mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-30 02:05:18 +08:00
define ei_lmpar2() that takes a ColPivHouseholderQR as argument. We still
need to keep the old one around, though.
This commit is contained in:
parent
ee0e39284c
commit
92be7f461b
@ -336,7 +336,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
|
|||||||
|
|
||||||
/* determine the levenberg-marquardt parameter. */
|
/* determine the levenberg-marquardt parameter. */
|
||||||
|
|
||||||
ei_lmpar<Scalar>(fjac, ipvt, diag, qtf, delta, par, wa1);
|
ei_lmpar2<Scalar>(qrfac, diag, qtf, delta, par, wa1);
|
||||||
|
|
||||||
/* store the direction p and x + p. calculate the norm of p. */
|
/* store the direction p and x + p. calculate the norm of p. */
|
||||||
|
|
||||||
|
@ -166,3 +166,173 @@ void ei_lmpar(
|
|||||||
par = 0.;
|
par = 0.;
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <typename Scalar>
|
||||||
|
void ei_lmpar2(
|
||||||
|
const ColPivHouseholderQR<Matrix< Scalar, Dynamic, Dynamic> > &qr,
|
||||||
|
const Matrix< Scalar, Dynamic, 1 > &diag,
|
||||||
|
const Matrix< Scalar, Dynamic, 1 > &qtb,
|
||||||
|
Scalar delta,
|
||||||
|
Scalar &par,
|
||||||
|
Matrix< Scalar, Dynamic, 1 > &x)
|
||||||
|
|
||||||
|
{
|
||||||
|
/* Local variables */
|
||||||
|
int i, j, l;
|
||||||
|
Scalar fp;
|
||||||
|
Scalar parc, parl;
|
||||||
|
int iter;
|
||||||
|
Scalar temp, paru;
|
||||||
|
Scalar gnorm;
|
||||||
|
Scalar dxnorm;
|
||||||
|
|
||||||
|
|
||||||
|
/* Function Body */
|
||||||
|
const Scalar dwarf = std::numeric_limits<Scalar>::min();
|
||||||
|
const int n = qr.matrixQR().cols();
|
||||||
|
assert(n==diag.size());
|
||||||
|
assert(n==qtb.size());
|
||||||
|
assert(n==x.size());
|
||||||
|
|
||||||
|
Matrix< Scalar, Dynamic, 1 > wa1, wa2;
|
||||||
|
|
||||||
|
/* compute and store in x the gauss-newton direction. if the */
|
||||||
|
/* jacobian is rank-deficient, obtain a least squares solution. */
|
||||||
|
|
||||||
|
int nsing = n-1;
|
||||||
|
wa1 = qtb;
|
||||||
|
for (j = 0; j < n; ++j) {
|
||||||
|
if (qr.matrixQR()(j,j) == 0. && nsing == n-1)
|
||||||
|
nsing = j - 1;
|
||||||
|
if (nsing < n-1)
|
||||||
|
wa1[j] = 0.;
|
||||||
|
}
|
||||||
|
for (j = nsing; j>=0; --j) {
|
||||||
|
wa1[j] /= qr.matrixQR()(j,j);
|
||||||
|
temp = wa1[j];
|
||||||
|
for (i = 0; i < j ; ++i)
|
||||||
|
wa1[i] -= qr.matrixQR()(i,j) * temp;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (j = 0; j < n; ++j)
|
||||||
|
x[qr.colsPermutation().indices()(j)] = wa1[j];
|
||||||
|
|
||||||
|
/* initialize the iteration counter. */
|
||||||
|
/* evaluate the function at the origin, and test */
|
||||||
|
/* for acceptance of the gauss-newton direction. */
|
||||||
|
|
||||||
|
iter = 0;
|
||||||
|
wa2 = diag.cwiseProduct(x);
|
||||||
|
dxnorm = wa2.blueNorm();
|
||||||
|
fp = dxnorm - delta;
|
||||||
|
if (fp <= Scalar(0.1) * delta) {
|
||||||
|
par = 0;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* if the jacobian is not rank deficient, the newton */
|
||||||
|
/* step provides a lower bound, parl, for the zero of */
|
||||||
|
/* the function. otherwise set this bound to zero. */
|
||||||
|
|
||||||
|
parl = 0.;
|
||||||
|
if (nsing >= n-1) {
|
||||||
|
for (j = 0; j < n; ++j) {
|
||||||
|
l = qr.colsPermutation().indices()(j);
|
||||||
|
wa1[j] = diag[l] * (wa2[l] / dxnorm);
|
||||||
|
}
|
||||||
|
// it's actually a triangularView.solveInplace(), though in a weird
|
||||||
|
// way:
|
||||||
|
for (j = 0; j < n; ++j) {
|
||||||
|
Scalar sum = 0.;
|
||||||
|
for (i = 0; i < j; ++i)
|
||||||
|
sum += qr.matrixQR()(i,j) * wa1[i];
|
||||||
|
wa1[j] = (wa1[j] - sum) / qr.matrixQR()(j,j);
|
||||||
|
}
|
||||||
|
temp = wa1.blueNorm();
|
||||||
|
parl = fp / delta / temp / temp;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* calculate an upper bound, paru, for the zero of the function. */
|
||||||
|
|
||||||
|
for (j = 0; j < n; ++j)
|
||||||
|
wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];
|
||||||
|
|
||||||
|
gnorm = wa1.stableNorm();
|
||||||
|
paru = gnorm / delta;
|
||||||
|
if (paru == 0.)
