This commit is contained in:
Erik Schultheis 2022-01-21 01:48:59 +00:00 committed by Rasmus Munk Larsen
parent 81c928ba55
commit 970640519b
19 changed files with 30 additions and 484 deletions

View File

@ -165,8 +165,8 @@ struct tuple_cat_impl<NTuples, TupleImpl<N1, Args1...>, TupleImpl<N2, Args2...>,
// then recursively calls again.
template<typename Tuple1, size_t... I1s, typename Tuple2, size_t... I2s, typename... MoreTuples>
static EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
ReturnType run(Tuple1&& tuple1, index_sequence<I1s...>,
Tuple2&& tuple2, index_sequence<I2s...>,
ReturnType run(Tuple1&& tuple1, std::index_sequence<I1s...>,
Tuple2&& tuple2, std::index_sequence<I2s...>,
MoreTuples&&... tuples) {
return tuple_cat_impl<NTuples-1, MergedTupleType, Tuples...>::run(
MergedTupleType(tuple_get_impl<I1s, Args1...>::run(std::forward<Tuple1>(tuple1))...,
@ -178,8 +178,8 @@ struct tuple_cat_impl<NTuples, TupleImpl<N1, Args1...>, TupleImpl<N2, Args2...>,
template<typename Tuple1, typename Tuple2, typename... MoreTuples>
static EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
ReturnType run(Tuple1&& tuple1, Tuple2&& tuple2, MoreTuples&&... tuples) {
return run(std::forward<Tuple1>(tuple1), make_index_sequence<N1>{},
std::forward<Tuple2>(tuple2), make_index_sequence<N2>{},
return run(std::forward<Tuple1>(tuple1), std::make_index_sequence<N1>{},
std::forward<Tuple2>(tuple2), std::make_index_sequence<N2>{},
std::forward<MoreTuples>(tuples)...);
}
};

View File

@ -681,16 +681,6 @@
#endif
#endif
// Does the compiler support result_of?
// result_of was deprecated in c++17 and removed in c++ 20
#ifndef EIGEN_HAS_STD_RESULT_OF
#if EIGEN_COMP_CXXVER < 17
#define EIGEN_HAS_STD_RESULT_OF 1
#else
#define EIGEN_HAS_STD_RESULT_OF 0
#endif
#endif
// Does the compiler support std::hash?
#ifndef EIGEN_HAS_STD_HASH
// The std::hash struct is defined in C++11 but is not labelled as a __device__
@ -710,28 +700,7 @@
#endif
#endif
// Does the compiler fully support const expressions? (as in c++14)
#ifndef EIGEN_HAS_CONSTEXPR
#if defined(EIGEN_CUDACC)
// Const expressions are supported provided that c++11 is enabled and we're using either clang or nvcc 7.5 or above
#if (EIGEN_COMP_CLANG || EIGEN_COMP_NVCC >= 70500)
#define EIGEN_HAS_CONSTEXPR 1
#endif
#else
#define EIGEN_HAS_CONSTEXPR 1
#endif
#ifndef EIGEN_HAS_CONSTEXPR
#define EIGEN_HAS_CONSTEXPR 0
#endif
#endif // EIGEN_HAS_CONSTEXPR
#if EIGEN_HAS_CONSTEXPR
#define EIGEN_CONSTEXPR constexpr
#else
#define EIGEN_CONSTEXPR
#endif
// Does the compiler support C++11 math?
// Let's be conservative and enable the default C++11 implementation only if we are sure it exists
@ -760,7 +729,7 @@
#endif
#endif
#if defined(EIGEN_CUDACC) && EIGEN_HAS_CONSTEXPR
#if defined(EIGEN_CUDACC)
// While available already with c++11, this is useful mostly starting with c++14 and relaxed constexpr rules
#if defined(__NVCC__)
// nvcc considers constexpr functions as __host__ __device__ with the option --expt-relaxed-constexpr

