* revert the previous interface change in solveTriangular (pointer vs reference)

* remove the cast operators in the Geometry module: they are replaced by constructors
  and new operator= in Matrix
* extended the operations supported by Rotation2D
* rewrite in solveTriangular:
  - merge the Upper and Lower specializations
  - big optimization of the path for row-major triangular matrices
This commit is contained in:
Gael Guennebaud 2008-08-18 22:17:42 +00:00
parent e778ae2559
commit 95dd09bea6
9 changed files with 202 additions and 117 deletions

View File

@ -149,7 +149,7 @@ typename Derived::Eval CholeskyWithoutSquareRoot<MatrixType>::solve(const Matrix
return m_matrix.adjoint().template part<UnitUpper>()
.solveTriangular(
( m_matrix.cwise().inverse().diagonal().asDiagonal()
( m_matrix.cwise().inverse().template part<Diagonal>()
* matrixL().solveTriangular(b))
);
}

View File

@ -363,6 +363,13 @@ class Matrix : public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCol
else
this->Base::swap(other);
}
/////////// Geometry module ///////////
explicit Matrix(const Quaternion<Scalar>& q);
Matrix& operator=(const Quaternion<Scalar>& q);
explicit Matrix(const AngleAxis<Scalar>& aa);
Matrix& operator=(const AngleAxis<Scalar>& aa);
};
/** \defgroup matrixtypedefs Global matrix typedefs

View File

@ -325,7 +325,7 @@ template<typename Derived> class MatrixBase
typename OtherDerived::Eval solveTriangular(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived>
void solveTriangularInPlace(MatrixBase<OtherDerived>* p_other) const;
void solveTriangularInPlace(MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived>

