ComplexQZ

This commit is contained in:
Ludwig Striet 2025-10-13 17:35:03 +00:00 committed by Rasmus Munk Larsen
parent e1f1a608be
commit 99f8512985
4 changed files with 749 additions and 0 deletions

View File

@ -44,6 +44,7 @@
#include "src/Eigenvalues/ComplexSchur.h"
#include "src/Eigenvalues/ComplexEigenSolver.h"
#include "src/Eigenvalues/RealQZ.h"
#include "src/Eigenvalues/ComplexQZ.h"
#include "src/Eigenvalues/GeneralizedEigenSolver.h"
#include "src/Eigenvalues/MatrixBaseEigenvalues.h"
#ifdef EIGEN_USE_LAPACKE

View File

@ -0,0 +1,661 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Alexey Korepanov
// Copyright (C) 2025 Ludwig Striet <ludwig.striet@mathematik.uni-freiburg.de>
//
// This Source Code Form is subject to the terms of the
// Mozilla Public License v. 2.0. If a copy of the MPL
// was not distributed with this file, You can obtain one at
// https://mozilla.org/MPL/2.0/.
//
// Derived from: Eigen/src/Eigenvalues/RealQZ.h
#include "Eigen/Core"
#include "Eigen/Jacobi"
#ifndef EIGEN_COMPLEX_QZ_H_
#define EIGEN_COMPLEX_QZ_H_
#include "../../SparseQR"
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
/** \eigenvalues_module \ingroup Eigenvalues_Module
*
*
* \class ComplexQZ
*
* \brief Performs a QZ decomposition of a pair of matrices A, B
*
* \tparam MatrixType_ the type input type of the matrix.
*
* Given to complex square matrices A and B, this class computes the QZ decomposition
* \f$ A = Q S Z \f$, \f$ B = Q T Z\f$ where Q and Z are unitary matrices and
* S and T a re upper-triangular matrices. More precisely, Q and Z fulfill
* \f$ Q Q* = Id\f$ and \f$ Z Z* = Id\f$. The generalized Eigenvalues are then
* obtained as ratios of corresponding diagonal entries, lambda(i) = S(i,i) / T(i, i).
*
* The QZ algorithm was introduced in the seminal work "An Algorithm for
* Generalized Matrix Eigenvalue Problems" by Moler & Stewart in 1973. The matrix
* pair S = A, T = B is first transformed to Hessenberg-Triangular form where S is an
* upper Hessenberg matrix and T is an upper Triangular matrix.
*
* This pair is subsequently reduced to the desired form using implicit QZ shifts as
* described in the original paper. The algorithms to find small entries on the
* diagonals and subdiagonals are based on the variants in the implementation
* for Real matrices in the RealQZ class.
*
* \sa class RealQZ
*/
namespace Eigen {
template <typename MatrixType_>
class ComplexQZ {
public:
using MatrixType = MatrixType_;
using Scalar = typename MatrixType_::Scalar;
using RealScalar = typename MatrixType_::RealScalar;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = internal::traits<MatrixType>::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
using Vec = Matrix<Scalar, Dynamic, 1>;
using Vec2 = Matrix<Scalar, 2, 1>;
using Vec3 = Matrix<Scalar, 3, 1>;
using Row2 = Matrix<Scalar, 1, 2>;
using Mat2 = Matrix<Scalar, 2, 2>;
/** \brief Returns matrix Q in the QZ decomposition.
*
* \returns A const reference to the matrix Q.
*/
const MatrixType& matrixQ() const {
eigen_assert(m_isInitialized && "ComplexQZ is not initialized.");
eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
return m_Q;
}
/** \brief Returns matrix Z in the QZ decomposition.
*
* \returns A const reference to the matrix Z.
*/
const MatrixType& matrixZ() const {
eigen_assert(m_isInitialized && "ComplexQZ is not initialized.");
eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
return m_Z;
}
/** \brief Returns matrix S in the QZ decomposition.
*
* \returns A const reference to the matrix S.
