mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-22 17:49:36 +08:00
Add info() method which can be queried to check whether iteration converged.
This commit is contained in:
parent
ed73a195e0
commit
9178e2bd54
@ -27,6 +27,9 @@
|
||||
#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
|
||||
#define EIGEN_COMPLEX_EIGEN_SOLVER_H
|
||||
|
||||
#include "./EigenvaluesCommon.h"
|
||||
#include "./ComplexSchur.h"
|
||||
|
||||
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
@ -220,6 +223,16 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
*/
|
||||
ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
|
||||
*/
|
||||
ComputationInfo info() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
|
||||
return m_schur.info();
|
||||
}
|
||||
|
||||
protected:
|
||||
EigenvectorType m_eivec;
|
||||
EigenvalueType m_eivalues;
|
||||
@ -243,11 +256,14 @@ ComplexEigenSolver<MatrixType>& ComplexEigenSolver<MatrixType>::compute(const Ma
|
||||
// Do a complex Schur decomposition, A = U T U^*
|
||||
// The eigenvalues are on the diagonal of T.
|
||||
m_schur.compute(matrix, computeEigenvectors);
|
||||
m_eivalues = m_schur.matrixT().diagonal();
|
||||
|
||||
if(m_schur.info() == Success)
|
||||
{
|
||||
m_eivalues = m_schur.matrixT().diagonal();
|
||||
if(computeEigenvectors)
|
||||
doComputeEigenvectors(matrix.norm());
|
||||
sortEigenvalues(computeEigenvectors);
|
||||
}
|
||||
|
||||
m_isInitialized = true;
|
||||
m_eigenvectorsOk = computeEigenvectors;
|
||||
|
@ -27,6 +27,9 @@
|
||||
#ifndef EIGEN_COMPLEX_SCHUR_H
|
||||
#define EIGEN_COMPLEX_SCHUR_H
|
||||
|
||||
#include "./EigenvaluesCommon.h"
|
||||
#include "./HessenbergDecomposition.h"
|
||||
|
||||
template<typename MatrixType, bool IsComplex> struct ei_complex_schur_reduce_to_hessenberg;
|
||||
|
||||
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
||||
@ -192,6 +195,16 @@ template<typename _MatrixType> class ComplexSchur
|
||||
*/
|
||||
ComplexSchur& compute(const MatrixType& matrix, bool computeU = true);
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
|
||||
*/
|
||||
ComputationInfo info() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "RealSchur is not initialized.");
|
||||
return m_info;
|
||||
}
|
||||
|
||||
/** \brief Maximum number of iterations.
|
||||
*
|
||||
* Maximum number of iterations allowed for an eigenvalue to converge.
|
||||
@ -201,6 +214,7 @@ template<typename _MatrixType> class ComplexSchur
|
||||
protected:
|
||||
ComplexMatrixType m_matT, m_matU;
|
||||
HessenbergDecomposition<MatrixType> m_hess;
|
||||
ComputationInfo m_info;
|
||||
bool m_isInitialized;
|
||||
bool m_matUisUptodate;
|
||||
|
||||
@ -312,6 +326,7 @@ ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& ma
|
||||
{
|
||||
m_matT = matrix.template cast<ComplexScalar>();
|
||||
if(computeU) m_matU = ComplexMatrixType::Identity(1,1);
|
||||
m_info = Success;
|
||||
m_isInitialized = true;
|
||||
m_matUisUptodate = computeU;
|
||||
return *this;
|
||||
@ -382,7 +397,7 @@ void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
|
||||
|
||||
// if we spent too many iterations on the current element, we give up
|
||||
iter++;
|
||||
if(iter >= m_maxIterations) break;
|
||||
if(iter > m_maxIterations) break;
|
||||
|
||||
// find il, the top row of the active submatrix
|
||||
il = iu-1;
|
||||
@ -412,12 +427,10 @@ void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
|
||||
}
|
||||
}
|
||||
|
||||
if(iter >= m_maxIterations)
|
||||
{
|
||||
// FIXME : what to do when iter==MAXITER ??