View File

@ -29,19 +29,19 @@ template<typename XprType> struct ei_is_part { enum {value=false}; };
template<typename XprType, unsigned int Mode> struct ei_is_part<Part<XprType,Mode> > { enum {value=true}; };
template<typename Lhs, typename Rhs,
int TriangularPart = ei_is_part<Lhs>::value ? -1 // this is to solve ambiguous specializations
: (int(Lhs::Flags) & LowerTriangularBit)
int TriangularPart = (int(Lhs::Flags) & LowerTriangularBit)
? Lower
: (int(Lhs::Flags) & UpperTriangularBit)
? Upper
: -1,
int StorageOrder = int(Lhs::Flags) & RowMajorBit ? RowMajor : ColMajor
int StorageOrder = ei_is_part<Lhs>::value ? -1 // this is to solve ambiguous specializations
: int(Lhs::Flags) & RowMajorBit ? RowMajor : ColMajor
>
struct ei_solve_triangular_selector;
// transform a Part xpr to a Flagged xpr
template<typename Lhs, unsigned int LhsMode, typename Rhs, int TriangularPart, int StorageOrder>
struct ei_solve_triangular_selector<Part<Lhs,LhsMode>,Rhs,TriangularPart,StorageOrder>
template<typename Lhs, unsigned int LhsMode, typename Rhs, int UpLo, int StorageOrder>
struct ei_solve_triangular_selector<Part<Lhs,LhsMode>,Rhs,UpLo,StorageOrder>
{
static void run(const Part<Lhs,LhsMode>& lhs, Rhs& other)
{
@ -50,88 +50,129 @@ struct ei_solve_triangular_selector<Part<Lhs,LhsMode>,Rhs,TriangularPart,Storage
};
// forward substitution, row-major
template<typename Lhs, typename Rhs>
struct ei_solve_triangular_selector<Lhs,Rhs,Lower,RowMajor>
{
typedef typename Rhs::Scalar Scalar;
static void run(const Lhs& lhs, Rhs& other)
{
for(int c=0 ; c<other.cols() ; ++c)
{
if(!(Lhs::Flags & UnitDiagBit))
other.coeffRef(0,c) = other.coeff(0,c)/lhs.coeff(0, 0);
for(int i=1; i<lhs.rows(); ++i)
{
Scalar tmp = other.coeff(i,c) - ((lhs.row(i).start(i)) * other.col(c).start(i)).coeff(0,0);
if (Lhs::Flags & UnitDiagBit)
other.coeffRef(i,c) = tmp;
else
other.coeffRef(i,c) = tmp/lhs.coeff(i,i);
}
}
}
};
// backward substitution, row-major
template<typename Lhs, typename Rhs>
struct ei_solve_triangular_selector<Lhs,Rhs,Upper,RowMajor>
template<typename Lhs, typename Rhs, int UpLo>
struct ei_solve_triangular_selector<Lhs,Rhs,UpLo,RowMajor>
{
typedef typename Rhs::Scalar Scalar;
static void run(const Lhs& lhs, Rhs& other)
{
const bool IsLower = (UpLo==Lower);
const int size = lhs.cols();
/* We perform the inverse product per block of 4 rows such that we perfectly match
* our optimized matrix * vector product. blockyStart represents the number of rows
* we have process first using the non-block version.
*/
int blockyStart = (std::max(size-5,0)/4)*4;
if (IsLower)
blockyStart = size - blockyStart;
else
blockyStart -= 1;
for(int c=0 ; c<other.cols() ; ++c)
{
// process first rows using the non block version
if(!(Lhs::Flags & UnitDiagBit))
other.coeffRef(size-1,c) = other.coeff(size-1, c)/lhs.coeff(size-1, size-1);
for(int i=size-2 ; i>=0 ; --i)
if (IsLower)
other.coeffRef(0,c) = other.coeff(0,c)/lhs.coeff(0, 0);
else
other.coeffRef(size-1,c) = other.coeff(size-1, c)/lhs.coeff(size-1, size-1);
for(int i=(IsLower ? 1 : size-2); IsLower ? i<blockyStart : i>blockyStart; i += (IsLower ? 1 : -1) )
{
Scalar tmp = other.coeff(i,c)
- ((lhs.row(i).end(size-i-1)) * other.col(c).end(size-i-1)).coeff(0,0);
- (IsLower ? ((lhs.row(i).start(i)) * other.col(c).start(i)).coeff(0,0)
: ((lhs.row(i).end(size-i-1)) * other.col(c).end(size-i-1)).coeff(0,0));
if (Lhs::Flags & UnitDiagBit)
other.coeffRef(i,c) = tmp;
else
other.coeffRef(i,c) = tmp/lhs.coeff(i,i);
}
// now let process the remaining rows 4 at once
for(int i=blockyStart; IsLower ? i<size : i>0; )
{
int startBlock = i;
int endBlock = startBlock + (IsLower ? 4 : -4);
/* Process the i cols times 4 rows block, and keep the result in a temporary vector */
Matrix<Scalar,4,1> btmp;
if (IsLower)
