merge with default branch

This commit is contained in:
Gael Guennebaud 2014-04-22 17:00:38 +02:00
commit 934ce93886
19 changed files with 108 additions and 24 deletions

View File

@ -10,9 +10,11 @@
*
*
* This module provides two variants of the Cholesky decomposition for selfadjoint (hermitian) matrices.
* Those decompositions are accessible via the following MatrixBase methods:
* - MatrixBase::llt(),
* Those decompositions are also accessible via the following methods:
* - MatrixBase::llt()
* - MatrixBase::ldlt()
* - SelfAdjointView::llt()
* - SelfAdjointView::ldlt()
*
* \code
* #include <Eigen/Cholesky>

View File

@ -43,7 +43,7 @@ namespace internal {
* Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
* decomposition to determine whether a system of equations has a solution.
*
* \sa MatrixBase::ldlt(), class LLT
* \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT
*/
template<typename _MatrixType, int _UpLo> class LDLT
{
@ -179,7 +179,7 @@ template<typename _MatrixType, int _UpLo> class LDLT
* least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function
* computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular.
*
* \sa MatrixBase::ldlt()
* \sa MatrixBase::ldlt(), SelfAdjointView::ldlt()
*/
template<typename Rhs>
inline const internal::solve_retval<LDLT, Rhs>
@ -582,6 +582,7 @@ MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
#ifndef __CUDACC__
/** \cholesky_module
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
* \sa MatrixBase::ldlt()
*/
template<typename MatrixType, unsigned int UpLo>
inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
@ -592,6 +593,7 @@ SelfAdjointView<MatrixType, UpLo>::ldlt() const
/** \cholesky_module
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
* \sa SelfAdjointView::ldlt()
*/
template<typename Derived>
inline const LDLT<typename MatrixBase<Derived>::PlainObject>

View File

@ -41,7 +41,7 @@ template<typename MatrixType, int UpLo> struct LLT_Traits;
* Example: \include LLT_example.cpp
* Output: \verbinclude LLT_example.out
*
* \sa MatrixBase::llt(), class LDLT
* \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT
*/
/* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
@ -115,7 +115,7 @@ template<typename _MatrixType, int _UpLo> class LLT
* Example: \include LLT_solve.cpp
* Output: \verbinclude LLT_solve.out
*
* \sa solveInPlace(), MatrixBase::llt()
* \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt()
*/
template<typename Rhs>
inline const internal::solve_retval<LLT, Rhs>
@ -468,6 +468,7 @@ MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const
#ifndef __CUDACC__
/** \cholesky_module
* \returns the LLT decomposition of \c *this
* \sa SelfAdjointView::llt()
*/
template<typename Derived>
inline const LLT<typename MatrixBase<Derived>::PlainObject>
@ -478,6 +479,7 @@ MatrixBase<Derived>::llt() const
/** \cholesky_module
* \returns the LLT decomposition of \c *this
* \sa SelfAdjointView::llt()
*/
template<typename MatrixType, unsigned int UpLo>
inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>

View File

@ -669,6 +669,15 @@ bool (isfinite)(const T& x)
return x<NumTraits<T>::highest() && x>NumTraits<T>::lowest();
}
template<typename T>
EIGEN_DEVICE_FUNC
bool (isfinite)(const std::complex<T>& x)
{
using std::real;
using std::imag;
return isfinite(real(x)) && isfinite(imag(x));
}
} // end namespace numext
namespace internal {

View File

@ -97,6 +97,7 @@ template<> struct packet_traits<int> : default_packet_traits
// workaround gcc 4.2, 4.3 and 4.4 compilatin issue
EIGEN_STRONG_INLINE float32x4_t vld1q_f32(const float* x) { return ::vld1q_f32((const float32_t*)x); }
EIGEN_STRONG_INLINE float32x2_t vld1_f32 (const float* x) { return ::vld1_f32 ((const float32_t*)x); }
EIGEN_STRONG_INLINE float32x2_t vld1_dup_f32 (const float* x) { return ::vld1_dup_f32 ((const float32_t*)x); }
EIGEN_STRONG_INLINE void vst1q_f32(float* to, float32x4_t from) { ::vst1q_f32((float32_t*)to,from); }
EIGEN_STRONG_INLINE void vst1_f32 (float* to, float32x2_t from) { ::vst1_f32 ((float32_t*)to,from); }
#endif