View File

@ -243,17 +243,12 @@ EIGEN_CONSTEXPR auto index_list_size(T&& x) {
/** \internal
* Convenient struct to get the result type of a nullary, unary, binary, or
* ternary functor.
*
* Pre C++11:
* Supports both a Func::result_type member and templated
* Func::result<Func(ArgTypes...)>::type member.
*
* If none of these members is provided, then the type of the first
* argument is returned.
*
* Post C++11:
*
* Pre C++17:
* This uses std::result_of. However, note the `type` member removes
* const and converts references/pointers to their corresponding value type.
*
* Post C++17: Uses std::invoke_result
*/
#if EIGEN_HAS_STD_INVOKE_RESULT
template<typename T> struct result_of;
@ -263,179 +258,34 @@ struct result_of<F(ArgTypes...)> {
typedef typename std::invoke_result<F, ArgTypes...>::type type1;
typedef typename remove_all<type1>::type type;
};
#elif EIGEN_HAS_STD_RESULT_OF
template<typename T> struct result_of {
typedef typename std::result_of<T>::type type1;
typedef typename remove_all<type1>::type type;
};
#else
template<typename T> struct result_of { };
struct has_none {int a[1];};
struct has_std_result_type {int a[2];};
struct has_tr1_result {int a[3];};
template<typename Func, int SizeOf>
struct nullary_result_of_select {};
template<typename Func>
struct nullary_result_of_select<Func, sizeof(has_std_result_type)> {typedef typename Func::result_type type;};
template<typename Func>
struct nullary_result_of_select<Func, sizeof(has_tr1_result)> {typedef typename Func::template result<Func()>::type type;};
template<typename Func>
struct result_of<Func()> {
template<typename T>
static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static has_tr1_result testFunctor(T const *, typename T::template result<T()>::type const * = 0);
static has_none testFunctor(...);
// note that the following indirection is needed for gcc-3.3
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
typedef typename nullary_result_of_select<Func, FunctorType>::type type;
};
template<typename Func, typename ArgType, int SizeOf=sizeof(has_none)>
struct unary_result_of_select {typedef typename internal::remove_all<ArgType>::type type;};
template<typename Func, typename ArgType>
struct unary_result_of_select<Func, ArgType, sizeof(has_std_result_type)> {typedef typename Func::result_type type;};
template<typename Func, typename ArgType>
struct unary_result_of_select<Func, ArgType, sizeof(has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;};
template<typename Func, typename ArgType>
struct result_of<Func(ArgType)> {
template<typename T>
static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0);
static has_none testFunctor(...);
// note that the following indirection is needed for gcc-3.3
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
typedef typename unary_result_of_select<Func, ArgType, FunctorType>::type type;
};
template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(has_none)>
struct binary_result_of_select {typedef typename internal::remove_all<ArgType0>::type type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_std_result_type)>
{typedef typename Func::result_type type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_tr1_result)>
{typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct result_of<Func(ArgType0,ArgType1)> {
template<typename T>
static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0);
static has_none testFunctor(...);
// note that the following indirection is needed for gcc-3.3
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
typedef typename binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type;
};
template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2, int SizeOf=sizeof(has_none)>
struct ternary_result_of_select {typedef typename internal::remove_all<ArgType0>::type type;};
template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2>
struct ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, sizeof(has_std_result_type)>
{typedef typename Func::result_type type;};
template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2>
struct ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, sizeof(has_tr1_result)>
{typedef typename Func::template result<Func(ArgType0,ArgType1,ArgType2)>::type type;};
template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2>
struct result_of<Func(ArgType0,ArgType1,ArgType2)> {
template<typename T>
static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1,ArgType2)>::type const * = 0);
static has_none testFunctor(...);
// note that the following indirection is needed for gcc-3.3
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
typedef typename ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, FunctorType>::type type;
};
#endif
#if EIGEN_HAS_STD_INVOKE_RESULT
template<typename F, typename... ArgTypes>
struct invoke_result {
typedef typename std::invoke_result<F, ArgTypes...>::type type1;
typedef typename remove_all<type1>::type type;
};
#else
template<typename F, typename... ArgTypes>
struct invoke_result {
typedef typename result_of<F(ArgTypes...)>::type type1;
template<typename T> struct result_of {
typedef typename std::result_of<T>::type type1;
typedef typename remove_all<type1>::type type;
};
#endif
// C++14 integer/index_sequence.
#if defined(__cpp_lib_integer_sequence) && __cpp_lib_integer_sequence >= 201304L
using std::integer_sequence;
using std::make_integer_sequence;
using std::index_sequence;
using std::make_index_sequence;
#else
template <typename T, T... Ints>
struct integer_sequence {
static EIGEN_CONSTEXPR size_t size() EIGEN_NOEXCEPT { return sizeof...(Ints); }
template<typename F, typename... ArgTypes>
struct invoke_result {
typedef typename result_of<F(ArgTypes...)>::type type1;
typedef typename remove_all<type1>::type type;
};
template <typename T, typename Sequence, T N>
struct append_integer;
template<typename T, T... Ints, T N>
struct append_integer<T, integer_sequence<T, Ints...>, N> {
using type = integer_sequence<T, Ints..., N>;
};
template<typename T, size_t N>
struct generate_integer_sequence {
using type = typename append_integer<T, typename generate_integer_sequence<T, N-1>::type, N-1>::type;
};
template<typename T>
struct generate_integer_sequence<T, 0> {
using type = integer_sequence<T>;
};
template <typename T, size_t N>
using make_integer_sequence = typename generate_integer_sequence<T, N>::type;
template<size_t... Ints>
using index_sequence = integer_sequence<size_t, Ints...>;
template<size_t N>
using make_index_sequence = make_integer_sequence<size_t, N>;
#endif
// Reduces a sequence of bools to true if all are true, false otherwise.
template<bool... values>
using reduce_all = std::is_same<integer_sequence<bool, values..., true>, integer_sequence<bool, true, values...> >;
using reduce_all = std::is_same<std::integer_sequence<bool, values..., true>,
std::integer_sequence<bool, true, values...> >;
// Reduces a sequence of bools to true if any are true, false if all false.
template<bool... values>
using reduce_any = std::integral_constant<bool,
!std::is_same<integer_sequence<bool, values..., false>, integer_sequence<bool, false, values...> >::value>;
!std::is_same<std::integer_sequence<bool, values..., false>, std::integer_sequence<bool, false, values...> >::value>;
struct meta_yes { char a[1]; };
struct meta_no { char a[2]; };

