clean, remove goto's

This commit is contained in:
Thomas Capricelli 2009-08-24 15:32:06 +02:00
parent d4968cd059
commit 91a2145cb3
2 changed files with 436 additions and 542 deletions

View File

@ -19,7 +19,6 @@ int ei_hybrd(
) )
{ {
const int n = x.size(); const int n = x.size();
int lr = (n*(n+1))/2;
Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n), wa3(n), wa4(n); Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n), wa3(n), wa4(n);
@ -27,7 +26,7 @@ int ei_hybrd(
if (nb_of_superdiagonals<0) nb_of_superdiagonals = n-1; if (nb_of_superdiagonals<0) nb_of_superdiagonals = n-1;
fvec.resize(n); fvec.resize(n);
qtf.resize(n); qtf.resize(n);
R.resize(lr); R.resize( (n*(n+1))/2);
fjac.resize(n, n); fjac.resize(n, n);
/* Local variables */ /* Local variables */
@ -56,10 +55,8 @@ int ei_hybrd(
/* check the input parameters for errors. */ /* check the input parameters for errors. */
if (n <= 0 || xtol < 0. || maxfev <= 0 || nb_of_subdiagonals < 0 || nb_of_superdiagonals < 0 || if (n <= 0 || xtol < 0. || maxfev <= 0 || nb_of_subdiagonals < 0 || nb_of_superdiagonals < 0 || factor <= 0. )
factor <= 0. || lr < n * (n + 1) / 2) {
goto L300; goto L300;
}
if (mode == 2) if (mode == 2)
for (j = 0; j < n; ++j) for (j = 0; j < n; ++j)
if (diag[j] <= 0.) goto L300; if (diag[j] <= 0.) goto L300;
@ -69,9 +66,8 @@ int ei_hybrd(
iflag = Functor::f(x, fvec); iflag = Functor::f(x, fvec);
nfev = 1; nfev = 1;
if (iflag < 0) { if (iflag < 0)
goto L300; goto L300;
}
fnorm = fvec.stableNorm(); fnorm = fvec.stableNorm();
/* determine the number of calls to fcn needed to compute */ /* determine the number of calls to fcn needed to compute */
@ -90,287 +86,238 @@ int ei_hybrd(
/* beginning of the outer loop. */ /* beginning of the outer loop. */
L30: while (true) {
jeval = true; jeval = true;
/* calculate the jacobian matrix. */ /* calculate the jacobian matrix. */
iflag = ei_fdjac1<Functor,Scalar>(x, fvec, fjac, iflag = ei_fdjac1<Functor,Scalar>(x, fvec, fjac,
nb_of_subdiagonals, nb_of_superdiagonals, epsfcn, wa1, wa2); nb_of_subdiagonals, nb_of_superdiagonals, epsfcn, wa1, wa2);
nfev += msum; nfev += msum;
if (iflag < 0) { if (iflag < 0)
goto L300; break;
}
/* compute the qr factorization of the jacobian. */ /* compute the qr factorization of the jacobian. */
ei_qrfac<Scalar>(n, n, fjac.data(), fjac.rows(), false, iwa, 1, wa1.data(), wa2.data()); ei_qrfac<Scalar>(n, n, fjac.data(), fjac.rows(), false, iwa, 1, wa1.data(), wa2.data());
/* on the first iteration and if mode is 1, scale according */ /* on the first iteration and if mode is 1, scale according */
/* to the norms of the columns of the initial jacobian. */ /* to the norms of the columns of the initial jacobian. */
if (iter != 1) { if (iter == 1) {
goto L70; if (mode != 2)
} for (j = 0; j < n; ++j) {
if (mode == 2) { diag[j] = wa2[j];
goto L50; if (wa2[j] == 0.)