|
||||
// std::cerr << "MAXITER" << std::endl;
|
||||
return;
|
||||
}
|
||||
if(iter <= m_maxIterations)
|
||||
m_info = Success;
|
||||
else
|
||||
m_info = NoConvergence;
|
||||
|
||||
m_isInitialized = true;
|
||||
m_matUisUptodate = computeU;
|
||||
|
@ -26,6 +26,7 @@
|
||||
#ifndef EIGEN_EIGENSOLVER_H
|
||||
#define EIGEN_EIGENSOLVER_H
|
||||
|
||||
#include "./EigenvaluesCommon.h"
|
||||
#include "./RealSchur.h"
|
||||
|
||||
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
||||
@ -286,6 +287,12 @@ template<typename _MatrixType> class EigenSolver
|
||||
*/
|
||||
EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
|
||||
|
||||
ComputationInfo info() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
|
||||
return m_realSchur.info();
|
||||
}
|
||||
|
||||
private:
|
||||
void doComputeEigenvectors();
|
||||
|
||||
@ -358,6 +365,8 @@ EigenSolver<MatrixType>& EigenSolver<MatrixType>::compute(const MatrixType& matr
|
||||
|
||||
// Reduce to real Schur form.
|
||||
m_realSchur.compute(matrix, computeEigenvectors);
|
||||
if (m_realSchur.info() == Success)
|
||||
{
|
||||
m_matT = m_realSchur.matrixT();
|
||||
if (computeEigenvectors)
|
||||
m_eivec = m_realSchur.matrixU();
|
||||
@ -385,6 +394,7 @@ EigenSolver<MatrixType>& EigenSolver<MatrixType>::compute(const MatrixType& matr
|
||||
// Compute eigenvectors.
|
||||
if (computeEigenvectors)
|
||||
doComputeEigenvectors();
|
||||
}
|
||||
|
||||
m_isInitialized = true;
|
||||
m_eigenvectorsOk = computeEigenvectors;
|
||||
|
39
Eigen/src/Eigenvalues/EigenvaluesCommon.h
Normal file
39
Eigen/src/Eigenvalues/EigenvaluesCommon.h
Normal file
@ -0,0 +1,39 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_EIGENVALUES_COMMON_H
|
||||
#define EIGEN_EIGENVALUES_COMMON_H
|
||||
|
||||
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \brief Enum for reporting the status of a computation.
|
||||
*/
|
||||
enum ComputationInfo {
|
||||
Success = 0, /**< \brief Computation was successful. */
|
||||
NoConvergence = 1 /**< \brief Iterative procedure did not converge. */
|
||||
};
|
||||
|
||||
#endif // EIGEN_EIGENVALUES_COMMON_H
|
||||
|
@ -26,6 +26,7 @@
|
||||
#ifndef EIGEN_REAL_SCHUR_H
|
||||
#define EIGEN_REAL_SCHUR_H
|
||||
|
||||
#include "./EigenvaluesCommon.h"
|
||||
#include "./HessenbergDecomposition.h"
|
||||
|
||||
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
||||
@ -176,6 +177,16 @@ template<typename _MatrixType> class RealSchur
|
||||
*/
|
||||
RealSchur& compute(const MatrixType& matrix, bool computeU = true);
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
|
||||
*/
|
||||
ComputationInfo info() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "RealSchur is not initialized.");
|
||||
return m_info;
|
||||
}
|
||||
|
||||
/** \brief Maximum number of iterations.
|
||||
*
|
||||
* Maximum number of iterations allowed for an eigenvalue to converge.
|
||||
@ -188,6 +199,7 @@ template<typename _MatrixType> class RealSchur
|
||||
MatrixType m_matU;
|
||||
ColumnVectorType m_workspaceVector;
|
||||
HessenbergDecomposition<MatrixType> m_hess;
|
||||
ComputationInfo m_info;
|
||||
bool m_isInitialized;
|
||||
bool m_matUisUptodate;
|
||||
|
||||
@ -249,20 +261,21 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix,
|
||||
{
|
||||
Vector3s firstHouseholderVector, shiftInfo;
|
||||
computeShift(iu, iter, exshift, shiftInfo);
|
||||
iter = iter + 1; // (Could check iteration count here.)