btmp = lhs.block(startBlock,0,4,i) * other.col(c).start(i);
else
btmp = lhs.block(i-3,i+1,4,size-1-i) * other.col(c).end(size-1-i);
/* Let's process the 4x4 sub-matrix as usual.
* btmp stores the diagonal coefficients used to update the remaining part of the result.
*/
{
Scalar tmp = other.coeff(startBlock,c)-btmp.coeff(IsLower?0:3);
if (Lhs::Flags & UnitDiagBit)
other.coeffRef(i,c) = tmp;
else
other.coeffRef(i,c) = tmp/lhs.coeff(i,i);
}
i += IsLower ? 1 : -1;
for (;IsLower ? i<endBlock : i>endBlock; i += IsLower ? 1 : -1)
{
int remainingSize = IsLower ? i-startBlock : startBlock-i;
Scalar tmp = other.coeff(i,c)
- btmp.coeff(IsLower ? remainingSize : 3-remainingSize)
- ( lhs.row(i).block(IsLower ? startBlock : i+1, remainingSize)
* other.col(c).block(IsLower ? startBlock : i+1, remainingSize)).coeff(0,0);
if (Lhs::Flags & UnitDiagBit)
other.coeffRef(i,c) = tmp;
else
other.coeffRef(i,c) = tmp/lhs.coeff(i,i);
}
}
}
}
};
// forward substitution, col-major
// FIXME the Lower and Upper specialization could be merged using a small helper class
// performing reflexions on the coordinates...
template<typename Lhs, typename Rhs>
struct ei_solve_triangular_selector<Lhs,Rhs,Lower,ColMajor>
// Implements the following configurations:
// - inv(Lower, ColMajor) * Column vector
// - inv(Lower,UnitDiag,ColMajor) * Column vector
// - inv(Upper, ColMajor) * Column vector
// - inv(Upper,UnitDiag,ColMajor) * Column vector
template<typename Lhs, typename Rhs, int UpLo>
struct ei_solve_triangular_selector<Lhs,Rhs,UpLo,ColMajor>
{
typedef typename Rhs::Scalar Scalar;
typedef typename ei_packet_traits<Scalar>::type Packet;
enum {PacketSize = ei_packet_traits<Scalar>::size};
enum { PacketSize = ei_packet_traits<Scalar>::size };
static void run(const Lhs& lhs, Rhs& other)
{
static const bool IsLower = (UpLo==Lower);
const int size = lhs.cols();
for(int c=0 ; c<other.cols() ; ++c)
{
/* let's perform the inverse product per block of 4 columns such that we perfectly match
* our optimized matrix * vector product.
* our optimized matrix * vector product. blockyEnd represents the number of rows
* we can process using the block version.
*/
int blockyEnd = (std::max(size-5,0)/4)*4;
for(int i=0; i<blockyEnd;)
if (!IsLower)
blockyEnd = size-1 - blockyEnd;
for(int i=IsLower ? 0 : size-1; IsLower ? i<blockyEnd : i>blockyEnd;)
{
/* Let's process the 4x4 sub-matrix as usual.
* btmp stores the diagonal coefficients used to update the remaining part of the result.
*/
int startBlock = i;
int endBlock = startBlock+4;
int endBlock = startBlock + (IsLower ? 4 : -4);
Matrix<Scalar,4,1> btmp;
for (;i<endBlock;++i)
for (;IsLower ? i<endBlock : i>endBlock;
i += IsLower ? 1 : -1)
{
if(!(Lhs::Flags & UnitDiagBit))
other.coeffRef(i,c) /= lhs.coeff(i,i);
int remainingSize = endBlock-i-1;
int remainingSize = IsLower ? endBlock-i-1 : i-endBlock-1;
if (remainingSize>0)
other.col(c).block(i+1,remainingSize) -= other.coeffRef(i,c) * Block<Lhs,Dynamic,1>(lhs, i+1, i, remainingSize, 1);
btmp.coeffRef(i-startBlock) = -other.coeffRef(i,c);
other.col(c).block((IsLower ? i : endBlock) + 1, remainingSize) -=
other.coeffRef(i,c)
* Block<Lhs,Dynamic,1>(lhs, (IsLower ? i : endBlock) + 1, i, remainingSize, 1);
btmp.coeffRef(IsLower ? i-startBlock : remainingSize) = -other.coeffRef(i,c);
}
/* Now we can efficiently update the remaining part of the result as a matrix * vector product.
@ -143,13 +184,15 @@ struct ei_solve_triangular_selector<Lhs,Rhs,Lower,ColMajor>
// FIXME this is cool but what about conjugate/adjoint expressions ? do we want to evaluate them ?
// this is a more general problem though.
ei_cache_friendly_product_colmajor_times_vector(
size-endBlock, &(lhs.const_cast_derived().coeffRef(endBlock,startBlock)), lhs.stride(),