*/
const MatrixType& matrixS() const {
eigen_assert(m_isInitialized && "ComplexQZ is not initialized.");
return m_S;
}
/** \brief Returns matrix S in the QZ decomposition.
*
* \returns A const reference to the matrix S.
*/
const MatrixType& matrixT() const {
eigen_assert(m_isInitialized && "ComplexQZ is not initialized.");
return m_T;
}
/** \brief Constructor
*
* \param[in] n size of the matrices whose QZ decomposition we compute
*
* This constructor is used when we use the compute(...) method later,
* especially when we aim to compute the decomposition of two sparse
* matrices.
*/
ComplexQZ(Index n, bool computeQZ = true, unsigned int maxIters = 400)
: m_n(n),
m_S(n, n),
m_T(n, n),
m_Q(computeQZ ? n : (MatrixType::RowsAtCompileTime == Eigen::Dynamic ? 0 : MatrixType::RowsAtCompileTime),
computeQZ ? n : (MatrixType::ColsAtCompileTime == Eigen::Dynamic ? 0 : MatrixType::ColsAtCompileTime)),
m_Z(computeQZ ? n : (MatrixType::RowsAtCompileTime == Eigen::Dynamic ? 0 : MatrixType::RowsAtCompileTime),
computeQZ ? n : (MatrixType::ColsAtCompileTime == Eigen::Dynamic ? 0 : MatrixType::ColsAtCompileTime)),
m_ws(2 * n),
m_computeQZ(computeQZ),
m_maxIters(maxIters){
};
/** \brief Constructor. computes the QZ decomposition of given matrices
* upon creation
*
* \param[in] A input matrix A
* \param[in] B input matrix B
* \param[in] computeQZ If false, the matrices Q and Z are not computed
*
* This constructor calls the compute() method to compute the QZ decomposition.
* If input matrices are sparse, call the constructor that uses only the
* size as input the computeSparse(...) method.
*/
ComplexQZ(const MatrixType& A, const MatrixType& B, bool computeQZ = true, unsigned int maxIters = 400)
: m_n(A.rows()),
m_maxIters(maxIters),
m_computeQZ(computeQZ),
m_S(A.rows(), A.cols()),
m_T(A.rows(), A.cols()),
m_Q(computeQZ ? m_n : (MatrixType::RowsAtCompileTime == Eigen::Dynamic ? 0 : MatrixType::RowsAtCompileTime),
computeQZ ? m_n : (MatrixType::ColsAtCompileTime == Eigen::Dynamic ? 0 : MatrixType::ColsAtCompileTime)),
m_Z(computeQZ ? m_n : (MatrixType::RowsAtCompileTime == Eigen::Dynamic ? 0 : MatrixType::RowsAtCompileTime),
computeQZ ? m_n : (MatrixType::ColsAtCompileTime == Eigen::Dynamic ? 0 : MatrixType::ColsAtCompileTime)),
m_ws(2 * m_n) {
compute(A, B, computeQZ);
}
/** \brief Compute the QZ decomposition of complex input matrices
*
* \param[in] A Matrix A.
* \param[in] B Matrix B.
* \param[in] computeQZ If false, the matrices Q and Z are not computed.
*/
void compute(const MatrixType& A, const MatrixType& B, bool computeQZ = true);
/** \brief Compute the decomposition of sparse complex input matrices.
* Main difference to the compute(...) method is that it computes a
* SparseQR decomposition of B
*
* \param[in] A Matrix A.
* \param[in] B Matrix B.
* \param[in] computeQZ If false, the matrices Q and Z are not computed.
*/
template <typename SparseMatrixType_>
void computeSparse(const SparseMatrixType_& A, const SparseMatrixType_& B, bool computeQZ = true);
/** \brief Reports whether the last computation was successfull.
*
* \returns \c Success if computation was successfull, \c NoConvergence otherwise.