View File

@ -219,14 +219,8 @@ template <typename Device, typename T> class BenchmarkSuite {
size_b[1] = m_;
TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b);
#if defined(EIGEN_HAS_INDEX_LIST)
Eigen::IndexPairList<Eigen::type2indexpair<0, 0>,
Eigen::type2indexpair<2, 1> > paddings;
#else
Eigen::array<Eigen::IndexPair<TensorIndex>, 2> paddings;
paddings[0] = Eigen::IndexPair<TensorIndex>(0, 0);
paddings[1] = Eigen::IndexPair<TensorIndex>(2, 1);
#endif
#ifdef EIGEN_USE_SYCL // warmup for sycl
for (int iter = 0; iter < 10; ++iter) {
B.device(device_) = A.pad(paddings);
@ -251,15 +245,7 @@ template <typename Device, typename T> class BenchmarkSuite {
size_b[1] = k_/2;
TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b);
#ifndef EIGEN_HAS_INDEX_LIST
Eigen::array<TensorIndex, 2> strides;
strides[0] = 1;
strides[1] = 2;
#else
// Take advantage of cxx11 to give the compiler information it can use to
// optimize the code.
Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2> > strides;
#endif
#ifdef EIGEN_USE_SYCL // warmup for sycl
for (int iter = 0; iter < 10; ++iter) {
@ -284,17 +270,8 @@ template <typename Device, typename T> class BenchmarkSuite {
size_c[0] = m_;
size_c[1] = n_;
TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, size_c);
#ifndef EIGEN_HAS_INDEX_LIST
Eigen::array<int, 2> broadcast;
broadcast[0] = 1;
broadcast[1] = n_;
#else
// Take advantage of cxx11 to give the compiler information it can use to
// optimize the code.
Eigen::IndexList<Eigen::type2index<1>, int> broadcast;
broadcast.set(1, n_);
#endif
#ifdef EIGEN_USE_SYCL // warmup for sycl
for (int iter = 0; iter < 10; ++iter) {
@ -385,15 +362,7 @@ for (int iter = 0; iter < 10; ++iter) {
Eigen::array<TensorIndex, 1> output_size;
output_size[0] = n_;
TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size);
#ifndef EIGEN_HAS_INDEX_LIST
Eigen::array<TensorIndex, 1> sum_along_dim;
sum_along_dim[0] = 0;
#else
// Take advantage of cxx11 to give the compiler information it can use to
// optimize the code.
Eigen::IndexList<Eigen::type2index<0>> sum_along_dim;
#endif
#ifdef EIGEN_USE_SYCL // warmup for sycl
for (int iter = 0; iter < 10; ++iter) {
C.device(device_) = B.sum(sum_along_dim);

