mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 11:49:02 +08:00
clean, remove goto's
This commit is contained in:
parent
d4968cd059
commit
91a2145cb3
@ -19,7 +19,6 @@ int ei_hybrd(
|
||||
)
|
||||
{
|
||||
const int n = x.size();
|
||||
int lr = (n*(n+1))/2;
|
||||
Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n), wa3(n), wa4(n);
|
||||
|
||||
|
||||
@ -27,7 +26,7 @@ int ei_hybrd(
|
||||
if (nb_of_superdiagonals<0) nb_of_superdiagonals = n-1;
|
||||
fvec.resize(n);
|
||||
qtf.resize(n);
|
||||
R.resize(lr);
|
||||
R.resize( (n*(n+1))/2);
|
||||
fjac.resize(n, n);
|
||||
|
||||
/* Local variables */
|
||||
@ -56,10 +55,8 @@ int ei_hybrd(
|
||||
|
||||
/* check the input parameters for errors. */
|
||||
|
||||
if (n <= 0 || xtol < 0. || maxfev <= 0 || nb_of_subdiagonals < 0 || nb_of_superdiagonals < 0 ||
|
||||
factor <= 0. || lr < n * (n + 1) / 2) {
|
||||
if (n <= 0 || xtol < 0. || maxfev <= 0 || nb_of_subdiagonals < 0 || nb_of_superdiagonals < 0 || factor <= 0. )
|
||||
goto L300;
|
||||
}
|
||||
if (mode == 2)
|
||||
for (j = 0; j < n; ++j)
|
||||
if (diag[j] <= 0.) goto L300;
|
||||
@ -69,9 +66,8 @@ int ei_hybrd(
|
||||
|
||||
iflag = Functor::f(x, fvec);
|
||||
nfev = 1;
|
||||
if (iflag < 0) {
|
||||
if (iflag < 0)
|
||||
goto L300;
|
||||
}
|
||||
fnorm = fvec.stableNorm();
|
||||
|
||||
/* determine the number of calls to fcn needed to compute */
|
||||
@ -90,7 +86,7 @@ int ei_hybrd(
|
||||
|
||||
/* beginning of the outer loop. */
|
||||
|
||||
L30:
|
||||
while (true) {
|
||||
jeval = true;
|
||||
|
||||
/* calculate the jacobian matrix. */
|
||||
@ -98,9 +94,8 @@ L30:
|
||||
iflag = ei_fdjac1<Functor,Scalar>(x, fvec, fjac,
|
||||
nb_of_subdiagonals, nb_of_superdiagonals, epsfcn, wa1, wa2);
|
||||
nfev += msum;
|
||||
if (iflag < 0) {
|
||||
goto L300;
|
||||
}
|
||||
if (iflag < 0)
|
||||
break;
|
||||
|
||||
/* compute the qr factorization of the jacobian. */
|
||||
|
||||
@ -109,20 +104,13 @@ L30:
|
||||
/* on the first iteration and if mode is 1, scale according */
|
||||
/* to the norms of the columns of the initial jacobian. */
|
||||
|
||||
if (iter != 1) {
|
||||
goto L70;
|
||||
}
|
||||
if (mode == 2) {
|
||||
goto L50;
|
||||
}
|
||||
if (iter == 1) {
|
||||
if (mode != 2)
|
||||
for (j = 0; j < n; ++j) {
|
||||
diag[j] = wa2[j];
|
||||
if (wa2[j] == 0.) {
|
||||
if (wa2[j] == 0.)
|
||||
diag[j] = 1.;
|
||||
}
|
||||
/* L40: */
|
||||
}
|
||||
L50:
|
||||
|
||||
/* on the first iteration, calculate the norm of the scaled x */
|
||||
/* and initialize the step bound delta. */
|
||||
@ -130,31 +118,21 @@ L50:
|
||||
wa3 = diag.cwise() * x;
|
||||
xnorm = wa3.stableNorm();
|
||||
delta = factor * xnorm;
|
||||
if (delta == 0.) {
|
||||
if (delta == 0.)