|
||||
if (iter >= m_maxIterations) break;
|
||||
iter = iter + 1;
|
||||
if (iter > m_maxIterations) break;
|
||||
Index im;
|
||||
initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
|
||||
performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
|
||||
}
|
||||
}
|
||||
|
||||
if(iter < m_maxIterations)
|
||||
{
|
||||
if(iter <= m_maxIterations)
|
||||
m_info = Success;
|
||||
else
|
||||
m_info = NoConvergence;
|
||||
|
||||
m_isInitialized = true;
|
||||
m_matUisUptodate = computeU;
|
||||
}
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
@ -26,6 +26,9 @@
|
||||
#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
|
||||
#define EIGEN_SELFADJOINTEIGENSOLVER_H
|
||||
|
||||
#include "./EigenvaluesCommon.h"
|
||||
#include "./Tridiagonalization.h"
|
||||
|
||||
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
@ -360,6 +363,16 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
||||
return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
|
||||
}
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
|
||||
*/
|
||||
ComputationInfo info() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
|
||||
return m_info;
|
||||
}
|
||||
|
||||
/** \brief Maximum number of iterations.
|
||||
*
|
||||
* Maximum number of iterations allowed for an eigenvalue to converge.
|
||||
@ -371,6 +384,7 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
||||
RealVectorType m_eivalues;
|
||||
TridiagonalizationType m_tridiag;
|
||||
typename TridiagonalizationType::SubDiagonalType m_subdiag;
|
||||
ComputationInfo m_info;
|
||||
bool m_isInitialized;
|
||||
bool m_eigenvectorsOk;
|
||||
};
|
||||
@ -410,6 +424,7 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::compute(
|
||||
m_eivalues.coeffRef(0,0) = ei_real(matrix.coeff(0,0));
|
||||
if(computeEigenvectors)
|
||||
m_eivec.setOnes();
|
||||
m_info = Success;
|
||||
m_isInitialized = true;
|
||||
m_eigenvectorsOk = computeEigenvectors;
|
||||
return *this;
|
||||
@ -443,7 +458,7 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::compute(
|
||||
|
||||
// if we spent too many iterations on the current element, we give up
|
||||
iter++;
|
||||
if(iter >= m_maxIterations) break;
|
||||
if(iter > m_maxIterations) break;
|
||||
|
||||
start = end - 1;
|
||||
while (start>0 && m_subdiag[start-1]!=0)
|
||||
@ -452,14 +467,16 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::compute(
|
||||
ei_tridiagonal_qr_step(diag.data(), m_subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n);
|
||||
}
|
||||
|
||||
if(iter >= m_maxIterations)
|
||||
{
|
||||
return *this;
|
||||
}
|
||||
if (iter <= m_maxIterations)
|
||||
m_info = Success;
|
||||
else
|
||||
m_info = NoConvergence;
|
||||
|
||||
// Sort eigenvalues and corresponding vectors.
|
||||
// TODO make the sort optional ?
|
||||
// TODO use a better sort algorithm !!
|
||||
if (m_info == Success)
|
||||
{
|
||||
for (Index i = 0; i < n-1; ++i)
|
||||
{
|
||||
Index k;
|
||||
@ -471,6 +488,7 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::compute(
|
||||
m_eivec.col(i).swap(m_eivec.col(k+i));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m_isInitialized = true;
|
||||
m_eigenvectorsOk = computeEigenvectors;
|
||||
|
@ -24,6 +24,7 @@
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
#include <limits>
|
||||
#include <Eigen/Eigenvalues>
|
||||
#include <Eigen/LU>
|
||||
|
||||
@ -60,15 +61,18 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
|
||||
MatrixType symmA = a.adjoint() * a;
|
||||
|
||||
ComplexEigenSolver<MatrixType> ei0(symmA);
|
||||
VERIFY_IS_EQUAL(ei0.info(), Success);
|
||||
VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal());
|
||||
|
||||
ComplexEigenSolver<MatrixType> ei1(a);
|
||||
VERIFY_IS_EQUAL(ei1.info(), Success);
|
||||
VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
|
||||
// Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus
|
||||
// another algorithm so results may differ slightly
|
||||
verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues());
|
||||
|
||||
ComplexEigenSolver<MatrixType> eiNoEivecs(a, false);
|
||||
VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
|
||||
VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