View File

@ -65,7 +65,6 @@ functions by defining EIGEN_HAS_C99_MATH=1.
- \b EIGEN_HAS_C99_MATH - controls the usage of C99 math functions such as erf, erfc, lgamma, etc.
- \b EIGEN_HAS_CXX11_MATH - controls the implementation of some functions such as round, logp1, isinf, isnan, etc.
- \b EIGEN_HAS_STD_RESULT_OF - defines whether std::result_of is supported
- \b EIGEN_HAS_CONSTEXPR - defines whether relaxed const expression are supported
- \b EIGEN_NO_IO - Disables any usage and support for `<iostreams>`.
\section TopicPreprocessorDirectivesAssertions Assertions

View File

@ -59,7 +59,7 @@ struct extract_output_indices_helper;
* \tparam Ts the remaining types.
*/
template<size_t N, size_t Idx, size_t... OutputIndices, typename T1, typename... Ts>
struct extract_output_indices_helper<N, Idx, index_sequence<OutputIndices...>, T1, Ts...> {
struct extract_output_indices_helper<N, Idx, std::index_sequence<OutputIndices...>, T1, Ts...> {
using type = typename
extract_output_indices_helper<
N - 1, Idx + 1,
@ -67,21 +67,21 @@ struct extract_output_indices_helper<N, Idx, index_sequence<OutputIndices...>, T
// If is a non-const l-value reference, append index.
std::is_lvalue_reference<T1>::value
&& !std::is_const<typename std::remove_reference<T1>::type>::value,
index_sequence<OutputIndices..., Idx>,
index_sequence<OutputIndices...> >::type,
std::index_sequence<OutputIndices..., Idx>,
std::index_sequence<OutputIndices...> >::type,
Ts...>::type;
};
// Base case.
template<size_t Idx, size_t... OutputIndices>
struct extract_output_indices_helper<0, Idx, index_sequence<OutputIndices...> > {
using type = index_sequence<OutputIndices...>;
struct extract_output_indices_helper<0, Idx, std::index_sequence<OutputIndices...> > {
using type = std::index_sequence<OutputIndices...>;
};
// Extracts a set of indices into Types... that correspond to non-const
// l-value references.
template<typename... Types>
using extract_output_indices = typename extract_output_indices_helper<sizeof...(Types), 0, index_sequence<>, Types...>::type;
using extract_output_indices = typename extract_output_indices_helper<sizeof...(Types), 0, std::index_sequence<>, Types...>::type;
// Helper struct for dealing with Generic functors that may return void.
struct void_helper {
@ -134,7 +134,7 @@ struct void_helper {
// output_buffer_size is populated.
template<typename Kernel, typename... Args, size_t... Indices, size_t... OutputIndices>
EIGEN_DEVICE_FUNC
void run_serialized(index_sequence<Indices...>, index_sequence<OutputIndices...>,
void run_serialized(std::index_sequence<Indices...>, std::index_sequence<OutputIndices...>,
Kernel kernel, uint8_t* buffer, size_t capacity) {
using test_detail::get;
using test_detail::make_tuple;
@ -175,7 +175,7 @@ void run_serialized(index_sequence<Indices...>, index_sequence<OutputIndices...>
template<typename Kernel, typename... Args>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void run_serialized(Kernel kernel, uint8_t* buffer, size_t capacity) {
run_serialized<Kernel, Args...> (make_index_sequence<sizeof...(Args)>{},
run_serialized<Kernel, Args...> (std::make_index_sequence<sizeof...(Args)>{},
extract_output_indices<Args...>{},
kernel, buffer, capacity);
}
@ -206,8 +206,8 @@ void run_serialized_on_gpu_meta_kernel(const Kernel kernel, uint8_t* buffer, siz
// buffer is not large enough to hold the outputs.
template<typename Kernel, typename... Args, size_t... Indices, size_t... OutputIndices>
auto run_serialized_on_gpu(size_t buffer_capacity_hint,
index_sequence<Indices...>,
index_sequence<OutputIndices...>,
std::index_sequence<Indices...>,
std::index_sequence<OutputIndices...>,
Kernel kernel, Args&&... args) -> decltype(kernel(args...)) {
// Compute the required serialization buffer capacity.
// Round up input size to next power of two to give a little extra room
@ -323,7 +323,7 @@ template<typename Kernel, typename... Args>
auto run_on_gpu(Kernel kernel, Args&&... args) -> decltype(kernel(args...)){
return internal::run_serialized_on_gpu<Kernel, Args...>(
/*buffer_capacity_hint=*/ 0,
internal::make_index_sequence<sizeof...(Args)>{},
std::make_index_sequence<sizeof...(Args)>{},
internal::extract_output_indices<Args...>{},
kernel, std::forward<Args>(args)...);
}
@ -347,7 +347,7 @@ auto run_on_gpu_with_hint(size_t buffer_capacity_hint,
Kernel kernel, Args&&... args) -> decltype(kernel(args...)){
return internal::run_serialized_on_gpu<Kernel, Args...>(
buffer_capacity_hint,
internal::make_index_sequence<sizeof...(Args)>{},
std::make_index_sequence<sizeof...(Args)>{},
internal::extract_output_indices<Args...>{},
kernel, std::forward<Args>(args)...);
}