|
||||
delta = factor;
|
||||
}
|
||||
L70:
|
||||
|
||||
/* form (q transpose)*fvec and store in qtf. */
|
||||
|
||||
qtf = fvec;
|
||||
for (j = 0; j < n; ++j) {
|
||||
if (fjac(j,j) == 0.) {
|
||||
goto L110;
|
||||
}
|
||||
for (j = 0; j < n; ++j)
|
||||
if (fjac(j,j) != 0.) {
|
||||
sum = 0.;
|
||||
for (i = j; i < n; ++i) {
|
||||
for (i = j; i < n; ++i)
|
||||
sum += fjac(i,j) * qtf[i];
|
||||
/* L90: */
|
||||
}
|
||||
temp = -sum / fjac(j,j);
|
||||
for (i = j; i < n; ++i) {
|
||||
for (i = j; i < n; ++i)
|
||||
qtf[i] += fjac(i,j) * temp;
|
||||
/* L100: */
|
||||
}
|
||||
L110:
|
||||
/* L120: */
|
||||
;
|
||||
}
|
||||
|
||||
/* copy the triangular factor of the qr factorization into r. */
|
||||
@ -162,19 +140,15 @@ L110:
|
||||
sing = false;
|
||||
for (j = 0; j < n; ++j) {
|
||||
l = j;
|
||||
if (j) {
|
||||
if (j)
|
||||
for (i = 0; i < j; ++i) {
|
||||
R[l] = fjac(i,j);
|
||||
l = l + n - i -1;
|
||||
/* L130: */
|
||||
}
|
||||
}
|
||||
R[l] = wa1[j];
|
||||
if (wa1[j] == 0.) {
|
||||
if (wa1[j] == 0.)
|
||||
sing = true;
|
||||
}
|
||||
/* L150: */
|
||||
}
|
||||
|
||||
/* accumulate the orthogonal factor in fjac. */
|
||||
|
||||
@ -182,27 +156,22 @@ L110:
|
||||
|
||||
/* rescale if necessary. */
|
||||
|
||||
if (mode == 2) {
|
||||
goto L170;
|
||||
}
|
||||
/* Computing MAX */
|
||||
if (mode != 2)
|
||||
diag = diag.cwise().max(wa2);
|
||||
L170:
|
||||
|
||||
/* beginning of the inner loop. */
|
||||
|
||||
L180:
|
||||
while (true) {
|
||||
/* if requested, call Functor::f to enable printing of iterates. */
|
||||
|
||||
if (nprint <= 0) {
|
||||
goto L190;
|
||||
}
|
||||
if (nprint > 0) {
|
||||
iflag = 0;
|
||||
if ((iter - 1) % nprint == 0)
|
||||
iflag = Functor::debug(x, fvec);
|
||||
if (iflag < 0)
|
||||
goto L300;
|
||||
L190:
|
||||
}
|
||||
|
||||
/* determine the direction p. */
|
||||
|
||||
@ -242,10 +211,8 @@ L190:
|
||||
for (j = i; j < n; ++j) {
|
||||
sum += R[l] * wa1[j];
|
||||
++l;
|
||||
/* L210: */
|
||||
}
|
||||
wa3[i] = qtf[i] + sum;
|
||||
/* L220: */
|
||||
}
|
||||
temp = wa3.stableNorm();
|
||||
prered = 0.;
|
||||
@ -256,20 +223,16 @@ L190:
|
||||
/* reduction. */
|
||||
|
||||
ratio = 0.;
|
||||
if (prered > 0.) {
|
||||
if (prered > 0.)