btmp, &(other.coeffRef(endBlock,c)));
IsLower ? size-endBlock : endBlock+1,
&(lhs.const_cast_derived().coeffRef(IsLower ? endBlock : 0, IsLower ? startBlock : endBlock+1)),
lhs.stride(),
btmp, &(other.coeffRef(IsLower ? endBlock : 0, c)));
}
/* Now we have to process the remaining part as usual */
int i;
for(i=blockyEnd; i<size-1; ++i)
for(i=blockyEnd; IsLower ? i<size-1 : i>0; i += (IsLower ? 1 : -1) )
{
if(!(Lhs::Flags & UnitDiagBit))
other.coeffRef(i,c) /= lhs.coeff(i,i);
@ -157,7 +200,10 @@ struct ei_solve_triangular_selector<Lhs,Rhs,Lower,ColMajor>
/* NOTE we cannot use lhs.col(i).end(size-i-1) because Part::coeffRef gets called by .col() to
* get the address of the start of the row
*/
other.col(c).end(size-i-1) -= other.coeffRef(i,c) * Block<Lhs,Dynamic,1>(lhs, i+1,i, size-i-1,1);
if(IsLower)
other.col(c).end(size-i-1) -= other.coeffRef(i,c) * Block<Lhs,Dynamic,1>(lhs, i+1,i, size-i-1,1);
else
other.col(c).start(i) -= other.coeffRef(i,c) * Block<Lhs,Dynamic,1>(lhs, 0,i, i, 1);
}
if(!(Lhs::Flags & UnitDiagBit))
other.coeffRef(i,c) /= lhs.coeff(i,i);
@ -165,68 +211,20 @@ struct ei_solve_triangular_selector<Lhs,Rhs,Lower,ColMajor>
}
};
// backward substitution, col-major
// see the previous specialization for details on the algorithm
template<typename Lhs, typename Rhs>
struct ei_solve_triangular_selector<Lhs,Rhs,Upper,ColMajor>
{
typedef typename Rhs::Scalar Scalar;
static void run(const Lhs& lhs, Rhs& other)
{
const int size = lhs.cols();
for(int c=0 ; c<other.cols() ; ++c)
{
int blockyEnd = size-1 - (std::max(size-5,0)/4)*4;
for(int i=size-1; i>blockyEnd;)
{
int startBlock = i;
int endBlock = startBlock-4;
Matrix<Scalar,4,1> btmp;
/* Let's process the 4x4 sub-matrix as usual.
* btmp stores the diagonal coefficients used to update the remaining part of the result.
*/
for (; i>endBlock; --i)
{
if(!(Lhs::Flags & UnitDiagBit))
other.coeffRef(i,c) /= lhs.coeff(i,i);
int remainingSize = i-endBlock-1;
if (remainingSize>0)
other.col(c).block(endBlock+1,remainingSize) -= other.coeffRef(i,c) * Block<Lhs,Dynamic,1>(lhs, endBlock+1, i, remainingSize, 1);
btmp.coeffRef(remainingSize) = -other.coeffRef(i,c);
}
ei_cache_friendly_product_colmajor_times_vector(
endBlock+1, &(lhs.const_cast_derived().coeffRef(0,endBlock+1)), lhs.stride(),
btmp, &(other.coeffRef(0,c)));
}
for(int i=blockyEnd; i>0; --i)
{
if(!(Lhs::Flags & UnitDiagBit))
other.coeffRef(i,c) /= lhs.coeff(i,i);
other.col(c).start(i) -= other.coeffRef(i,c) * Block<Lhs,Dynamic,1>(lhs, 0,i, i, 1);
}
if(!(Lhs::Flags & UnitDiagBit))
other.coeffRef(0,c) /= lhs.coeff(0,0);
}
}
};
/** "in-place" version of MatrixBase::solveTriangular() where the result is written in \a other
*
* See MatrixBase:solveTriangular() for the details.
*/
template<typename Derived>
template<typename OtherDerived>
void MatrixBase<Derived>::solveTriangularInPlace(MatrixBase<OtherDerived>* p_other) const
void MatrixBase<Derived>::solveTriangularInPlace(MatrixBase<OtherDerived>& other) const
{
ei_assert(p_other!=0);
ei_assert(derived().cols() == derived().rows());
ei_assert(derived().cols() == p_other->rows());
ei_assert(derived().cols() == other.rows());
ei_assert(!(Flags & ZeroDiagBit));
ei_assert(Flags & (UpperTriangularBit|LowerTriangularBit));
ei_solve_triangular_selector<Derived, OtherDerived>::run(derived(), p_other->derived());
ei_solve_triangular_selector<Derived, OtherDerived>::run(derived(), other.derived());
}
/** \returns the product of the inverse of \c *this with \a other, \a *this being triangular.
@ -265,7 +263,7 @@ template<typename OtherDerived>
typename OtherDerived::Eval MatrixBase<Derived>::solveTriangular(const MatrixBase<OtherDerived>& other) const
{
typename OtherDerived::Eval res(other);
solveTriangularInPlace(&res);
solveTriangularInPlace(res);
return res;
}