|
||||||
|
paru = dwarf / std::min(delta,Scalar(0.1));
|
||||||
|
|
||||||
|
/* if the input par lies outside of the interval (parl,paru), */
|
||||||
|
/* set par to the closer endpoint. */
|
||||||
|
|
||||||
|
par = std::max(par,parl);
|
||||||
|
par = std::min(par,paru);
|
||||||
|
if (par == 0.)
|
||||||
|
par = gnorm / dxnorm;
|
||||||
|
|
||||||
|
/* beginning of an iteration. */
|
||||||
|
|
||||||
|
Matrix< Scalar, Dynamic, Dynamic > r = qr.matrixQR(); // TODO : fixme
|
||||||
|
while (true) {
|
||||||
|
++iter;
|
||||||
|
|
||||||
|
/* evaluate the function at the current value of par. */
|
||||||
|
|
||||||
|
if (par == 0.)
|
||||||
|
par = std::max(dwarf,Scalar(.001) * paru); /* Computing MAX */
|
||||||
|
|
||||||
|
wa1 = ei_sqrt(par)* diag;
|
||||||
|
|
||||||
|
Matrix< Scalar, Dynamic, 1 > sdiag(n);
|
||||||
|
ei_qrsolv<Scalar>(r, qr.colsPermutation().indices(), wa1, qtb, x, sdiag);
|
||||||
|
|
||||||
|
wa2 = diag.cwiseProduct(x);
|
||||||
|
dxnorm = wa2.blueNorm();
|
||||||
|
temp = fp;
|
||||||
|
fp = dxnorm - delta;
|
||||||
|
|
||||||
|
/* if the function is small enough, accept the current value */
|
||||||
|
/* of par. also test for the exceptional cases where parl */
|
||||||
|
/* is zero or the number of iterations has reached 10. */
|
||||||
|
|
||||||
|
if (ei_abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
|
||||||
|
break;
|
||||||
|
|
||||||
|
/* compute the newton correction. */
|
||||||
|
|
||||||
|
for (j = 0; j < n; ++j) {
|
||||||
|
l = qr.colsPermutation().indices()[j];
|
||||||
|
wa1[j] = diag[l] * (wa2[l] / dxnorm);
|
||||||
|
}
|
||||||
|
for (j = 0; j < n; ++j) {
|
||||||
|
wa1[j] /= sdiag[j];
|
||||||
|
temp = wa1[j];
|
||||||
|
for (i = j+1; i < n; ++i)
|
||||||
|
wa1[i] -= r(i,j) * temp;
|
||||||
|
}
|
||||||
|
temp = wa1.blueNorm();
|
||||||
|
parc = fp / delta / temp / temp;
|
||||||
|
|
||||||
|
/* depending on the sign of the function, update parl or paru. */
|
||||||
|
|
||||||
|
if (fp > 0.)
|
||||||
|
parl = std::max(parl,par);
|
||||||
|
if (fp < 0.)
|
||||||
|
paru = std::min(paru,par);
|
||||||
|
|
||||||
|
/* compute an improved estimate for par. */
|
||||||
|
|
||||||
|
/* Computing MAX */
|
||||||
|
par = std::max(parl,par+parc);
|
||||||
|
|
||||||
|
/* end of an iteration. */
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
/* termination. */
|
||||||
|
|
||||||
|
if (iter == 0)
|
||||||
|
par = 0.;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user