|
||||
ratio = actred / prered;
|
||||
}
|
||||
|
||||
/* update the step bound. */
|
||||
|
||||
if (ratio >= Scalar(.1)) {
|
||||
goto L230;
|
||||
}
|
||||
if (ratio < Scalar(.1)) {
|
||||
ncsuc = 0;
|
||||
++ncfail;
|
||||
delta = Scalar(.5) * delta;
|
||||
goto L240;
|
||||
L230:
|
||||
} else {
|
||||
ncfail = 0;
|
||||
++ncsuc;
|
||||
if (ratio >= Scalar(.5) || ncsuc > 1) /* Computing MAX */
|
||||
@ -277,51 +240,41 @@ L230:
|
||||
if (ei_abs(ratio - 1.) <= Scalar(.1)) {
|
||||
delta = pnorm / Scalar(.5);
|
||||
}
|
||||
L240:
|
||||
}
|
||||
|
||||
/* test for successful iteration. */
|
||||
|
||||
if (ratio < Scalar(1e-4)) {
|
||||
goto L260;
|
||||
}
|
||||
|
||||
if (ratio >= Scalar(1e-4)) {
|
||||
/* successful iteration. update x, fvec, and their norms. */
|
||||
|
||||
x = wa2;
|
||||
wa2 = diag.cwise() * x;
|
||||
fvec = wa4;
|
||||
xnorm = wa2.stableNorm();
|
||||
fnorm = fnorm1;
|
||||
++iter;
|
||||
L260:
|
||||
}
|
||||
|
||||
/* determine the progress of the iteration. */
|
||||
|
||||
++nslow1;
|
||||
if (actred >= Scalar(.001)) {
|
||||
if (actred >= Scalar(.001))
|
||||
nslow1 = 0;
|
||||
}
|
||||
if (jeval) {
|
||||
if (jeval)
|
||||
++nslow2;
|
||||
}
|
||||
if (actred >= Scalar(.1)) {
|
||||
if (actred >= Scalar(.1))
|
||||
nslow2 = 0;
|
||||
}
|
||||
|
||||
/* test for convergence. */
|
||||
|
||||
if (delta <= xtol * xnorm || fnorm == 0.) {
|
||||
if (delta <= xtol * xnorm || fnorm == 0.)
|
||||
info = 1;
|
||||
}
|
||||
if (info != 0) {
|
||||
if (info != 0)
|
||||
goto L300;
|
||||
}
|
||||
|
||||
/* tests for termination and stringent tolerances. */
|
||||
|
||||
if (nfev >= maxfev) {
|
||||
if (nfev >= maxfev)
|
||||
info = 2;
|
||||
}
|
||||
/* Computing MAX */
|
||||
if (Scalar(.1) * std::max(Scalar(.1) * delta, pnorm) <= epsilon<Scalar>() * xnorm)
|
||||
info = 3;
|
||||
@ -336,7 +289,7 @@ L260:
|
||||
/* by forward differences. */
|
||||
|
||||
if (ncfail == 2)
|
||||
goto L290;
|
||||
break;
|
||||
|
||||
/* calculate the rank one modification to the jacobian */
|
||||
/* and update qtf if necessary. */
|
||||
@ -351,26 +304,20 @@ L260:
|
||||
|
||||
/* compute the qr factorization of the updated jacobian. */
|
||||
|
||||
ei_r1updt<Scalar>(n, n, R.data(), lr, wa1.data(), wa2.data(), wa3.data(), &sing);
|
||||
ei_r1updt<Scalar>(n, n, R.data(), R.size(), wa1.data(), wa2.data(), wa3.data(), &sing);
|
||||
ei_r1mpyq<Scalar>(n, n, fjac.data(), fjac.rows(), wa2.data(), wa3.data());
|
||||
ei_r1mpyq<Scalar>(1, n, qtf.data(), 1, wa2.data(), wa3.data());
|
||||
|
||||
/* end of the inner loop. */
|
||||
|
||||
jeval = false;
|
||||
goto L180;
|
||||
L290:
|
||||
|
||||
/* end of the outer loop. */
