mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-11 03:09:01 +08:00
Correct GMRES:
* Fix error in calculation of residual at restart. * Use relative residual as stopping criterion. * Improve documentation.
This commit is contained in:
parent
e51da9c3a8
commit
953ec08089
@ -27,7 +27,7 @@ namespace internal {
|
|||||||
* \param iters on input: maximum number of iterations to perform
|
* \param iters on input: maximum number of iterations to perform
|
||||||
* on output: number of iterations performed
|
* on output: number of iterations performed
|
||||||
* \param restart number of iterations for a restart
|
* \param restart number of iterations for a restart
|
||||||
* \param tol_error on input: residual tolerance
|
* \param tol_error on input: relative residual tolerance
|
||||||
* on output: residuum achieved
|
* on output: residuum achieved
|
||||||
*
|
*
|
||||||
* \sa IterativeMethods::bicgstab()
|
* \sa IterativeMethods::bicgstab()
|
||||||
@ -70,18 +70,24 @@ bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Precondition
|
|||||||
|
|
||||||
const int m = mat.rows();
|
const int m = mat.rows();
|
||||||
|
|
||||||
VectorType p0 = rhs - mat*x;
|
// residual and preconditioned residual
|
||||||
|
const VectorType p0 = rhs - mat*x;
|
||||||
VectorType r0 = precond.solve(p0);
|
VectorType r0 = precond.solve(p0);
|
||||||
|
|
||||||
|
const RealScalar r0Norm = r0.norm();
|
||||||
|
|
||||||
// is initial guess already good enough?
|
// is initial guess already good enough?
|
||||||
if(abs(r0.norm()) < tol) {
|
if(r0Norm == 0) {
|
||||||
|
tol_error=0;
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// storage for Hessenberg matrix and Householder data
|
||||||
|
FMatrixType H = FMatrixType::Zero(m, restart + 1);
|
||||||
VectorType w = VectorType::Zero(restart + 1);
|
VectorType w = VectorType::Zero(restart + 1);
|
||||||
|
|
||||||
FMatrixType H = FMatrixType::Zero(m, restart + 1); // Hessenberg matrix
|
|
||||||
VectorType tau = VectorType::Zero(restart + 1);
|
VectorType tau = VectorType::Zero(restart + 1);
|
||||||
|
|
||||||
|
// storage for Jacobi rotations
|
||||||
std::vector < JacobiRotation < Scalar > > G(restart);
|
std::vector < JacobiRotation < Scalar > > G(restart);
|
||||||
|
|
||||||
// generate first Householder vector
|
// generate first Householder vector
|
||||||
@ -112,11 +118,10 @@ bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Precondition
|
|||||||
}
|
}
|
||||||
|
|
||||||
if (v.tail(m - k).norm() != 0.0) {
|
if (v.tail(m - k).norm() != 0.0) {
|
||||||
|
|
||||||
if (k <= restart) {
|
if (k <= restart) {
|
||||||
|
|
||||||
// generate new Householder vector
|
// generate new Householder vector
|
||||||
VectorType e(m - k - 1);
|
VectorType e(m - k - 1);
|
||||||
RealScalar beta;
|
RealScalar beta;
|
||||||
v.tail(m - k).makeHouseholder(e, tau.coeffRef(k), beta);
|
v.tail(m - k).makeHouseholder(e, tau.coeffRef(k), beta);
|
||||||
H.col(k).tail(m - k - 1) = e;
|
H.col(k).tail(m - k - 1) = e;
|
||||||
@ -125,74 +130,73 @@ bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Precondition
|
|||||||
v.tail(m - k).applyHouseholderOnTheLeft(H.col(k).tail(m - k - 1), tau.coeffRef(k), workspace.data());
|
v.tail(m - k).applyHouseholderOnTheLeft(H.col(k).tail(m - k - 1), tau.coeffRef(k), workspace.data());
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (k > 1) {
|
if (k > 1) {
|
||||||
for (int i = 0; i < k - 1; ++i) {
|
for (int i = 0; i < k - 1; ++i) {
|
||||||
// apply old Givens rotations to v
|
// apply old Givens rotations to v
|
||||||
v.applyOnTheLeft(i, i + 1, G[i].adjoint());