View File

@ -59,6 +59,7 @@
you_mixed_vectors_of_different_sizes,
you_mixed_matrices_of_different_sizes,
this_method_is_only_for_vectors_of_a_specific_size,
this_method_is_only_for_matrices_of_a_specific_size,
you_did_a_programming_error,
you_called_a_fixed_size_method_on_a_dynamic_size_matrix_or_vector,
unaligned_load_and_store_operations_unimplemented_on_AltiVec,
@ -96,6 +97,11 @@
EIGEN_STATIC_ASSERT(TYPE::IsVectorAtCompileTime && TYPE::SizeAtCompileTime==SIZE, \
this_method_is_only_for_vectors_of_a_specific_size)
// static assertion failing if the type \a TYPE is not a vector type of the given size
#define EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(TYPE, ROWS, COLS) \
EIGEN_STATIC_ASSERT(TYPE::RowsAtCompileTime==ROWS && TYPE::ColsAtCompileTime==COLS, \
this_method_is_only_for_matrices_of_a_specific_size)
// static assertion failing if the two vector expression types are not compatible (same fixed-size or dynamic size)
#define EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(TYPE0,TYPE1) \
EIGEN_STATIC_ASSERT( \

View File

@ -82,27 +82,32 @@ public:
const Vector3& axis() const { return m_axis; }
Vector3& axis() { return m_axis; }
/** Automatic conversion to a 3x3 rotation matrix.
* \sa toRotationMatrix() */
operator Matrix3 () const { return toRotationMatrix(); }
/** Concatenates two rotations */
inline QuaternionType operator* (const AngleAxis& other) const
{ return QuaternionType(*this) * QuaternionType(other); }
/** Concatenates two rotations */
inline QuaternionType operator* (const QuaternionType& other) const
{ return QuaternionType(*this) * other; }
/** Concatenates two rotations */
friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
{ return a * QuaternionType(b); }
/** Concatenates two rotations */
inline typename ProductReturnType<Matrix3,Matrix3>::Type
operator* (const Matrix3& other) const
{ return toRotationMatrix() * other; }
/** Concatenates two rotations */
inline friend typename ProductReturnType<Matrix3,Matrix3>::Type
operator* (const Matrix3& a, const AngleAxis& b)
{ return a * b.toRotationMatrix(); }
/** \Returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
AngleAxis inverse() const
{ return AngleAxis(-m_angle, m_axis); }
AngleAxis& operator=(const QuaternionType& q);
template<typename Derived>
AngleAxis& operator=(const MatrixBase<Derived>& m);
@ -179,4 +184,29 @@ AngleAxis<Scalar>::toRotationMatrix(void) const
return res;
}
/** \geometry_module
*
* Constructs a 3x3 rotation matrix from the angle-axis \a aa
*
* \sa Matrix(const Quaternion&)
*/
template<typename _Scalar, int _Rows, int _Cols, int _MaxRows, int _MaxCols, unsigned int _Flags>
Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, _Flags>::Matrix(const AngleAxis<Scalar>& aa)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,3,3);
*this = aa.toRotationMatrix();
}
/** \geometry_module
*
* Set a 3x3 rotation matrix from the angle-axis \a aa
*/
template<typename _Scalar, int _Rows, int _Cols, int _MaxRows, int _MaxCols, unsigned int _Flags>
Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, _Flags>&
Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, _Flags>::operator=(const AngleAxis<Scalar>& aa)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,3,3);
return *this = aa.toRotationMatrix();
}
#endif // EIGEN_ANGLEAXIS_H