|
||||
|
||||
goto L30;
|
||||
L300:
|
||||
|
||||
/* termination, either normal or user imposed. */
|
||||
|
||||
if (iflag < 0) {
|
||||
info = iflag;
|
||||
}
|
||||
/* end of the outer loop. */
|
||||
}
|
||||
L300:
|
||||
/* termination, either normal or user imposed. */
|
||||
if (iflag < 0)
|
||||
info = iflag;
|
||||
if (nprint > 0)
|
||||
iflag = Functor::debug(x, fvec);
|
||||
return info;
|
||||
|
@ -17,12 +17,11 @@ int ei_hybrj(
|
||||
)
|
||||
{
|
||||
const int n = x.size();
|
||||
const int lr = (n*(n+1))/2;
|
||||
Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n), wa3(n), wa4(n);
|
||||
|
||||
fvec.resize(n);
|
||||
qtf.resize(n);
|
||||
R.resize(lr);
|
||||
R.resize( (n*(n+1))/2);
|
||||
fjac.resize(n, n);
|
||||
|
||||
/* Local variables */
|
||||
@ -51,10 +50,8 @@ int ei_hybrj(
|
||||
|
||||
/* check the input parameters for errors. */
|
||||
|
||||
if (n <= 0 || xtol < 0. || maxfev <= 0 || factor <=
|
||||
0. || lr < n * (n + 1) / 2) {
|
||||
if (n <= 0 || xtol < 0. || maxfev <= 0 || factor <= 0. )
|
||||
goto L300;
|
||||
}
|
||||
if (mode == 2)
|
||||
for (j = 0; j < n; ++j)
|
||||
if (diag[j] <= 0.) goto L300;
|
||||
@ -64,9 +61,8 @@ int ei_hybrj(
|
||||
|
||||
iflag = Functor::f(x, fvec);
|
||||
nfev = 1;
|
||||
if (iflag < 0) {
|
||||
if (iflag < 0)
|
||||
goto L300;
|
||||
}
|
||||
fnorm = fvec.stableNorm();
|
||||
|
||||
/* initialize iteration counter and monitors. */
|
||||
@ -79,16 +75,15 @@ int ei_hybrj(
|
||||
|
||||
/* beginning of the outer loop. */
|
||||
|
||||
L30:
|
||||
while (true) {
|
||||
jeval = true;
|
||||
|
||||
/* calculate the jacobian matrix. */
|
||||
|
||||
iflag = Functor::df(x, fjac);
|
||||
++njev;
|
||||
if (iflag < 0) {
|
||||
goto L300;
|
||||
}
|
||||
if (iflag < 0)
|
||||
break;
|
||||
|
||||
/* compute the qr factorization of the jacobian. */
|
||||
|
||||
@ -97,20 +92,13 @@ L30:
|
||||
/* on the first iteration and if mode is 1, scale according */
|
||||
/* to the norms of the columns of the initial jacobian. */
|
||||
|
||||
if (iter != 1) {
|
||||
goto L70;
|
||||
}
|
||||
if (mode == 2) {
|
||||
goto L50;
|
||||
}
|
||||
if (iter == 1) {
|
||||
if (mode != 2)
|
||||
for (j = 0; j < n; ++j) {
|
||||
diag[j] = wa2[j];
|
||||
if (wa2[j] == 0.) {
|
||||
if (wa2[j] == 0.)
|
||||
diag[j] = 1.;
|
||||
}
|
||||
/* L40: */
|
||||
}
|
||||
L50:
|
||||
|
||||
/* on the first iteration, calculate the norm of the scaled x */
|
||||
/* and initialize the step bound delta. */
|
||||
@ -118,31 +106,21 @@ L50:
|
||||
wa3 = diag.cwise() * x;
|
||||
xnorm = wa3.stableNorm();
|
||||
delta = factor * xnorm;
|
||||
if (delta == 0.) {
|
||||
if (delta == 0.)