} diag[j] = 1.;
for (j = 0; j < n; ++j) { }
diag[j] = wa2[j];
if (wa2[j] == 0.) { /* on the first iteration, calculate the norm of the scaled x */
diag[j] = 1.; /* and initialize the step bound delta. */
wa3 = diag.cwise() * x;
xnorm = wa3.stableNorm();
delta = factor * xnorm;
if (delta == 0.)
delta = factor;
} }
/* L40: */
}
L50:
/* on the first iteration, calculate the norm of the scaled x */ /* form (q transpose)*fvec and store in qtf. */
/* and initialize the step bound delta. */
wa3 = diag.cwise() * x; qtf = fvec;
xnorm = wa3.stableNorm(); for (j = 0; j < n; ++j)
delta = factor * xnorm; if (fjac(j,j) != 0.) {
if (delta == 0.) { sum = 0.;
delta = factor; for (i = j; i < n; ++i)
} sum += fjac(i,j) * qtf[i];
L70: temp = -sum / fjac(j,j);
for (i = j; i < n; ++i)
/* form (q transpose)*fvec and store in qtf. */ qtf[i] += fjac(i,j) * temp;
qtf = fvec;
for (j = 0; j < n; ++j) {
if (fjac(j,j) == 0.) {
goto L110;
}
sum = 0.;
for (i = j; i < n; ++i) {
sum += fjac(i,j) * qtf[i];
/* L90: */
}
temp = -sum / fjac(j,j);
for (i = j; i < n; ++i) {
qtf[i] += fjac(i,j) * temp;
/* L100: */
}
L110:
/* L120: */
;
}
/* copy the triangular factor of the qr factorization into r. */
sing = false;
for (j = 0; j < n; ++j) {
l = j;
if (j) {
for (i = 0; i < j; ++i) {
R[l] = fjac(i,j);
l = l + n - i -1;
/* L130: */
} }
/* copy the triangular factor of the qr factorization into r. */
sing = false;
for (j = 0; j < n; ++j) {
l = j;
if (j)
for (i = 0; i < j; ++i) {
R[l] = fjac(i,j);
l = l + n - i -1;
}
R[l] = wa1[j];
if (wa1[j] == 0.)
sing = true;
} }
R[l] = wa1[j];
if (wa1[j] == 0.) { /* accumulate the orthogonal factor in fjac. */
sing = true;
ei_qform<Scalar>(n, n, fjac.data(), fjac.rows(), wa1.data());
/* rescale if necessary. */
/* Computing MAX */
if (mode != 2)
diag = diag.cwise().max(wa2);
/* beginning of the inner loop. */
while (true) {
/* if requested, call Functor::f to enable printing of iterates. */
if (nprint > 0) {
iflag = 0;
if ((iter - 1) % nprint == 0)
iflag = Functor::debug(x, fvec);
if (iflag < 0)
goto L300;
}
/* determine the direction p. */
ei_dogleg<Scalar>(R, diag, qtf, delta, wa1);
/* store the direction p and x + p. calculate the norm of p. */
wa1 = -wa1;
wa2 = x + wa1;
wa3 = diag.cwise() * wa1;
pnorm = wa3.stableNorm();
/* on the first iteration, adjust the initial step bound. */
if (iter == 1)
delta = std::min(delta,pnorm);
/* evaluate the function at x + p and calculate its norm. */
iflag = Functor::f(wa2, wa4);
++nfev;
if (iflag < 0)
goto L300;
fnorm1 = wa4.stableNorm();
/* compute the scaled actual reduction. */
actred = -1.;
if (fnorm1 < fnorm) /* Computing 2nd power */
actred = 1. - ei_abs2(fnorm1 / fnorm);
/* compute the scaled predicted reduction. */
l = 0;
for (i = 0; i < n; ++i) {
sum = 0.;
for (j = i; j < n; ++j) {
sum += R[l] * wa1[j];
++l;
}
wa3[i] = qtf[i] + sum;
}
temp = wa3.stableNorm();
prered = 0.;
if (temp < fnorm) /* Computing 2nd power */
prered = 1. - ei_abs2(temp / fnorm);
/* compute the ratio of the actual to the predicted */
/* reduction. */
ratio = 0.;
if (prered > 0.)
ratio = actred / prered;
/* update the step bound. */
if (ratio < Scalar(.1)) {
ncsuc = 0;
++ncfail;
delta = Scalar(.5) * delta;
} else {
ncfail = 0;
++ncsuc;
if (ratio >= Scalar(.5) || ncsuc > 1) /* Computing MAX */
delta = std::max(delta, pnorm / Scalar(.5));
if (ei_abs(ratio - 1.) <= Scalar(.1)) {
delta = pnorm / Scalar(.5);
}
}
/* test for successful iteration. */
if (ratio >= Scalar(1e-4)) {
/* successful iteration. update x, fvec, and their norms. */
x = wa2;
wa2 = diag.cwise() * x;
fvec = wa4;
xnorm = wa2.stableNorm();
fnorm = fnorm1;
++iter;
}
/* determine the progress of the iteration. */
++nslow1;
if (actred >= Scalar(.001))
nslow1 = 0;
if (jeval)
++nslow2;
if (actred >= Scalar(.1))
nslow2 = 0;
/* test for convergence. */
if (delta <= xtol * xnorm || fnorm == 0.)