View File

@ -265,6 +265,8 @@ template<typename MatrixType, unsigned int UpLo>
template<typename ProductDerived, typename _Lhs, typename _Rhs>
TriangularView<MatrixType,UpLo>& TriangularView<MatrixType,UpLo>::assignProduct(const ProductBase<ProductDerived, _Lhs,_Rhs>& prod, const Scalar& alpha)
{
eigen_assert(m_matrix.rows() == prod.rows() && m_matrix.cols() == prod.cols());
general_product_to_triangular_selector<MatrixType, ProductDerived, UpLo, (_Lhs::ColsAtCompileTime==1) || (_Rhs::RowsAtCompileTime==1)>::run(m_matrix.const_cast_derived(), prod.derived(), alpha);
return *this;

View File

@ -54,8 +54,25 @@
#endif
#if defined EIGEN_USE_MKL
# include <mkl.h>
/*Check IMKL version for compatibility: < 10.3 is not usable with Eigen*/
# ifndef INTEL_MKL_VERSION
# undef EIGEN_USE_MKL /* INTEL_MKL_VERSION is not even defined on older versions */
# elif INTEL_MKL_VERSION < 100305 /* the intel-mkl-103-release-notes say this was when the lapacke.h interface was added*/
# undef EIGEN_USE_MKL
# endif
# ifndef EIGEN_USE_MKL
/*If the MKL version is too old, undef everything*/
# undef EIGEN_USE_MKL_ALL
# undef EIGEN_USE_BLAS
# undef EIGEN_USE_LAPACKE
# undef EIGEN_USE_MKL_VML
# undef EIGEN_USE_LAPACKE_STRICT
# undef EIGEN_USE_LAPACKE
# endif
#endif
#include <mkl.h>
#if defined EIGEN_USE_MKL
#include <mkl_lapacke.h>
#define EIGEN_MKL_VML_THRESHOLD 128

View File

@ -89,7 +89,7 @@ inline void throw_std_bad_alloc()
#ifdef EIGEN_EXCEPTIONS
throw std::bad_alloc();
#else
std::size_t huge = -1;
std::size_t huge = static_cast<std::size_t>(-1);
new int[huge];
#endif
}

View File

@ -275,10 +275,11 @@ template<typename _MatrixType> class EigenSolver
*/
EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
/** \returns NumericalIssue if the input contains INF or NaN values or overflow occured. Returns Success otherwise. */
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
return m_realSchur.info();
return m_info;
}
/** \brief Sets the maximum number of iterations allowed. */
@ -302,6 +303,7 @@ template<typename _MatrixType> class EigenSolver
EigenvalueType m_eivalues;
bool m_isInitialized;
bool m_eigenvectorsOk;
ComputationInfo m_info;
RealSchur<MatrixType> m_realSchur;
MatrixType m_matT;
@ -366,12 +368,16 @@ EigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvect
{
using std::sqrt;
using std::abs;
using std::max;
using numext::isfinite;
eigen_assert(matrix.cols() == matrix.rows());
// Reduce to real Schur form.
m_realSchur.compute(matrix, computeEigenvectors);
if (m_realSchur.info() == Success)
m_info = m_realSchur.info();
if (m_info == Success)
{
m_matT = m_realSchur.matrixT();
if (computeEigenvectors)
@ -385,14 +391,40 @@ EigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvect
if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0))
{
m_eivalues.coeffRef(i) = m_matT.coeff(i, i);
if(!isfinite(m_eivalues.coeffRef(i)))
{
m_isInitialized = true;
m_eigenvectorsOk = false;
m_info = NumericalIssue;
return *this;
}
++i;
}
else
{
Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1));
Scalar z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
Scalar z;
// Compute z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
// without overflow
{
Scalar t0 = m_matT.coeff(i+1, i);
Scalar t1 = m_matT.coeff(i, i+1);
Scalar maxval = (max)(abs(p),(max)(abs(t0),abs(t1)));
t0 /= maxval;
t1 /= maxval;
Scalar p0 = p/maxval;
z = maxval * sqrt(abs(p0 * p0 + t0 * t1));
}
m_eivalues.coeffRef(i) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z);
m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z);
if(!(isfinite(m_eivalues.coeffRef(i)) && isfinite(m_eivalues.coeffRef(i+1))))
{
m_isInitialized = true;
m_eigenvectorsOk = false;
m_info = NumericalIssue;
return *this;
}
i += 2;
}
}
@ -581,7 +613,7 @@ void EigenSolver<MatrixType>::doComputeEigenvectors()
}
else
{
eigen_assert(0 && "Internal bug in EigenSolver"); // this should not happen
eigen_assert(0 && "Internal bug in EigenSolver (INF or NaN has not been detected)"); // this should not happen
}
}