|
||||
delta = factor;
|
||||
}
|
||||
L70:
|
||||
|
||||
/* form (q transpose)*fvec and store in qtf. */
|
||||
|
||||
qtf = fvec;
|
||||
for (j = 0; j < n; ++j) {
|
||||
if (fjac(j,j) == 0.) {
|
||||
goto L110;
|
||||
}
|
||||
for (j = 0; j < n; ++j)
|
||||
if (fjac(j,j) != 0.) {
|
||||
sum = 0.;
|
||||
for (i = j; i < n; ++i) {
|
||||
for (i = j; i < n; ++i)
|
||||
sum += fjac(i,j) * qtf[i];
|
||||
/* L90: */
|
||||
}
|
||||
temp = -sum / fjac(j,j);
|
||||
for (i = j; i < n; ++i) {
|
||||
for (i = j; i < n; ++i)
|
||||
qtf[i] += fjac(i,j) * temp;
|
||||
/* L100: */
|
||||
}
|
||||
L110:
|
||||
/* L120: */
|
||||
;
|
||||
}
|
||||
|
||||
/* copy the triangular factor of the qr factorization into r. */
|
||||
@ -150,19 +128,15 @@ L110:
|
||||
sing = false;
|
||||
for (j = 0; j < n; ++j) {
|
||||
l = j;
|
||||
if (j) {
|
||||
if (j)
|
||||
for (i = 0; i < j; ++i) {
|
||||
R[l] = fjac(i,j);
|
||||
l = l + n - i -1;
|
||||
/* L130: */
|
||||
}
|
||||
}
|
||||
R[l] = wa1[j];
|
||||
if (wa1[j] == 0.) {
|
||||
if (wa1[j] == 0.)
|
||||
sing = true;
|
||||
}
|
||||
/* L150: */
|
||||
}
|
||||
|
||||
/* accumulate the orthogonal factor in fjac. */
|
||||
|
||||
@ -170,27 +144,22 @@ L110:
|
||||
|
||||
/* rescale if necessary. */
|
||||
|
||||
if (mode == 2) {
|
||||
goto L170;
|
||||
}
|
||||
/* Computing MAX */
|
||||
if (mode != 2)
|
||||
diag = diag.cwise().max(wa2);
|
||||
L170:
|
||||
|
||||
/* beginning of the inner loop. */
|
||||
|
||||
L180:
|
||||
while (true) {
|
||||
/* if requested, call Functor::f to enable printing of iterates. */
|
||||
|
||||
if (nprint <= 0) {
|
||||
goto L190;
|
||||
}
|
||||
if (nprint > 0) {
|
||||
iflag = 0;
|
||||
if ((iter - 1) % nprint == 0)
|
||||
iflag = Functor::debug(x, fvec, fjac);
|
||||
if (iflag < 0)
|
||||
goto L300;
|
||||
L190:
|
||||
}
|
||||
|
||||
/* determine the direction p. */
|
||||
|
||||
@ -230,10 +199,8 @@ L190:
|
||||
for (j = i; j < n; ++j) {
|
||||
sum += R[l] * wa1[j];
|
||||
++l;
|
||||
/* L210: */
|
||||
}
|
||||
wa3[i] = qtf[i] + sum;
|
||||
/* L220: */
|
||||
}
|
||||
temp = wa3.stableNorm();
|
||||
prered = 0.;
|
||||
@ -244,20 +211,16 @@ L190:
|
||||
/* reduction. */
|
||||
|
||||
ratio = 0.;
|
||||
if (prered > 0.) {
|
||||
if (prered > 0.)