info = 1;
if (info != 0)
goto L300;
/* tests for termination and stringent tolerances. */
if (nfev >= maxfev)
info = 2;
/* Computing MAX */
if (Scalar(.1) * std::max(Scalar(.1) * delta, pnorm) <= epsilon<Scalar>() * xnorm)
info = 3;
if (nslow2 == 5)
info = 4;
if (nslow1 == 10)
info = 5;
if (info != 0)
goto L300;
/* criterion for recalculating jacobian approximation */
/* by forward differences. */
if (ncfail == 2)
break;
/* calculate the rank one modification to the jacobian */
/* and update qtf if necessary. */
for (j = 0; j < n; ++j) {
sum = wa4.dot(fjac.col(j));
wa2[j] = (sum - wa3[j]) / pnorm;
wa1[j] = diag[j] * (diag[j] * wa1[j] / pnorm);
if (ratio >= Scalar(1e-4))
qtf[j] = sum;
}
/* compute the qr factorization of the updated jacobian. */
ei_r1updt<Scalar>(n, n, R.data(), R.size(), wa1.data(), wa2.data(), wa3.data(), &sing);
ei_r1mpyq<Scalar>(n, n, fjac.data(), fjac.rows(), wa2.data(), wa3.data());
ei_r1mpyq<Scalar>(1, n, qtf.data(), 1, wa2.data(), wa3.data());
/* end of the inner loop. */
jeval = false;
} }
/* L150: */ /* end of the outer loop. */
} }
/* accumulate the orthogonal factor in fjac. */
ei_qform<Scalar>(n, n, fjac.data(), fjac.rows(), wa1.data());
/* rescale if necessary. */
if (mode == 2) {
goto L170;
}
/* Computing MAX */
diag = diag.cwise().max(wa2);
L170:
/* beginning of the inner loop. */
L180:
/* if requested, call Functor::f to enable printing of iterates. */
if (nprint <= 0) {
goto L190;
}
iflag = 0;
if ((iter - 1) % nprint == 0)
iflag = Functor::debug(x, fvec);
if (iflag < 0)
goto L300;
L190:
/* determine the direction p. */
ei_dogleg<Scalar>(R, diag, qtf, delta, wa1);
/* store the direction p and x + p. calculate the norm of p. */
wa1 = -wa1;
wa2 = x + wa1;
wa3 = diag.cwise() * wa1;
pnorm = wa3.stableNorm();
/* on the first iteration, adjust the initial step bound. */
if (iter == 1)
delta = std::min(delta,pnorm);
/* evaluate the function at x + p and calculate its norm. */
iflag = Functor::f(wa2, wa4);
++nfev;
if (iflag < 0)
goto L300;
fnorm1 = wa4.stableNorm();
/* compute the scaled actual reduction. */
actred = -1.;
if (fnorm1 < fnorm) /* Computing 2nd power */
actred = 1. - ei_abs2(fnorm1 / fnorm);
/* compute the scaled predicted reduction. */
l = 0;
for (i = 0; i < n; ++i) {
sum = 0.;
for (j = i; j < n; ++j) {
sum += R[l] * wa1[j];
++l;
/* L210: */
}
wa3[i] = qtf[i] + sum;
/* L220: */
}
temp = wa3.stableNorm();
prered = 0.;
if (temp < fnorm) /* Computing 2nd power */
prered = 1. - ei_abs2(temp / fnorm);
/* compute the ratio of the actual to the predicted */
/* reduction. */
ratio = 0.;
if (prered > 0.) {
ratio = actred / prered;
}
/* update the step bound. */
if (ratio >= Scalar(.1)) {
goto L230;
}
ncsuc = 0;
++ncfail;
delta = Scalar(.5) * delta;
goto L240;
L230:
ncfail = 0;
++ncsuc;
if (ratio >= Scalar(.5) || ncsuc > 1) /* Computing MAX */
delta = std::max(delta, pnorm / Scalar(.5));
if (ei_abs(ratio - 1.) <= Scalar(.1)) {
delta = pnorm / Scalar(.5);
}
L240:
/* test for successful iteration. */
if (ratio < Scalar(1e-4)) {
goto L260;
}
/* successful iteration. update x, fvec, and their norms. */
x = wa2;
wa2 = diag.cwise() * x;
fvec = wa4;
xnorm = wa2.stableNorm();
fnorm = fnorm1;
++iter;
L260:
/* determine the progress of the iteration. */
++nslow1;
if (actred >= Scalar(.001)) {
nslow1 = 0;
}
if (jeval) {
++nslow2;
}
if (actred >= Scalar(.1)) {
nslow2 = 0;
}
/* test for convergence. */
if (delta <= xtol * xnorm || fnorm == 0.) {
info = 1;
}
if (info != 0) {
goto L300;
}
/* tests for termination and stringent tolerances. */
