mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-09 22:51:51 +08:00
Backport MINRES fixes to 3.2
This commit is contained in:
parent
7b35b4cacc
commit
91953d2d37
@ -37,22 +37,31 @@ namespace Eigen {
|
|||||||
typedef typename Dest::Scalar Scalar;
|
typedef typename Dest::Scalar Scalar;
|
||||||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||||||
|
|
||||||
|
// Check for zero rhs
|
||||||
|
const RealScalar rhsNorm2(rhs.squaredNorm());
|
||||||
|
if(rhsNorm2 == 0)
|
||||||
|
{
|
||||||
|
x.setZero();
|
||||||
|
iters = 0;
|
||||||
|
tol_error = 0;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
// initialize
|
// initialize
|
||||||
const int maxIters(iters); // initialize maxIters to iters
|
const int maxIters(iters); // initialize maxIters to iters
|
||||||
const int N(mat.cols()); // the size of the matrix
|
const int N(mat.cols()); // the size of the matrix
|
||||||
const RealScalar rhsNorm2(rhs.squaredNorm());
|
|
||||||
const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold (compared to residualNorm2)
|
const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold (compared to residualNorm2)
|
||||||
|
|
||||||
// Initialize preconditioned Lanczos
|
// Initialize preconditioned Lanczos
|
||||||
// VectorType v_old(N); // will be initialized inside loop
|
VectorType v_old(N); // will be initialized inside loop
|
||||||
VectorType v( VectorType::Zero(N) ); //initialize v
|
VectorType v( VectorType::Zero(N) ); //initialize v
|
||||||
VectorType v_new(rhs-mat*x); //initialize v_new
|
VectorType v_new(rhs-mat*x); //initialize v_new
|
||||||
RealScalar residualNorm2(v_new.squaredNorm());
|
RealScalar residualNorm2(v_new.squaredNorm());
|
||||||
// VectorType w(N); // will be initialized inside loop
|
VectorType w(N); // will be initialized inside loop
|
||||||
VectorType w_new(precond.solve(v_new)); // initialize w_new
|
VectorType w_new(precond.solve(v_new)); // initialize w_new
|
||||||
// RealScalar beta; // will be initialized inside loop
|
// RealScalar beta; // will be initialized inside loop
|
||||||
RealScalar beta_new2(v_new.dot(w_new));
|
RealScalar beta_new2(v_new.dot(w_new));
|
||||||
eigen_assert(beta_new2 >= 0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
|
eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
|
||||||
RealScalar beta_new(sqrt(beta_new2));
|
RealScalar beta_new(sqrt(beta_new2));
|
||||||
const RealScalar beta_one(beta_new);
|
const RealScalar beta_one(beta_new);
|
||||||
v_new /= beta_new;
|
v_new /= beta_new;
|
||||||
@ -62,14 +71,14 @@ namespace Eigen {
|
|||||||
RealScalar c_old(1.0);
|
RealScalar c_old(1.0);
|
||||||
RealScalar s(0.0); // the sine of the Givens rotation
|
RealScalar s(0.0); // the sine of the Givens rotation
|
||||||
RealScalar s_old(0.0); // the sine of the Givens rotation
|
RealScalar s_old(0.0); // the sine of the Givens rotation
|
||||||
// VectorType p_oold(N); // will be initialized in loop
|
VectorType p_oold(N); // will be initialized in loop
|
||||||
VectorType p_old(VectorType::Zero(N)); // initialize p_old=0
|
VectorType p_old(VectorType::Zero(N)); // initialize p_old=0
|
||||||
VectorType p(p_old); // initialize p=0
|
VectorType p(p_old); // initialize p=0
|
||||||
RealScalar eta(1.0);
|
RealScalar eta(1.0);
|
||||||
|
|
||||||
iters = 0; // reset iters
|
iters = 0; // reset iters
|
||||||
while ( iters < maxIters ){
|
while ( iters < maxIters )
|
||||||
|
{
|
||||||
// Preconditioned Lanczos
|
// Preconditioned Lanczos
|
||||||
/* Note that there are 4 variants on the Lanczos algorithm. These are
|
/* Note that there are 4 variants on the Lanczos algorithm. These are
|
||||||
* described in Paige, C. C. (1972). Computational variants of
|
* described in Paige, C. C. (1972). Computational variants of
|
||||||
@ -81,17 +90,17 @@ namespace Eigen {
|
|||||||
* A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM (1987).