|
||||
|
||||
// Regression test for issue #66
|
||||
@ -78,6 +82,14 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
|
||||
|
||||
MatrixType id = MatrixType::Identity(rows, cols);
|
||||
VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
|
||||
|
||||
if (rows > 1)
|
||||
{
|
||||
// Test matrix with NaN
|
||||
a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
|
||||
ComplexEigenSolver<MatrixType> eiNaN(a);
|
||||
VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
|
||||
|
@ -24,6 +24,7 @@
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
#include <limits>
|
||||
#include <Eigen/Eigenvalues>
|
||||
|
||||
#ifdef HAS_GSL
|
||||
@ -44,29 +45,38 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
|
||||
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
|
||||
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
|
||||
|
||||
// RealScalar largerEps = 10*test_precision<RealScalar>();
|
||||
|
||||
MatrixType a = MatrixType::Random(rows,cols);
|
||||
MatrixType a1 = MatrixType::Random(rows,cols);
|
||||
MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
|
||||
|
||||
EigenSolver<MatrixType> ei0(symmA);
|
||||
VERIFY_IS_EQUAL(ei0.info(), Success);
|
||||
VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
|
||||
VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
|
||||
(ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
|
||||
|
||||
EigenSolver<MatrixType> ei1(a);
|
||||
VERIFY_IS_EQUAL(ei1.info(), Success);
|
||||
VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
|
||||
VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
|
||||
ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
|
||||
VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues());
|
||||
|
||||
EigenSolver<MatrixType> eiNoEivecs(a, false);
|
||||
VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
|
||||
VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
|
||||
VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix());
|
||||
|
||||
MatrixType id = MatrixType::Identity(rows, cols);
|
||||
VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
|
||||
|
||||
if (rows > 2)
|
||||
{
|
||||
// Test matrix with NaN
|
||||
a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
|
||||
EigenSolver<MatrixType> eiNaN(a);
|
||||
VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
|
||||
|
@ -2,6 +2,7 @@
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
@ -23,6 +24,7 @@
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
#include <limits>
|
||||
#include <Eigen/Eigenvalues>
|
||||
|
||||
#ifdef HAS_GSL
|
||||
@ -101,14 +103,17 @@ template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
|
||||
}
|
||||
#endif
|
||||
|
||||
VERIFY_IS_EQUAL(eiSymm.info(), Success);
|
||||
VERIFY((symmA * eiSymm.eigenvectors()).isApprox(
|
||||
eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
|
||||
VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues());
|
||||
|
||||
SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false);
|
||||
VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success);
|
||||
VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues());
|
||||
|
||||
// generalized eigen problem Ax = lBx
|
||||
VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
|
||||
VERIFY((symmA * eiSymmGen.eigenvectors()).isApprox(
|
||||
symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
|
||||
|
||||
@ -120,6 +125,7 @@ template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
|
||||
VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1));
|
||||
|
||||
SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized;
|
||||
VERIFY_RAISES_ASSERT(eiSymmUninitialized.info());
|
||||
VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues());
|
||||
VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
|
||||
VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
|
||||
@ -129,6 +135,14 @@ template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
|
||||
VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
|
||||
VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
|
||||
VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
|
||||
|
||||
if (rows > 1)