if (nfev >= maxfev) {
info = 2;
}
/* Computing MAX */
if (Scalar(.1) * std::max(Scalar(.1) * delta, pnorm) <= epsilon<Scalar>() * xnorm)
info = 3;
if (nslow2 == 5)
info = 4;
if (nslow1 == 10)
info = 5;
if (info != 0)
goto L300;
/* criterion for recalculating jacobian approximation */
/* by forward differences. */
if (ncfail == 2)
goto L290;
/* calculate the rank one modification to the jacobian */
/* and update qtf if necessary. */
for (j = 0; j < n; ++j) {
sum = wa4.dot(fjac.col(j));
wa2[j] = (sum - wa3[j]) / pnorm;
wa1[j] = diag[j] * (diag[j] * wa1[j] / pnorm);
if (ratio >= Scalar(1e-4))
qtf[j] = sum;
}
/* compute the qr factorization of the updated jacobian. */
ei_r1updt<Scalar>(n, n, R.data(), lr, wa1.data(), wa2.data(), wa3.data(), &sing);
ei_r1mpyq<Scalar>(n, n, fjac.data(), fjac.rows(), wa2.data(), wa3.data());
ei_r1mpyq<Scalar>(1, n, qtf.data(), 1, wa2.data(), wa3.data());
/* end of the inner loop. */
jeval = false;
goto L180;
L290:
/* end of the outer loop. */
goto L30;
L300: L300:
/* termination, either normal or user imposed. */ /* termination, either normal or user imposed. */
if (iflag < 0)
if (iflag < 0) {
info = iflag; info = iflag;
}
if (nprint > 0) if (nprint > 0)
iflag = Functor::debug(x, fvec); iflag = Functor::debug(x, fvec);
return info; return info;

View File

@ -17,12 +17,11 @@ int ei_hybrj(
) )
{ {
const int n = x.size(); const int n = x.size();
const int lr = (n*(n+1))/2;
Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n), wa3(n), wa4(n); Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n), wa3(n), wa4(n);
fvec.resize(n); fvec.resize(n);
qtf.resize(n); qtf.resize(n);
R.resize(lr); R.resize( (n*(n+1))/2);
fjac.resize(n, n); fjac.resize(n, n);
/* Local variables */ /* Local variables */
@ -51,10 +50,8 @@ int ei_hybrj(
/* check the input parameters for errors. */ /* check the input parameters for errors. */
if (n <= 0 || xtol < 0. || maxfev <= 0 || factor <= if (n <= 0 || xtol < 0. || maxfev <= 0 || factor <= 0. )
0. || lr < n * (n + 1) / 2) {
goto L300; goto L300;
}
if (mode == 2) if (mode == 2)
for (j = 0; j < n; ++j) for (j = 0; j < n; ++j)
if (diag[j] <= 0.) goto L300; if (diag[j] <= 0.) goto L300;
@ -64,9 +61,8 @@ int ei_hybrj(
iflag = Functor::f(x, fvec); iflag = Functor::f(x, fvec);
nfev = 1; nfev = 1;
if (iflag < 0) { if (iflag < 0)
goto L300; goto L300;
}
fnorm = fvec.stableNorm(); fnorm = fvec.stableNorm();
/* initialize iteration counter and monitors. */ /* initialize iteration counter and monitors. */
@ -79,285 +75,236 @@ int ei_hybrj(
/* beginning of the outer loop. */ /* beginning of the outer loop. */
L30: while (true) {
jeval = true; jeval = true;
/* calculate the jacobian matrix. */ /* calculate the jacobian matrix. */
iflag = Functor::df(x, fjac); iflag = Functor::df(x, fjac);
++njev; ++njev;
if (iflag < 0) { if (iflag < 0)
goto L300; break;
}
/* compute the qr factorization of the jacobian. */ /* compute the qr factorization of the jacobian. */
ei_qrfac<Scalar>(n, n, fjac.data(), fjac.rows(), false, iwa, 1, wa1.data(), wa2.data()); ei_qrfac<Scalar>(n, n, fjac.data(), fjac.rows(), false, iwa, 1, wa1.data(), wa2.data());
/* on the first iteration and if mode is 1, scale according */ /* on the first iteration and if mode is 1, scale according */
/* to the norms of the columns of the initial jacobian. */ /* to the norms of the columns of the initial jacobian. */
if (iter != 1) { if (iter == 1) {
goto L70; if (mode != 2)
} for (j = 0; j < n; ++j) {
if (mode == 2) { diag[j] = wa2[j];
goto L50; if (wa2[j] == 0.)