View File

@ -415,6 +415,7 @@ void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
JacobiRotation<RealScalar> *j_right)
{
using std::sqrt;
using std::abs;
Matrix<RealScalar,2,2> m;
m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
@ -428,9 +429,11 @@ void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
}
else
{
RealScalar u = d / t;
rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + numext::abs2(u));
rot1.s() = rot1.c() * u;
RealScalar t2d2 = numext::hypot(t,d);
rot1.c() = abs(t)/t2d2;
rot1.s() = d/t2d2;
if(t<RealScalar(0))
rot1.s() = -rot1.s();
}
m.applyOnTheLeft(0,1,rot1);
j_right->makeJacobi(m,0,1);

View File

@ -223,7 +223,7 @@ ALIASES = "only_for_vectors=This is only for vectors (either row-
"note_about_using_kernel_to_study_multiple_solutions=If you need a complete analysis of the space of solutions, take the one solution obtained by this method and add to it elements of the kernel, as determined by kernel()." \
"note_about_checking_solutions=This method just tries to find as good a solution as possible. If you want to check whether a solution exists or if it is accurate, just call this function to get a result and then compute the error of this result, or use MatrixBase::isApprox() directly, for instance like this: \code bool a_solution_exists = (A*result).isApprox(b, precision); \endcode This method avoids dividing by zero, so that the non-existence of a solution doesn't by itself mean that you'll get \c inf or \c nan values." \
"note_try_to_help_rvo=This function returns the result by value. In order to make that efficient, it is implemented as just a return statement using a special constructor, hopefully allowing the compiler to perform a RVO (return value optimization)." \
"nonstableyet=\warning This is not considered to be part of the stable public API yet. Changes may happen in future releases. See \ref Experimental \"Experimental parts of Eigen\"
"nonstableyet=\warning This is not considered to be part of the stable public API yet. Changes may happen in future releases. See \ref Experimental \"Experimental parts of Eigen\""
ALIASES += "eigenAutoToc= "
@ -1583,6 +1583,7 @@ PREDEFINED = EIGEN_EMPTY_STRUCT \
EIGEN_VECTORIZE \
EIGEN_QT_SUPPORT \
EIGEN_STRONG_INLINE=inline \
EIGEN_DEVICE_FUNC= \
"EIGEN2_SUPPORT_STAGE=99" \
"EIGEN_MAKE_CWISE_BINARY_OP(METHOD,FUNCTOR)=template<typename OtherDerived> const CwiseBinaryOp<FUNCTOR<Scalar>, const Derived, const OtherDerived> METHOD(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const;" \
"EIGEN_CWISE_PRODUCT_RETURN_TYPE(LHS,RHS)=CwiseBinaryOp<internal::scalar_product_op<typename LHS::Scalar, typename RHS::Scalar >, const LHS, const RHS>"