View File

@ -388,7 +388,6 @@ class Tensor : public TensorBase<Tensor<Scalar_, NumIndices_, Options_, IndexTyp
// Nothing to do: rank 0 tensors have fixed size
}
#ifdef EIGEN_HAS_INDEX_LIST
template <typename FirstType, typename... OtherTypes>
EIGEN_DEVICE_FUNC
void resize(const Eigen::IndexList<FirstType, OtherTypes...>& dimensions) {
@ -398,7 +397,6 @@ class Tensor : public TensorBase<Tensor<Scalar_, NumIndices_, Options_, IndexTyp
}
resize(dims);
}
#endif
/** Custom Dimension */
template<typename CustomDimension,

View File

@ -45,8 +45,6 @@ template<DenseIndex n, typename Index, std::size_t Rank> const Index array_get(c
return n;
}
#if EIGEN_HAS_CONSTEXPR
template <typename Index, std::size_t Rank>
struct index_known_statically_impl<DimensionList<Index, Rank> > {
EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex) {
@ -138,99 +136,6 @@ struct index_statically_lt_impl<const DimensionList<Index, Rank> > {
}
};
#else
template <typename Index, std::size_t Rank>
struct index_known_statically_impl<DimensionList<Index, Rank> > {
EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run(const DenseIndex) {
return true;
}
};
template <typename Index, std::size_t Rank>
struct index_known_statically_impl<const DimensionList<Index, Rank> > {
EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run(const DenseIndex) {
return true;
}
};
template <typename Index, std::size_t Rank>
struct all_indices_known_statically_impl<DimensionList<Index, Rank> > {
EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run() {
return true;
}
};
template <typename Index, std::size_t Rank>
struct all_indices_known_statically_impl<const DimensionList<Index, Rank> > {
EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run() {
return true;
}
};
template <typename Index, std::size_t Rank>
struct indices_statically_known_to_increase_impl<DimensionList<Index, Rank> > {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() {
return true;
}
};
template <typename Index, std::size_t Rank>
struct indices_statically_known_to_increase_impl<const DimensionList<Index, Rank> > {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() {
return true;
}
};
template <typename Index, std::size_t Rank>
struct index_statically_eq_impl<DimensionList<Index, Rank> > {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
return false;
}
};
template <typename Index, std::size_t Rank>
struct index_statically_eq_impl<const DimensionList<Index, Rank> > {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
return false;
}
};
template <typename Index, std::size_t Rank>
struct index_statically_ne_impl<DimensionList<Index, Rank> > {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex){
return false;
}
};
template <typename Index, std::size_t Rank>
struct index_statically_ne_impl<const DimensionList<Index, Rank> > {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
return false;
}
};
template <typename Index, std::size_t Rank>
struct index_statically_gt_impl<DimensionList<Index, Rank> > {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
return false;
}
};
template <typename Index, std::size_t Rank>
struct index_statically_gt_impl<const DimensionList<Index, Rank> > {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
return false;
}
};
template <typename Index, std::size_t Rank>
struct index_statically_lt_impl<DimensionList<Index, Rank> > {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
return false;
}
};
template <typename Index, std::size_t Rank>
struct index_statically_lt_impl<const DimensionList<Index, Rank> > {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
return false;
}
};
#endif
} // end namespace internal
} // end namespace Eigen