} diag[j] = 1.;
for (j = 0; j < n; ++j) { }
diag[j] = wa2[j];
if (wa2[j] == 0.) { /* on the first iteration, calculate the norm of the scaled x */
diag[j] = 1.; /* and initialize the step bound delta. */
wa3 = diag.cwise() * x;
xnorm = wa3.stableNorm();
delta = factor * xnorm;
if (delta == 0.)
delta = factor;
} }
/* L40: */
}
L50:
/* on the first iteration, calculate the norm of the scaled x */ /* form (q transpose)*fvec and store in qtf. */
/* and initialize the step bound delta. */
wa3 = diag.cwise() * x; qtf = fvec;
xnorm = wa3.stableNorm(); for (j = 0; j < n; ++j)
delta = factor * xnorm; if (fjac(j,j) != 0.) {
if (delta == 0.) { sum = 0.;
delta = factor; for (i = j; i < n; ++i)
} sum += fjac(i,j) * qtf[i];
L70: temp = -sum / fjac(j,j);
for (i = j; i < n; ++i)
/* form (q transpose)*fvec and store in qtf. */ qtf[i] += fjac(i,j) * temp;
qtf = fvec;
for (j = 0; j < n; ++j) {
if (fjac(j,j) == 0.) {
goto L110;
}
sum = 0.;
for (i = j; i < n; ++i) {
sum += fjac(i,j) * qtf[i];
/* L90: */
}
temp = -sum / fjac(j,j);
for (i = j; i < n; ++i) {
qtf[i] += fjac(i,j) * temp;
/* L100: */
}
L110:
/* L120: */
;
}
/* copy the triangular factor of the qr factorization into r. */
sing = false;
for (j = 0; j < n; ++j) {
l = j;
if (j) {
for (i = 0; i < j; ++i) {
R[l] = fjac(i,j);
l = l + n - i -1;
/* L130: */
} }
/* copy the triangular factor of the qr factorization into r. */
sing = false;
for (j = 0; j < n; ++j) {
l = j;
if (j)
for (i = 0; i < j; ++i) {
R[l] = fjac(i,j);
l = l + n - i -1;
}
R[l] = wa1[j];
if (wa1[j] == 0.)
sing = true;
} }
R[l] = wa1[j];
if (wa1[j] == 0.) { /* accumulate the orthogonal factor in fjac. */
sing = true;
ei_qform<Scalar>(n, n, fjac.data(), fjac.rows(), wa1.data());
/* rescale if necessary. */
/* Computing MAX */
if (mode != 2)
diag = diag.cwise().max(wa2);
/* beginning of the inner loop. */
while (true) {
/* if requested, call Functor::f to enable printing of iterates. */
if (nprint > 0) {
iflag = 0;
if ((iter - 1) % nprint == 0)
iflag = Functor::debug(x, fvec, fjac);
if (iflag < 0)
goto L300;
}
/* determine the direction p. */
ei_dogleg<Scalar>(R, diag, qtf, delta, wa1);
/* store the direction p and x + p. calculate the norm of p. */
wa1 = -wa1;
wa2 = x + wa1;
wa3 = diag.cwise() * wa1;
pnorm = wa3.stableNorm();
/* on the first iteration, adjust the initial step bound. */
if (iter == 1)
delta = std::min(delta,pnorm);
/* evaluate the function at x + p and calculate its norm. */
iflag = Functor::f(wa2, wa4);
++nfev;
if (iflag < 0)
goto L300;
fnorm1 = wa4.stableNorm();
/* compute the scaled actual reduction. */
actred = -1.;
if (fnorm1 < fnorm) /* Computing 2nd power */
actred = 1. - ei_abs2(fnorm1 / fnorm);
/* compute the scaled predicted reduction. */
l = 0;
for (i = 0; i < n; ++i) {
sum = 0.;
for (j = i; j < n; ++j) {
sum += R[l] * wa1[j];
++l;
}
wa3[i] = qtf[i] + sum;
}
temp = wa3.stableNorm();
prered = 0.;
if (temp < fnorm) /* Computing 2nd power */
prered = 1. - ei_abs2(temp / fnorm);
/* compute the ratio of the actual to the predicted */
/* reduction. */
ratio = 0.;
if (prered > 0.)