View File

@ -32,7 +32,7 @@ Eigen also provides the \link MatrixBase::norm() norm() \endlink method, which r
These operations can also operate on matrices; in that case, a n-by-p matrix is seen as a vector of size (n*p), so for example the \link MatrixBase::norm() norm() \endlink method returns the "Frobenius" or "Hilbert-Schmidt" norm. We refrain from speaking of the \f$\ell^2\f$ norm of a matrix because that can mean different things.
If you want other \f$\ell^p\f$ norms, use the \link MatrixBase::lpNorm() lpNnorm<p>() \endlink method. The template parameter \a p can take the special value \a Infinity if you want the \f$\ell^\infty\f$ norm, which is the maximum of the absolute values of the coefficients.
If you want other \f$\ell^p\f$ norms, use the \link MatrixBase::lpNorm() lpNorm<p>() \endlink method. The template parameter \a p can take the special value \a Infinity if you want the \f$\ell^\infty\f$ norm, which is the maximum of the absolute values of the coefficients.
The following example demonstrates these methods.

View File

@ -315,6 +315,9 @@ find_package(CUDA)
if(CUDA_FOUND)
set(CUDA_PROPAGATE_HOST_FLAGS OFF)
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")
set(CUDA_NVCC_FLAGS "-ccbin /usr/bin/clang" CACHE STRING "nvcc flags" FORCE)
endif()
cuda_include_directories(${CMAKE_CURRENT_BINARY_DIR})
set(EIGEN_ADD_TEST_FILENAME_EXTENSION "cu")

View File

@ -82,10 +82,6 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
symm += a1 * a1.adjoint();
}
// to test if really Cholesky only uses the upper triangular part, uncomment the following
// FIXME: currently that fails !!
//symm.template part<StrictlyLower>().setZero();
{
SquareMatrixType symmUp = symm.template triangularView<Upper>();
SquareMatrixType symmLo = symm.template triangularView<Lower>();

View File

@ -129,7 +129,7 @@ void test_cuda_basic()
CALL_SUBTEST( run_and_compare_to_cuda(prod<Matrix4f,Vector4f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_cuda(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_c<uda(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_cuda(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix3f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix2f>(), nthreads, in, out) );

View File

@ -121,5 +121,18 @@ void test_eigensolver_generic()
}
);
// regression test for bug 793
#ifdef EIGEN_TEST_PART_2
{
MatrixXd a(3,3);
a << 0, 0, 1,
1, 1, 1,
1, 1e+200, 1;
Eigen::EigenSolver<MatrixXd> eig(a);
VERIFY_IS_APPROX(a * eig.pseudoEigenvectors(), eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix());
VERIFY_IS_APPROX(a * eig.eigenvectors(), eig.eigenvectors() * eig.eigenvalues().asDiagonal());
}
#endif
TEST_SET_BUT_UNUSED_VARIABLE(s)
}

View File

@ -285,7 +285,7 @@ struct equal_op { template<typename A, typename B> constexpr static inli
struct not_equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a != b) { return a != b; } };
struct lesser_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a < b) { return a < b; } };
struct lesser_equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a <= b) { return a <= b; } };
struct greater_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a < b) { return a < b; } };
struct greater_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a > b) { return a > b; } };
struct greater_equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a >= b) { return a >= b; } };
/* generic unary operations */

View File

@ -2,6 +2,7 @@ ADD_SUBDIRECTORY(AutoDiff)
ADD_SUBDIRECTORY(BVH)
ADD_SUBDIRECTORY(FFT)
ADD_SUBDIRECTORY(IterativeSolvers)
ADD_SUBDIRECTORY(LevenbergMarquardt)
ADD_SUBDIRECTORY(MatrixFunctions)
ADD_SUBDIRECTORY(MoreVectorization)
ADD_SUBDIRECTORY(NonLinearOptimization)

View File

@ -2,5 +2,5 @@ FILE(GLOB Eigen_LevenbergMarquardt_SRCS "*.h")
INSTALL(FILES
${Eigen_LevenbergMarquardt_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/LevenbergMarquardt COMPONENT Devel
DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/LevenbergMarquardt COMPONENT Devel
)