*/
ComputationInfo info() const { return m_info; };
/** \brief number of performed QZ steps
*/
unsigned int iterations() const {
eigen_assert(m_isInitialized && "ComplexQZ is not initialized.");
return m_global_iter;
};
private:
Index m_n;
const unsigned int m_maxIters;
unsigned int m_global_iter;
bool m_isInitialized;
bool m_computeQZ;
ComputationInfo m_info;
MatrixType m_S, m_T, m_Q, m_Z;
RealScalar m_normOfT, m_normOfS;
Vec m_ws;
// Test if a Scalar is 0 up to a certain tolerance
static bool is_negligible(const Scalar x, const RealScalar tol = NumTraits<RealScalar>::epsilon()) {
return numext::abs(x) <= tol;
}
void do_QZ_step(Index p, Index q);
inline Mat2 computeZk2(const Row2& b);
// This is basically taken from from Eigen3::RealQZ
void hessenbergTriangular(const MatrixType& A, const MatrixType& B);
// This function can be called when m_Q and m_Z are initialized and m_S, m_T
// are in hessenberg-triangular form
void reduceHessenbergTriangular();
// Sparse variant of the above method.
template <typename SparseMatrixType_>
void hessenbergTriangularSparse(const SparseMatrixType_& A, const SparseMatrixType_& B);
void computeNorms();
Index findSmallSubdiagEntry(Index l);
Index findSmallDiagEntry(Index f, Index l);
void push_down_zero_ST(Index k, Index l);
void reduceDiagonal2x2block(Index i);
};
template <typename MatrixType_>
void ComplexQZ<MatrixType_>::compute(const MatrixType& A, const MatrixType& B, bool computeQZ) {
m_computeQZ = computeQZ;
m_n = A.rows();
eigen_assert(m_n == A.cols() && "A is not a square matrix");
eigen_assert(m_n == B.rows() && m_n == B.cols() && "B is not a square matrix or B is not of the same size as A");
m_isInitialized = true;
m_global_iter = 0;
// This will initialize m_Q and m_Z and bring m_S, m_T to hessenberg-triangular form
hessenbergTriangular(A, B);
// We assume that we already have that S is upper-Hessenberg and T is
// upper-triangular. This is what the hessenbergTriangular(...) method does
reduceHessenbergTriangular();
}
// This is basically taken from from Eigen3::RealQZ
template <typename MatrixType_>
void ComplexQZ<MatrixType_>::hessenbergTriangular(const MatrixType& A, const MatrixType& B) {
// Copy A and B, these will be the matrices on which we operate later
m_S = A;
m_T = B;
// Perform QR decomposition of the matrix Q
HouseholderQR<MatrixType> qr(m_T);
m_T = qr.matrixQR();
m_T.template triangularView<StrictlyLower>().setZero();
if (m_computeQZ) m_Q = qr.householderQ();
// overwrite S with Q* x S
m_S.applyOnTheLeft(qr.householderQ().adjoint());
if (m_computeQZ) m_Z = MatrixType::Identity(m_n, m_n);
int steps = 0;
// reduce S to upper Hessenberg with Givens rotations
for (Index j = 0; j <= m_n - 3; j++) {
for (Index i = m_n - 1; i >= j + 2; i--) {
JacobiRotation<Scalar> G;
// delete S(i,j)
if (!numext::is_exactly_zero(m_S.coeff(i, j))) {
G.makeGivens(m_S.coeff(i - 1, j), m_S.coeff(i, j), &m_S.coeffRef(i - 1, j));
m_S.coeffRef(i, j) = Scalar(0);
m_T.rightCols(m_n - i + 1).applyOnTheLeft(i - 1, i, G.adjoint());
m_S.rightCols(m_n - j - 1).applyOnTheLeft(i - 1, i, G.adjoint());
// This is what we want to achieve
if (!is_negligible(m_S(i, j)))
m_info = ComputationInfo::NumericalIssue;
else
m_S(i, j) = Scalar(0);
// update Q
if (m_computeQZ) m_Q.applyOnTheRight(i - 1, i, G);
}
if (!numext::is_exactly_zero(m_T.coeff(i, i - 1))) {
// Compute rotation and update matrix T
G.makeGivens(m_T.coeff(i, i), m_T.coeff(i, i - 1), &m_T.coeffRef(i, i));
m_T.topRows(i).applyOnTheRight(i - 1, i, G.adjoint());
m_T.coeffRef(i, i - 1) = Scalar(0);
// Update matrix S
m_S.applyOnTheRight(i - 1, i, G.adjoint());
// update Z
if (m_computeQZ) m_Z.applyOnTheLeft(i - 1, i, G);
}
steps++;
}
}
}
template <typename MatrixType>
template <typename SparseMatrixType_>
void ComplexQZ<MatrixType>::hessenbergTriangularSparse(const SparseMatrixType_& A, const SparseMatrixType_& B) {
m_S = A.toDense();
SparseQR<SparseMatrix<Scalar, ColMajor>, NaturalOrdering<Index>> sparseQR;
eigen_assert(B.isCompressed() &&
"SparseQR requires a sparse matrix in compressed mode."