ratio = actred / prered;
/* update the step bound. */
if (ratio < Scalar(.1)) {
ncsuc = 0;
++ncfail;
delta = Scalar(.5) * delta;
} else {
ncfail = 0;
++ncsuc;
if (ratio >= Scalar(.5) || ncsuc > 1) /* Computing MAX */
delta = std::max(delta, pnorm / Scalar(.5));
if (ei_abs(ratio - 1.) <= Scalar(.1)) {
delta = pnorm / Scalar(.5);
}
}
/* test for successful iteration. */
if (ratio >= Scalar(1e-4)) {
/* successful iteration. update x, fvec, and their norms. */
x = wa2;
wa2 = diag.cwise() * x;
fvec = wa4;
xnorm = wa2.stableNorm();
fnorm = fnorm1;
++iter;
}
/* determine the progress of the iteration. */
++nslow1;
if (actred >= Scalar(.001))
nslow1 = 0;
if (jeval)
++nslow2;
if (actred >= Scalar(.1))
nslow2 = 0;
/* test for convergence. */
if (delta <= xtol * xnorm || fnorm == 0.)
info = 1;
if (info != 0)
goto L300;
/* tests for termination and stringent tolerances. */
if (nfev >= maxfev)
info = 2;
/* Computing MAX */
if (Scalar(.1) * std::max(Scalar(.1) * delta, pnorm) <= epsilon<Scalar>() * xnorm)
info = 3;
if (nslow2 == 5)
info = 4;
if (nslow1 == 10)
info = 5;
if (info != 0)
goto L300;
/* criterion for recalculating jacobian. */
if (ncfail == 2)
break;
/* calculate the rank one modification to the jacobian */
/* and update qtf if necessary. */
for (j = 0; j < n; ++j) {
sum = wa4.dot(fjac.col(j));
wa2[j] = (sum - wa3[j]) / pnorm;
wa1[j] = diag[j] * (diag[j] * wa1[j] / pnorm);
if (ratio >= Scalar(1e-4))
qtf[j] = sum;
}
/* compute the qr factorization of the updated jacobian. */
ei_r1updt<Scalar>(n, n, R.data(), R.size(), wa1.data(), wa2.data(), wa3.data(), &sing);
ei_r1mpyq<Scalar>(n, n, fjac.data(), fjac.rows(), wa2.data(), wa3.data());
ei_r1mpyq<Scalar>(1, n, qtf.data(), 1, wa2.data(), wa3.data());
/* end of the inner loop. */
jeval = false;
} }
/* L150: */ /* end of the outer loop. */
} }
/* accumulate the orthogonal factor in fjac. */
ei_qform<Scalar>(n, n, fjac.data(), fjac.rows(), wa1.data());
/* rescale if necessary. */
if (mode == 2) {
goto L170;
}
/* Computing MAX */
diag = diag.cwise().max(wa2);
L170:
/* beginning of the inner loop. */
L180:
/* if requested, call Functor::f to enable printing of iterates. */
if (nprint <= 0) {
goto L190;
}
iflag = 0;
if ((iter - 1) % nprint == 0)
iflag = Functor::debug(x, fvec, fjac);
if (iflag < 0)
goto L300;
L190:
/* determine the direction p. */
ei_dogleg<Scalar>(R, diag, qtf, delta, wa1);
/* store the direction p and x + p. calculate the norm of p. */
wa1 = -wa1;
wa2 = x + wa1;
wa3 = diag.cwise() * wa1;
pnorm = wa3.stableNorm();
/* on the first iteration, adjust the initial step bound. */
if (iter == 1)
delta = std::min(delta,pnorm);
/* evaluate the function at x + p and calculate its norm. */
iflag = Functor::f(wa2, wa4);
++nfev;
if (iflag < 0)
goto L300;
fnorm1 = wa4.stableNorm();