View File

@ -297,7 +297,6 @@ struct DSizes : array<DenseIndex, NumDims> {
}
}
#ifdef EIGEN_HAS_INDEX_LIST
template <typename FirstType, typename... OtherTypes>
EIGEN_DEVICE_FUNC
explicit DSizes(const Eigen::IndexList<FirstType, OtherTypes...>& dimensions) {
@ -305,7 +304,6 @@ struct DSizes : array<DenseIndex, NumDims> {
(*this)[i] = dimensions[i];
}
}
#endif
#ifndef EIGEN_EMULATE_CXX11_META_H
template <typename std::ptrdiff_t... Indices>

View File

@ -12,10 +12,6 @@
#include "./InternalHeaderCheck.h"
#if EIGEN_HAS_CONSTEXPR
#define EIGEN_HAS_INDEX_LIST
namespace Eigen {
/** \internal
@ -609,81 +605,6 @@ struct index_pair_second_statically_eq_impl<const IndexPairList<FirstType, Other
} // end namespace internal
} // end namespace Eigen
#else
namespace Eigen {
namespace internal {
template <typename T>
struct index_known_statically_impl {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const Index) {
return false;
}
};
template <typename T>
struct all_indices_known_statically_impl {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() {
return false;
}
};
template <typename T>
struct indices_statically_known_to_increase_impl {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() {
return false;
}
};
template <typename T>
struct index_statically_eq_impl {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(Index, Index) {
return false;
}
};
template <typename T>
struct index_statically_ne_impl {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(Index, Index) {
return false;
}
};
template <typename T>
struct index_statically_gt_impl {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(Index, Index) {
return false;
}
};
template <typename T>
struct index_statically_lt_impl {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(Index, Index) {
return false;
}
};
template <typename Tx>
struct index_pair_first_statically_eq_impl {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(Index, Index) {
return false;
}
};
template <typename Tx>
struct index_pair_second_statically_eq_impl {
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(Index, Index) {
return false;
}
};
} // end namespace internal
} // end namespace Eigen
#endif
namespace Eigen {
namespace internal {

View File

@ -109,13 +109,9 @@ struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>
// clang-format off
static const ReshapingKind kind =
#if defined(EIGEN_HAS_INDEX_LIST)
(NumOutputDims == 2 && internal::index_statically_eq<NewDimensions>(/*index=*/0, /*value=*/1)) ? OneByN
: (NumOutputDims == 2 && internal::index_statically_eq<NewDimensions>(/*index=*/1, /*value=*/1)) ? NByOne
: Runtime;
#else
Runtime;
#endif
// clang-format on
enum {

View File

@ -512,35 +512,20 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isPaddingAtIndexForDim(
Index index, int dim_index) const {
#if defined(EIGEN_HAS_INDEX_LIST)
return (!internal::index_pair_first_statically_eq<PaddingDimensions>(dim_index, 0) &&
index < m_padding[dim_index].first) ||
(!internal::index_pair_second_statically_eq<PaddingDimensions>(dim_index, 0) &&
index >= m_dimensions[dim_index] - m_padding[dim_index].second);
#else
return (index < m_padding[dim_index].first) ||
(index >= m_dimensions[dim_index] - m_padding[dim_index].second);
#endif
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isLeftPaddingCompileTimeZero(
int dim_index) const {
#if defined(EIGEN_HAS_INDEX_LIST)
return internal::index_pair_first_statically_eq<PaddingDimensions>(dim_index, 0);
#else
EIGEN_UNUSED_VARIABLE(dim_index);
return false;
#endif
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isRightPaddingCompileTimeZero(
int dim_index) const {
#if defined(EIGEN_HAS_INDEX_LIST)
return internal::index_pair_second_statically_eq<PaddingDimensions>(dim_index, 0);
#else
EIGEN_UNUSED_VARIABLE(dim_index);
return false;
#endif
}