|
* A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM (1987).
|
||||||
*/
|
*/
|
||||||
const RealScalar beta(beta_new);
|
const RealScalar beta(beta_new);
|
||||||
// v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
|
v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
|
||||||
const VectorType v_old(v); // NOT SURE IF CREATING v_old EVERY ITERATION IS EFFICIENT
|
// const VectorType v_old(v); // NOT SURE IF CREATING v_old EVERY ITERATION IS EFFICIENT
|
||||||
v = v_new; // update
|
v = v_new; // update
|
||||||
// w = w_new; // update
|
w = w_new; // update
|
||||||
const VectorType w(w_new); // NOT SURE IF CREATING w EVERY ITERATION IS EFFICIENT
|
// const VectorType w(w_new); // NOT SURE IF CREATING w EVERY ITERATION IS EFFICIENT
|
||||||
v_new.noalias() = mat*w - beta*v_old; // compute v_new
|
v_new.noalias() = mat*w - beta*v_old; // compute v_new
|
||||||
const RealScalar alpha = v_new.dot(w);
|
const RealScalar alpha = v_new.dot(w);
|
||||||
v_new -= alpha*v; // overwrite v_new
|
v_new -= alpha*v; // overwrite v_new
|
||||||
w_new = precond.solve(v_new); // overwrite w_new
|
w_new = precond.solve(v_new); // overwrite w_new
|
||||||
beta_new2 = v_new.dot(w_new); // compute beta_new
|
beta_new2 = v_new.dot(w_new); // compute beta_new
|
||||||
eigen_assert(beta_new2 >= 0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
|
eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
|
||||||
beta_new = sqrt(beta_new2); // compute beta_new
|
beta_new = sqrt(beta_new2); // compute beta_new
|
||||||
v_new /= beta_new; // overwrite v_new for next iteration
|
v_new /= beta_new; // overwrite v_new for next iteration
|
||||||
w_new /= beta_new; // overwrite w_new for next iteration
|
w_new /= beta_new; // overwrite w_new for next iteration
|
||||||
@ -107,21 +116,28 @@ namespace Eigen {
|
|||||||
s=beta_new/r1; // new sine
|
s=beta_new/r1; // new sine
|
||||||
|
|
||||||
// Update solution
|
// Update solution
|
||||||
// p_oold = p_old;
|
p_oold = p_old;
|
||||||
const VectorType p_oold(p_old); // NOT SURE IF CREATING p_oold EVERY ITERATION IS EFFICIENT
|
// const VectorType p_oold(p_old); // NOT SURE IF CREATING p_oold EVERY ITERATION IS EFFICIENT
|
||||||
p_old = p;
|
p_old = p;
|
||||||
p.noalias()=(w-r2*p_old-r3*p_oold) /r1; // IS NOALIAS REQUIRED?
|
p.noalias()=(w-r2*p_old-r3*p_oold) /r1; // IS NOALIAS REQUIRED?
|
||||||
x += beta_one*c*eta*p;
|
x += beta_one*c*eta*p;
|
||||||
|
|
||||||
|
/* Update the squared residual. Note that this is the estimated residual.
|
||||||
|
The real residual |Ax-b|^2 may be slightly larger */
|
||||||
residualNorm2 *= s*s;
|
residualNorm2 *= s*s;
|
||||||
|
|
||||||
if ( residualNorm2 < threshold2){
|
if ( residualNorm2 < threshold2)
|
||||||
|
{
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
eta=-s*eta; // update eta
|
eta=-s*eta; // update eta
|
||||||
iters++; // increment iteration number (for output purposes)
|
iters++; // increment iteration number (for output purposes)
|
||||||
}
|
}
|
||||||
tol_error = std::sqrt(residualNorm2 / rhsNorm2); // return error. Note that this is the estimated error. The real error |Ax-b|/|b| may be slightly larger
|
|
||||||
|
/* Compute error. Note that this is the estimated error. The real
|
||||||
|
error |Ax-b|/|b| may be slightly larger */
|
||||||
|
tol_error = std::sqrt(residualNorm2 / rhsNorm2);
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user