View File

@ -118,6 +118,7 @@ public:
/** Constructs and initializes a quaternion from the angle-axis \a aa */
explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
/** Constructs and initializes a quaternion from either:
* - a rotation matrix expression,
* - a 4D vector expression representing quaternion coefficients.
@ -131,9 +132,6 @@ public:
template<typename Derived>
Quaternion& operator=(const MatrixBase<Derived>& m);
/** Automatic conversion to a rotation matrix. */
operator Matrix3 () const { return toRotationMatrix(); }
/** \returns a quaternion representing an identity rotation
* \sa MatrixBase::Identity()
*/
@ -426,4 +424,29 @@ struct ei_quaternion_assign_impl<Other,4,1>
}
};
/** \geometry_module
*
* Constructs a 3x3 rotation matrix from the quaternion \a q
*
* \sa Matrix(const AngleAxis&)
*/
template<typename _Scalar, int _Rows, int _Cols, int _MaxRows, int _MaxCols, unsigned int _Flags>
Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, _Flags>::Matrix(const Quaternion<Scalar>& q)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,3,3);
*this = q.toRotationMatrix();
}
/** \geometry_module
*
* Set a 3x3 rotation matrix from the quaternion \a q
*/
template<typename _Scalar, int _Rows, int _Cols, int _MaxRows, int _MaxCols, unsigned int _Flags>
Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, _Flags>&
Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, _Flags>::operator=(const Quaternion<Scalar>& q)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,3,3);
return *this = q.toRotationMatrix();
}
#endif // EIGEN_QUATERNION_H

View File

@ -126,6 +126,7 @@ public:
enum { Dim = 2 };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Matrix<Scalar,2,1> Vector2;
typedef Matrix<Scalar,2,2> Matrix2;
protected:
@ -136,14 +137,34 @@ public:
/** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
inline Rotation2D(Scalar a) : m_angle(a) {}
inline operator Scalar& () { return m_angle; }
inline operator Scalar () const { return m_angle; }
/** \Returns the rotation angle */
inline Scalar angle() const { return m_angle; }
/** \Returns a read-write reference to the rotation angle */
inline Scalar& angle() { return m_angle; }
/** Automatic convertion to a 2D rotation matrix.
* \sa toRotationMatrix()
*/
inline operator Matrix2() const { return toRotationMatrix(); }
/** \Returns the inverse rotation */
inline Rotation2D inverse() const { return -m_angle; }
/** Concatenates two rotations */
inline Rotation2D operator*(const Rotation2D& other) const
{ return m_angle + other.m_angle; }
/** Concatenates two rotations */
inline Rotation2D& operator*=(const Rotation2D& other)
{ return m_angle += other.m_angle; }
/** Applies the rotation to a 2D vector */
template<typename Derived>
Vector2 operator* (const MatrixBase<Derived>& vec) const
{ return toRotationMatrix() * vec; }
template<typename Derived>
Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
Matrix2 toRotationMatrix(void) const;

View File

@ -399,7 +399,7 @@ void LU<MatrixType>::computeKernel(Matrix<typename MatrixType::Scalar,
m_lu.corner(TopLeft, m_rank, m_rank)
.template marked<Upper>()
.solveTriangularInPlace(&y);
.solveTriangularInPlace(y);
for(int i = 0; i < m_rank; i++)
result->row(m_q.coeff(i)) = y.row(i);
@ -451,7 +451,7 @@ bool LU<MatrixType>::solve(
l.setZero();
l.corner(Eigen::TopLeft,rows,smalldim)
= m_lu.corner(Eigen::TopLeft,rows,smalldim);
l.template marked<UnitLower>().solveTriangularInPlace(&c);
l.template marked<UnitLower>().solveTriangularInPlace(c);
// Step 3
if(!isSurjective())
@ -468,7 +468,7 @@ bool LU<MatrixType>::solve(
d(c.corner(TopLeft, m_rank, c.cols()));
m_lu.corner(TopLeft, m_rank, m_rank)
.template marked<Upper>()
.solveTriangularInPlace(&d);
.solveTriangularInPlace(d);
// Step 4
result->resize(m_lu.cols(), b.cols());