|
||||
{
|
||||
// Test matrix with NaN
|
||||
symmA(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
|
||||
SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmA);
|
||||
VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence);
|
||||
}
|
||||
}
|
||||
|
||||
void test_eigensolver_selfadjoint()
|
||||
|
@ -23,6 +23,7 @@
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
#include <limits>
|
||||
#include <Eigen/Eigenvalues>
|
||||
|
||||
template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime)
|
||||
@ -34,6 +35,7 @@ template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTim
|
||||
for(int counter = 0; counter < g_repeat; ++counter) {
|
||||
MatrixType A = MatrixType::Random(size, size);
|
||||
ComplexSchur<MatrixType> schurOfA(A);
|
||||
VERIFY_IS_EQUAL(schurOfA.info(), Success);
|
||||
ComplexMatrixType U = schurOfA.matrixU();
|
||||
ComplexMatrixType T = schurOfA.matrixT();
|
||||
for(int row = 1; row < size; ++row) {
|
||||
@ -48,19 +50,28 @@ template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTim
|
||||
ComplexSchur<MatrixType> csUninitialized;
|
||||
VERIFY_RAISES_ASSERT(csUninitialized.matrixT());
|
||||
VERIFY_RAISES_ASSERT(csUninitialized.matrixU());
|
||||
VERIFY_RAISES_ASSERT(csUninitialized.info());
|
||||
|
||||
// Test whether compute() and constructor returns same result
|
||||
MatrixType A = MatrixType::Random(size, size);
|
||||
ComplexSchur<MatrixType> cs1;
|
||||
cs1.compute(A);
|
||||
ComplexSchur<MatrixType> cs2(A);
|
||||
VERIFY_IS_EQUAL(cs1.info(), Success);
|
||||
VERIFY_IS_EQUAL(cs2.info(), Success);
|
||||
VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT());
|
||||
VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU());
|
||||
|
||||
// Test computation of only T, not U
|
||||
ComplexSchur<MatrixType> csOnlyT(A, false);
|
||||
VERIFY_IS_EQUAL(csOnlyT.info(), Success);
|
||||
VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT());
|
||||
VERIFY_RAISES_ASSERT(csOnlyT.matrixU());
|
||||
|
||||
// Test matrix with NaN
|
||||
A(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
|
||||
ComplexSchur<MatrixType> csNaN(A);
|
||||
VERIFY_IS_EQUAL(csNaN.info(), NoConvergence);
|
||||
}
|
||||
|
||||
void test_schur_complex()
|
||||
|
@ -23,6 +23,7 @@
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
#include <limits>
|
||||
#include <Eigen/Eigenvalues>
|
||||
|
||||
template<typename MatrixType> void verifyIsQuasiTriangular(const MatrixType& T)
|
||||
@ -55,6 +56,7 @@ template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTim
|
||||
for(int counter = 0; counter < g_repeat; ++counter) {
|
||||
MatrixType A = MatrixType::Random(size, size);
|
||||
RealSchur<MatrixType> schurOfA(A);
|
||||
VERIFY_IS_EQUAL(schurOfA.info(), Success);
|
||||
MatrixType U = schurOfA.matrixU();
|
||||
MatrixType T = schurOfA.matrixT();
|
||||
verifyIsQuasiTriangular(T);
|
||||
@ -65,19 +67,28 @@ template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTim
|
||||
RealSchur<MatrixType> rsUninitialized;
|
||||
VERIFY_RAISES_ASSERT(rsUninitialized.matrixT());
|
||||
VERIFY_RAISES_ASSERT(rsUninitialized.matrixU());
|
||||
VERIFY_RAISES_ASSERT(rsUninitialized.info());
|
||||
|
||||
// Test whether compute() and constructor returns same result
|
||||
MatrixType A = MatrixType::Random(size, size);
|
||||
RealSchur<MatrixType> rs1;
|
||||
rs1.compute(A);
|
||||
RealSchur<MatrixType> rs2(A);
|
||||
VERIFY_IS_EQUAL(rs1.info(), Success);
|
||||
VERIFY_IS_EQUAL(rs2.info(), Success);
|
||||
VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT());
|
||||
VERIFY_IS_EQUAL(rs1.matrixU(), rs2.matrixU());
|
||||
|
||||
// Test computation of only T, not U
|
||||
RealSchur<MatrixType> rsOnlyT(A, false);
|
||||
VERIFY_IS_EQUAL(rsOnlyT.info(), Success);
|
||||
VERIFY_IS_EQUAL(rs1.matrixT(), rsOnlyT.matrixT());
|
||||
VERIFY_RAISES_ASSERT(rsOnlyT.matrixU());
|
||||
|
||||
// Test matrix with NaN
|
||||
A(0,0) = std::numeric_limits<typename MatrixType::Scalar>::quiet_NaN();
|
||||
RealSchur<MatrixType> rsNaN(A);
|
||||
VERIFY_IS_EQUAL(rsNaN.info(), NoConvergence);
|
||||
}
|
||||
|
||||
void test_schur_real()
|
||||
|
Loading…
x
Reference in New Issue
Block a user