View File

@ -108,7 +108,6 @@ struct preserve_inner_most_dims {
static const bool value = false;
};
#if EIGEN_HAS_CONSTEXPR
template <typename ReducedDims, int NumTensorDims>
struct are_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
@ -137,7 +136,6 @@ struct preserve_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
static const bool tmp2 = index_statically_lt<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
static const bool value = tmp1 & tmp2;
};
#endif
template <int DimIndex, typename Self, typename Op>

View File

@ -16,7 +16,6 @@
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
#define EIGEN_USE_SYCL
#define EIGEN_HAS_CONSTEXPR 1
#include "main.h"

View File

@ -116,15 +116,7 @@ static void test_static_broadcasting()
Tensor<float, 3, DataLayout> tensor(8,3,5);
tensor.setRandom();
#if defined(EIGEN_HAS_INDEX_LIST)
Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>, Eigen::type2index<4>> broadcasts;
#else
Eigen::array<int, 3> broadcasts;
broadcasts[0] = 2;
broadcasts[1] = 3;
broadcasts[2] = 4;
#endif
Tensor<float, 3, DataLayout> broadcast;
broadcast = tensor.broadcast(broadcasts);

View File

@ -11,8 +11,6 @@
#include <Eigen/CXX11/Tensor>
#ifdef EIGEN_HAS_INDEX_LIST
static void test_static_index_list()
{
Tensor<float, 4> tensor(2,3,5,7);
@ -370,16 +368,12 @@ static void test_dim_check()
}
#endif
EIGEN_DECLARE_TEST(cxx11_tensor_index_list)
{
#ifdef EIGEN_HAS_INDEX_LIST
CALL_SUBTEST(test_static_index_list());
CALL_SUBTEST(test_type2index_list());
CALL_SUBTEST(test_type2indexpair_list());
CALL_SUBTEST(test_dynamic_index_list());
CALL_SUBTEST(test_mixed_index_list());
CALL_SUBTEST(test_dim_check());
#endif
}

View File

@ -43,7 +43,6 @@ static void test_simple_reshape()
template <typename>
static void test_static_reshape() {
#if defined(EIGEN_HAS_INDEX_LIST)
using Eigen::type2index;
Tensor<float, 5> tensor(2, 3, 1, 7, 1);
@ -60,7 +59,6 @@ static void test_static_reshape() {
}
}
}
#endif
}
template <typename>

View File

@ -370,13 +370,7 @@ static void test_static_dims() {
Tensor<float, 2, DataLayout> out(72, 97);
in.setRandom();
#if !EIGEN_HAS_CONSTEXPR
array<int, 2> reduction_axis;
reduction_axis[0] = 1;
reduction_axis[1] = 3;
#else
Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<3> > reduction_axis;
#endif
out = in.maximum(reduction_axis);
@ -400,14 +394,8 @@ static void test_innermost_last_dims() {
in.setRandom();
// Reduce on the innermost dimensions.
#if !EIGEN_HAS_CONSTEXPR
array<int, 2> reduction_axis;
reduction_axis[0] = 0;
reduction_axis[1] = 1;
#else
// This triggers the use of packets for ColMajor.
Eigen::IndexList<Eigen::type2index<0>, Eigen::type2index<1> > reduction_axis;
#endif
out = in.maximum(reduction_axis);
@ -431,14 +419,8 @@ static void test_innermost_first_dims() {
in.setRandom();
// Reduce on the innermost dimensions.
#if !EIGEN_HAS_CONSTEXPR
array<int, 2> reduction_axis;
reduction_axis[0] = 2;
reduction_axis[1] = 3;
#else
// This triggers the use of packets for RowMajor.
Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>> reduction_axis;
#endif
out = in.maximum(reduction_axis);
@ -462,14 +444,8 @@ static void test_reduce_middle_dims() {
in.setRandom();
// Reduce on the innermost dimensions.
#if !EIGEN_HAS_CONSTEXPR
array<int, 2> reduction_axis;
reduction_axis[0] = 1;
reduction_axis[1] = 2;
#else
// This triggers the use of packets for RowMajor.
Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>> reduction_axis;
#endif
out = in.maximum(reduction_axis);

View File

@ -16,7 +16,6 @@
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
#define EIGEN_USE_SYCL
#define EIGEN_HAS_CONSTEXPR 1
#include "main.h"