"Call .makeCompressed() before passing it to SparseQR");
// Computing QR decomposition of T...
sparseQR.setPivotThreshold(RealScalar(0)); // This prevends algorithm from doing pivoting
sparseQR.compute(B);
// perform QR decomposition of T, overwrite T with R, save Q
// HouseholderQR<Mat> qrT(m_T);
m_T = sparseQR.matrixR();
m_T.template triangularView<StrictlyLower>().setZero();
if (m_computeQZ) m_Q = sparseQR.matrixQ();
// overwrite S with Q* S
m_S = sparseQR.matrixQ().adjoint() * m_S;
if (m_computeQZ) m_Z = MatrixType::Identity(m_n, m_n);
unsigned int steps = 0;
// reduce S to upper Hessenberg with Givens rotations
for (Index j = 0; j <= m_n - 3; j++) {
for (Index i = m_n - 1; i >= j + 2; i--) {
JacobiRotation<Scalar> G;
// kill S(i,j)
// if(!numext::is_exactly_zero(_S.coeff(i, j)))
if (m_S.coeff(i, j) != Scalar(0)) {
// This is the adapted code
G.makeGivens(m_S.coeff(i - 1, j), m_S.coeff(i, j), &m_S.coeffRef(i - 1, j));
m_S.coeffRef(i, j) = Scalar(0);
m_T.rightCols(m_n - i + 1).applyOnTheLeft(i - 1, i, G.adjoint());
m_S.rightCols(m_n - j - 1).applyOnTheLeft(i - 1, i, G.adjoint());
// This is what we want to achieve
if (!is_negligible(m_S(i, j))) {
m_info = ComputationInfo::NumericalIssue;
}
m_S(i, j) = Scalar(0);
// update Q
if (m_computeQZ) m_Q.applyOnTheRight(i - 1, i, G);
}
if (!numext::is_exactly_zero(m_T.coeff(i, i - 1))) {
// Compute rotation and update matrix T
G.makeGivens(m_T.coeff(i, i), m_T.coeff(i, i - 1), &m_T.coeffRef(i, i));
m_T.topRows(i).applyOnTheRight(i - 1, i, G.adjoint());
m_T.coeffRef(i, i - 1) = Scalar(0);
// Update matrix S
m_S.applyOnTheRight(i - 1, i, G.adjoint());
// update Z
if (m_computeQZ) m_Z.applyOnTheLeft(i - 1, i, G);
}
steps++;
}
}
}
template <typename MatrixType>
template <typename SparseMatrixType_>
void ComplexQZ<MatrixType>::computeSparse(const SparseMatrixType_& A, const SparseMatrixType_& B, bool computeQZ) {
m_computeQZ = computeQZ;
m_n = A.rows();
eigen_assert(m_n == A.cols() && "A is not a square matrix");
eigen_assert(m_n == B.rows() && m_n == B.cols() && "B is not a square matrix or B is not of the same size as A");
m_isInitialized = true;
m_global_iter = 0;
hessenbergTriangularSparse(A, B);
// We assume that we already have that A is upper-Hessenberg and B is
// upper-triangular. This is what the hessenbergTriangular(...) method does
reduceHessenbergTriangular();
}
template <typename MatrixType_>
void ComplexQZ<MatrixType_>::reduceHessenbergTriangular() {
Index l = m_n - 1, f;
unsigned int local_iter = 0;
computeNorms();
while (l > 0 && local_iter < m_maxIters) {
f = findSmallSubdiagEntry(l);