/* compute the scaled actual reduction. */
actred = -1.;
if (fnorm1 < fnorm) /* Computing 2nd power */
actred = 1. - ei_abs2(fnorm1 / fnorm);
/* compute the scaled predicted reduction. */
l = 0;
for (i = 0; i < n; ++i) {
sum = 0.;
for (j = i; j < n; ++j) {
sum += R[l] * wa1[j];
++l;
/* L210: */
}
wa3[i] = qtf[i] + sum;
/* L220: */
}
temp = wa3.stableNorm();
prered = 0.;
if (temp < fnorm) /* Computing 2nd power */
prered = 1. - ei_abs2(temp / fnorm);
/* compute the ratio of the actual to the predicted */
/* reduction. */
ratio = 0.;
if (prered > 0.) {
ratio = actred / prered;
}
/* update the step bound. */
if (ratio >= Scalar(.1)) {
goto L230;
}
ncsuc = 0;
++ncfail;
delta = Scalar(.5) * delta;
goto L240;
L230:
ncfail = 0;
++ncsuc;
if (ratio >= Scalar(.5) || ncsuc > 1) /* Computing MAX */
delta = std::max(delta, pnorm / Scalar(.5));
if (ei_abs(ratio - 1.) <= Scalar(.1)) {
delta = pnorm / Scalar(.5);
}
L240:
/* test for successful iteration. */
if (ratio < Scalar(1e-4)) {
goto L260;
}
/* successful iteration. update x, fvec, and their norms. */
x = wa2;
wa2 = diag.cwise() * x;
fvec = wa4;
xnorm = wa2.stableNorm();
fnorm = fnorm1;
++iter;
L260:
/* determine the progress of the iteration. */
++nslow1;
if (actred >= Scalar(.001)) {
nslow1 = 0;
}
if (jeval) {
++nslow2;
}
if (actred >= Scalar(.1)) {
nslow2 = 0;
}
/* test for convergence. */
if (delta <= xtol * xnorm || fnorm == 0.) {
info = 1;
}
if (info != 0) {
goto L300;
}
/* tests for termination and stringent tolerances. */
if (nfev >= maxfev) {
info = 2;
}
/* Computing MAX */
if (Scalar(.1) * std::max(Scalar(.1) * delta, pnorm) <= epsilon<Scalar>() * xnorm)
info = 3;
if (nslow2 == 5)
info = 4;
if (nslow1 == 10)
info = 5;
if (info != 0)
goto L300;
/* criterion for recalculating jacobian. */
if (ncfail == 2)
goto L290;
/* calculate the rank one modification to the jacobian */
/* and update qtf if necessary. */
for (j = 0; j < n; ++j) {
sum = wa4.dot(fjac.col(j));
wa2[j] = (sum - wa3[j]) / pnorm;
wa1[j] = diag[j] * (diag[j] * wa1[j] / pnorm);
if (ratio >= Scalar(1e-4))
qtf[j] = sum;
}
/* compute the qr factorization of the updated jacobian. */
ei_r1updt<Scalar>(n, n, R.data(), lr, wa1.data(), wa2.data(), wa3.data(), &sing);
ei_r1mpyq<Scalar>(n, n, fjac.data(), fjac.rows(), wa2.data(), wa3.data());
ei_r1mpyq<Scalar>(1, n, qtf.data(), 1, wa2.data(), wa3.data());
/* end of the inner loop. */
jeval = false;
goto L180;
L290:
/* end of the outer loop. */
goto L30;
L300: L300:
/* termination, either normal or user imposed. */ /* termination, either normal or user imposed. */
if (iflag < 0)
if (iflag < 0) {
info = iflag; info = iflag;
}
if (nprint > 0) if (nprint > 0)
iflag = Functor::debug(x, fvec, fjac); iflag = Functor::debug(x, fvec, fjac);
return info; return info;