|
v.applyOnTheLeft(i, i + 1, G[i].adjoint());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (k<m && v(k) != (Scalar) 0) {
|
if (k<m && v(k) != (Scalar) 0) {
|
||||||
// determine next Givens rotation
|
|
||||||
G[k - 1].makeGivens(v(k - 1), v(k));
|
|
||||||
|
|
||||||
// apply Givens rotation to v and w
|
// determine next Givens rotation
|
||||||
v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
|
G[k - 1].makeGivens(v(k - 1), v(k));
|
||||||
w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
|
|
||||||
|
|
||||||
}
|
// apply Givens rotation to v and w
|
||||||
|
v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
|
||||||
|
w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
|
||||||
|
}
|
||||||
|
|
||||||
// insert coefficients into upper matrix triangle
|
// insert coefficients into upper matrix triangle
|
||||||
H.col(k - 1).head(k) = v.head(k);
|
H.col(k - 1).head(k) = v.head(k);
|
||||||
|
|
||||||
bool stop=(k==m || abs(w(k)) < tol || iters == maxIters);
|
bool stop=(k==m || abs(w(k)) < tol * r0Norm || iters == maxIters);
|
||||||
|
|
||||||
if (stop || k == restart) {
|
if (stop || k == restart) {
|
||||||
|
|
||||||
// solve upper triangular system
|
// solve upper triangular system
|
||||||
VectorType y = w.head(k);
|
VectorType y = w.head(k);
|
||||||
H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y);
|
H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y);
|
||||||
|
|
||||||
// use Horner-like scheme to calculate solution vector
|
// use Horner-like scheme to calculate solution vector
|
||||||
VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
|
VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
|
||||||
|
|
||||||
// apply Householder reflection H_{k} to x_new
|
// apply Householder reflection H_{k} to x_new
|
||||||
x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());
|
x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());
|
||||||
|
|
||||||
for (int i = k - 2; i >= 0; --i) {
|
for (int i = k - 2; i >= 0; --i) {
|
||||||
x_new += y(i) * VectorType::Unit(m, i);
|
x_new += y(i) * VectorType::Unit(m, i);
|
||||||
// apply Householder reflection H_{i} to x_new
|
// apply Householder reflection H_{i} to x_new
|
||||||
x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
||||||
}
|
}
|
||||||
|
|
||||||
x += x_new;
|
x += x_new;
|
||||||
|
|
||||||
if (stop) {
|
if (stop) {
|
||||||
return true;
|
return true;
|
||||||
} else {
|
} else {
|
||||||
k=0;
|
k=0;
|
||||||
|
|
||||||
// reset data for a restart r0 = rhs - mat * x;
|
// reset data for restart
|
||||||
VectorType p0=mat*x;
|
const VectorType p0 = rhs - mat*x;
|
||||||
VectorType p1=precond.solve(p0);
|
r0 = precond.solve(p0);
|
||||||
r0 = rhs - p1;
|
|
||||||
// r0_sqnorm = r0.squaredNorm();
|
|
||||||
w = VectorType::Zero(restart + 1);
|
|
||||||
H = FMatrixType::Zero(m, restart + 1);
|
|
||||||
tau = VectorType::Zero(restart + 1);
|
|
||||||
|
|
||||||
// generate first Householder vector
|
// clear Hessenberg matrix and Householder data
|
||||||
RealScalar beta;
|
H = FMatrixType::Zero(m, restart + 1);
|
||||||
r0.makeHouseholder(e, tau.coeffRef(0), beta);
|
w = VectorType::Zero(restart + 1);
|
||||||
w(0)=(Scalar) beta;
|
tau = VectorType::Zero(restart + 1);
|
||||||
H.bottomLeftCorner(m - 1, 1) = e;
|
|
||||||
|
|
||||||
}
|
// generate first Householder vector
|
||||||
|
RealScalar beta;
|
||||||
|
r0.makeHouseholder(e, tau.coeffRef(0), beta);
|
||||||
|
w(0)=(Scalar) beta;
|
||||||
|
H.bottomLeftCorner(m - 1, 1) = e;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user