mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-09-22 22:33:15 +08:00
Now testing out (+=, =) in.FUNC() and out (+=, =) out.FUNC()
This commit is contained in:
parent
7c30078b9f
commit
927bd62d2a
@ -32,11 +32,14 @@ template <typename T> T cube(T x) { return x * x * x; }
|
||||
template <typename T> T inverse(T x) { return 1 / x; }
|
||||
}
|
||||
|
||||
#define TEST_UNARY_BUILTINS_FOR_SCALAR(FUNC, SCALAR) \
|
||||
#define TEST_UNARY_BUILTINS_FOR_SCALAR(FUNC, SCALAR, OPERATOR) \
|
||||
{ \
|
||||
/* out OPERATOR in.FUNC() */ \
|
||||
Tensor<SCALAR, 3> in(tensorRange); \
|
||||
Tensor<SCALAR, 3> out(tensorRange); \
|
||||
in = in.random() + static_cast<SCALAR>(0.01); \
|
||||
out = out.random() + static_cast<SCALAR>(0.01); \
|
||||
Tensor<SCALAR, 3> reference(out); \
|
||||
SCALAR *gpu_data = static_cast<SCALAR *>( \
|
||||
sycl_device.allocate(in.size() * sizeof(SCALAR))); \
|
||||
SCALAR *gpu_data_out = static_cast<SCALAR *>( \
|
||||
@ -45,41 +48,68 @@ template <typename T> T inverse(T x) { return 1 / x; }
|
||||
TensorMap<Tensor<SCALAR, 3>> gpu_out(gpu_data_out, tensorRange); \
|
||||
sycl_device.memcpyHostToDevice(gpu_data, in.data(), \
|
||||
(in.size()) * sizeof(SCALAR)); \
|
||||
gpu_out.device(sycl_device) = gpu.FUNC(); \
|
||||
sycl_device.memcpyHostToDevice(gpu_data_out, out.data(), \
|
||||
(out.size()) * sizeof(SCALAR)); \
|
||||
gpu_out.device(sycl_device) OPERATOR gpu.FUNC(); \
|
||||
sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out, \
|
||||
(out.size()) * sizeof(SCALAR)); \
|
||||
for (int i = 0; i < in.size(); ++i) { \
|
||||
VERIFY_IS_APPROX(out(i), std::FUNC(in(i))); \
|
||||
for (int i = 0; i < out.size(); ++i) { \
|
||||
SCALAR ver = reference(i); \
|
||||
ver OPERATOR std::FUNC(in(i)); \
|
||||
VERIFY_IS_APPROX(out(i), ver); \
|
||||
} \
|
||||
sycl_device.deallocate(gpu_data); \
|
||||
sycl_device.deallocate(gpu_data_out); \
|
||||
} \
|
||||
{ \
|
||||
/* out OPERATOR out.FUNC() */ \
|
||||
Tensor<SCALAR, 3> out(tensorRange); \
|
||||
out = out.random() + static_cast<SCALAR>(0.01); \
|
||||
Tensor<SCALAR, 3> reference(out); \
|
||||
SCALAR *gpu_data_out = static_cast<SCALAR *>( \
|
||||
sycl_device.allocate(out.size() * sizeof(SCALAR))); \
|
||||
TensorMap<Tensor<SCALAR, 3>> gpu_out(gpu_data_out, tensorRange); \
|
||||
sycl_device.memcpyHostToDevice(gpu_data_out, out.data(), \
|
||||
(out.size()) * sizeof(SCALAR)); \
|
||||
gpu_out.device(sycl_device) OPERATOR gpu_out.FUNC(); \
|
||||
sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out, \
|
||||
(out.size()) * sizeof(SCALAR)); \
|
||||
for (int i = 0; i < out.size(); ++i) { \
|
||||
SCALAR ver = reference(i); \
|
||||
ver OPERATOR std::FUNC(reference(i)); \
|
||||
VERIFY_IS_APPROX(out(i), ver); \
|
||||
} \
|
||||
sycl_device.deallocate(gpu_data_out); \
|
||||
}
|
||||
|
||||
#define TEST_UNARY_BUILTINS_OPERATOR(SCALAR, OPERATOR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(abs, SCALAR, OPERATOR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(sqrt, SCALAR, OPERATOR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(rsqrt, SCALAR, OPERATOR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(square, SCALAR, OPERATOR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(cube, SCALAR, OPERATOR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(inverse, SCALAR, OPERATOR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(tanh, SCALAR, OPERATOR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(exp, SCALAR, OPERATOR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(log, SCALAR, OPERATOR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(abs, SCALAR, OPERATOR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(ceil, SCALAR, OPERATOR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(floor, SCALAR, OPERATOR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(round, SCALAR, OPERATOR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(log1p, SCALAR, OPERATOR)
|
||||
|
||||
#define TEST_UNARY_BUILTINS(SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(abs, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(sqrt, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(rsqrt, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(square, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(cube, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(inverse, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(tanh, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(exp, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(log, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(abs, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(ceil, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(floor, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(round, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(log1p, SCALAR)
|
||||
TEST_UNARY_BUILTINS_OPERATOR(SCALAR, += ) \
|
||||
TEST_UNARY_BUILTINS_OPERATOR(SCALAR, = )
|
||||
|
||||
static void test_builtin_unary_sycl(const Eigen::SyclDevice &sycl_device) {
|
||||
int sizeDim1 = 100;
|
||||
int sizeDim2 = 100;
|
||||
int sizeDim3 = 100;
|
||||
int sizeDim1 = 10;
|
||||
int sizeDim2 = 10;
|
||||
int sizeDim3 = 10;
|
||||
array<int, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
|
||||
|
||||
TEST_UNARY_BUILTINS(float)
|
||||
TEST_UNARY_BUILTINS(double)
|
||||
|
||||
}
|
||||
|
||||
void test_cxx11_tensor_builtins_sycl() {
|
||||
|
Loading…
x
Reference in New Issue
Block a user