PacketReturnType PacketReturnType;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
|
||||
return true;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
||||
{
|
||||
array<Index, NumDims> coords;
|
||||
extract_coordinates(index, coords);
|
||||
return m_generator(coords);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
||||
{
|
||||
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
||||
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
eigen_assert(index+packetSize-1 < dimensions().TotalSize());
|
||||
|
||||
EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type values[packetSize];
|
||||
for (int i = 0; i < packetSize; ++i) {
|
||||
values[i] = coeff(index+i);
|
||||
}
|
||||
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
|
||||
return rslt;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
|
||||
|
||||
protected:
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
void extract_coordinates(Index index, array<Index, NumDims>& coords) const {
|
||||
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
||||
for (int i = NumDims - 1; i > 0; --i) {
|
||||
const Index idx = index / m_strides[i];
|
||||
index -= idx * m_strides[i];
|
||||
coords[i] = idx;
|
||||
}
|
||||
coords[0] = index;
|
||||
} else {
|
||||
for (int i = 0; i < NumDims - 1; ++i) {
|
||||
const Index idx = index / m_strides[i];
|
||||
index -= idx * m_strides[i];
|
||||
coords[i] = idx;
|
||||
}
|
||||
coords[NumDims-1] = index;
|
||||
}
|
||||
}
|
||||
|
||||
Dimensions m_dimensions;
|
||||
array<Index, NumDims> m_strides;
|
||||
Generator m_generator;
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
|
@ -135,6 +135,7 @@ if(EIGEN_TEST_CXX11)
|
||||
ei_add_test(cxx11_tensor_reverse "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_layout_swap "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_io "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_generator "-std=c++0x")
|
||||
|
||||
# These tests needs nvcc
|
||||
# ei_add_test(cxx11_tensor_device "-std=c++0x")
|
||||
|
87
unsupported/test/cxx11_tensor_generator.cpp
Normal file
87
unsupported/test/cxx11_tensor_generator.cpp
Normal file
@ -0,0 +1,87 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "main.h"
|
||||
|
||||
#include <Eigen/CXX11/Tensor>
|
||||
|
||||
struct Generator1D {
|
||||
Generator1D() { }
|
||||
|
||||
float operator()(const array<Eigen::DenseIndex, 1>& coordinates) const {
|
||||
return coordinates[0];
|
||||
}
|
||||
};
|
||||
|
||||
template <int DataLayout>
|
||||
static void test_1D()
|
||||
{
|
||||
Tensor<float, 1> vec(6);
|
||||
Tensor<float, 1> result = vec.generate(Generator1D());
|
||||
|
||||
for (int i = 0; i < 6; ++i) {
|
||||
VERIFY_IS_EQUAL(result(i), i);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
struct Generator2D {
|
||||
Generator2D() { }
|
||||
|
||||
float operator()(const array<Eigen::DenseIndex, 2>& coordinates) const {
|
||||
return 3 * coordinates[0] + 11 * coordinates[1];
|
||||
}
|
||||
};
|
||||
|
||||
template <int DataLayout>
|
||||
static void test_2D()
|
||||
{
|
||||
Tensor<float, 2> matrix(5, 7);
|
||||
Tensor<float, 2> result = matrix.generate(Generator2D());
|
||||
|
||||
for (int i = 0; i < 5; ++i) {
|
||||
for (int j = 0; j < 5; ++j) {
|
||||
VERIFY_IS_EQUAL(result(i, j), 3*i + 11*j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <int DataLayout>
|
||||
static void test_gaussian()
|
||||
{
|
||||
int rows = 32;
|
||||
int cols = 48;
|
||||
array<float, 2> means = { rows / 2.0f, cols / 2.0f };
|
||||
array<float, 2> std_devs = { 3.14f, 2.7f };
|
||||
internal::GaussianGenerator<float, Eigen::DenseIndex, 2> gaussian_gen(means, std_devs);
|
||||
|
||||
Tensor<float, 2> matrix(rows, cols);
|
||||
Tensor<float, 2> result = matrix.generate(gaussian_gen);
|
||||
|
||||
for (int i = 0; i < rows; ++i) {
|
||||
for (int j = 0; j < cols; ++j) {
|
||||
float g_rows = powf(rows/2.0f - i, 2) / (3.14f * 3.14f) * 0.5f;
|
||||
float g_cols = powf(cols/2.0f - j, 2) / (2.7f * 2.7f) * 0.5f;
|
||||
float gaussian = expf(-g_rows - g_cols);
|
||||
VERIFY_IS_EQUAL(result(i, j), gaussian);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void test_cxx11_tensor_generator()
|
||||
{
|
||||
CALL_SUBTEST(test_1D<ColMajor>());
|
||||
CALL_SUBTEST(test_1D<RowMajor>());
|
||||
CALL_SUBTEST(test_2D<ColMajor>());
|
||||
CALL_SUBTEST(test_2D<RowMajor>());
|
||||
CALL_SUBTEST(test_gaussian<ColMajor>());
|
||||
CALL_SUBTEST(test_gaussian<RowMajor>());
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user