|
||||
ratio = actred / prered;
|
||||
}
|
||||
|
||||
/* update the step bound. */
|
||||
|
||||
if (ratio >= Scalar(.1)) {
|
||||
goto L230;
|
||||
}
|
||||
if (ratio < Scalar(.1)) {
|
||||
ncsuc = 0;
|
||||
++ncfail;
|
||||
delta = Scalar(.5) * delta;
|
||||
goto L240;
|
||||
L230:
|
||||
} else {
|
||||
ncfail = 0;
|
||||
++ncsuc;
|
||||
if (ratio >= Scalar(.5) || ncsuc > 1) /* Computing MAX */
|
||||
@ -265,51 +228,41 @@ L230:
|
||||
if (ei_abs(ratio - 1.) <= Scalar(.1)) {
|
||||
delta = pnorm / Scalar(.5);
|
||||
}
|
||||
L240:
|
||||
}
|
||||
|
||||
/* test for successful iteration. */
|
||||
|
||||
if (ratio < Scalar(1e-4)) {
|
||||
goto L260;
|
||||
}
|
||||
|
||||
if (ratio >= Scalar(1e-4)) {
|
||||
/* successful iteration. update x, fvec, and their norms. */
|
||||
|
||||
x = wa2;
|
||||
wa2 = diag.cwise() * x;
|
||||
fvec = wa4;
|
||||
xnorm = wa2.stableNorm();
|
||||
fnorm = fnorm1;
|
||||
++iter;
|
||||
L260:
|
||||
}
|
||||
|
||||
/* determine the progress of the iteration. */
|
||||
|
||||
++nslow1;
|
||||
if (actred >= Scalar(.001)) {
|
||||
if (actred >= Scalar(.001))
|
||||
nslow1 = 0;
|
||||
}
|
||||
if (jeval) {
|
||||
if (jeval)
|
||||
++nslow2;
|
||||
}
|
||||
if (actred >= Scalar(.1)) {
|
||||
if (actred >= Scalar(.1))
|
||||
nslow2 = 0;
|
||||
}
|
||||
|
||||
/* test for convergence. */
|
||||
|
||||
if (delta <= xtol * xnorm || fnorm == 0.) {
|
||||
if (delta <= xtol * xnorm || fnorm == 0.)
|
||||
info = 1;
|
||||
}
|
||||
if (info != 0) {
|
||||
if (info != 0)
|
||||
goto L300;
|
||||
}
|
||||
|
||||
/* tests for termination and stringent tolerances. */
|
||||
|
||||
if (nfev >= maxfev) {
|
||||
if (nfev >= maxfev)
|
||||
info = 2;
|
||||
}
|
||||
/* Computing MAX */
|
||||
if (Scalar(.1) * std::max(Scalar(.1) * delta, pnorm) <= epsilon<Scalar>() * xnorm)
|
||||
info = 3;
|
||||
@ -323,7 +276,7 @@ L260:
|
||||
/* criterion for recalculating jacobian. */
|
||||
|
||||
if (ncfail == 2)
|
||||
goto L290;
|
||||
break;
|
||||
|
||||
/* calculate the rank one modification to the jacobian */
|
||||
/* and update qtf if necessary. */
|
||||
@ -338,26 +291,20 @@ L260:
|
||||
|
||||
/* compute the qr factorization of the updated jacobian. */
|
||||
|
||||
ei_r1updt<Scalar>(n, n, R.data(), lr, wa1.data(), wa2.data(), wa3.data(), &sing);
|
||||
ei_r1updt<Scalar>(n, n, R.data(), R.size(), wa1.data(), wa2.data(), wa3.data(), &sing);
|
||||
ei_r1mpyq<Scalar>(n, n, fjac.data(), fjac.rows(), wa2.data(), wa3.data());
|
||||
ei_r1mpyq<Scalar>(1, n, qtf.data(), 1, wa2.data(), wa3.data());
|
||||
|
||||
/* end of the inner loop. */
|
||||
|
||||
jeval = false;
|
||||
goto L180;
|
||||
L290:
|
||||
|
||||
/* end of the outer loop. */
|
||||
|
||||
goto L30;
|
||||
L300:
|
||||
|
||||
/* termination, either normal or user imposed. */
|
||||
|
||||
if (iflag < 0) {
|
||||
info = iflag;
|
||||
}
|
||||
/* end of the outer loop. */
|
||||
}
|
||||
L300:
|
||||
/* termination, either normal or user imposed. */
|
||||
if (iflag < 0)
|
||||
info = iflag;
|
||||
if (nprint > 0)
|
||||
iflag = Functor::debug(x, fvec, fjac);
|
||||
return info;
|
||||
|
Loading…
x
Reference in New Issue
Block a user