// Subdiag entry is small -> can be safely set to 0
if (f > 0) {
m_S.coeffRef(f, f - 1) = Scalar(0);
}
if (f == l) { // One root found
l--;
local_iter = 0;
} else if (f == l - 1) { // Two roots found
// We found an undesired non-zero at (f+1,f) in S and eliminate it immediately
reduceDiagonal2x2block(f);
l -= 2;
local_iter = 0;
} else {
Index z = findSmallDiagEntry(f, l);
if (z >= f) {
push_down_zero_ST(z, l);
} else {
do_QZ_step(f, m_n - l - 1);
local_iter++;
m_global_iter++;
}
}
}
m_info = (local_iter < m_maxIters) ? Success : NoConvergence;
}
template <typename MatrixType_>
inline typename ComplexQZ<MatrixType_>::Mat2 ComplexQZ<MatrixType_>::computeZk2(const Row2& b) {
Mat2 S;
S << Scalar(0), Scalar(1), Scalar(1), Scalar(0);
Vec2 bprime = S * b.adjoint();
JacobiRotation<Scalar> J;
J.makeGivens(bprime(0), bprime(1));
Mat2 Z = S;
Z.applyOnTheLeft(0, 1, J);
Z = S * Z;
return Z;
}
template <typename MatrixType_>
void ComplexQZ<MatrixType_>::do_QZ_step(Index p, Index q) {
// This is certainly not the most efficient way of doing this,
// but a readable one.
const auto a = [p, this](Index i, Index j) { return m_S(p + i - 1, p + j - 1); };
const auto b = [p, this](Index i, Index j) { return m_T(p + i - 1, p + j - 1); };
const Index m = m_n - p - q; // Size of the inner block
Scalar x, y, z;
// We could introduce doing exceptional shifts from time to time.
Scalar W1 = a(m - 1, m - 1) / b(m - 1, m - 1) - a(1, 1) / b(1, 1), W2 = a(m, m) / b(m, m) - a(1, 1) / b(1, 1),
W3 = a(m, m - 1) / b(m - 1, m - 1);
x = (W1 * W2 - a(m - 1, m) / b(m, m) * W3 + W3 * b(m - 1, m) / b(m, m) * a(1, 1) / b(1, 1)) * b(1, 1) / a(2, 1) +
a(1, 2) / b(2, 2) - a(1, 1) / b(1, 1) * b(1, 2) / b(2, 2);
y = (a(2, 2) / b(2, 2) - a(1, 1) / b(1, 1)) - a(2, 1) / b(1, 1) * b(1, 2) / b(2, 2) - W1 - W2 +
W3 * (b(m - 1, m) / b(m, m));
z = a(3, 2) / b(2, 2);
Vec3 X;
const PermutationMatrix<3, 3, int> S3(Vector3i(2, 0, 1));
for (Index k = p; k < p + m - 2; k++) {
X << x, y, z;
Vec2 ess;
Scalar tau;
RealScalar beta;
X.makeHouseholder(ess, tau, beta);
// The permutations are needed because the makeHouseHolder-method computes
// the householder transformation in a way that the vector is reflected to
// (1 0 ... 0) instead of (0 ... 0 1)
m_S.template middleRows<3>(k)
.rightCols((std::min)(m_n, m_n - k + 1))
.applyHouseholderOnTheLeft(ess, tau, m_ws.data());
m_T.template middleRows<3>(k).rightCols(m_n - k).applyHouseholderOnTheLeft(ess, tau, m_ws.data());
if (m_computeQZ) m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(ess, std::conj(tau), m_ws.data());
// Compute Matrix Zk1 s.t. (b(k+2,k) ... b(k+2, k+2)) Zk1 = (0,0,*)
Vec3 bprime = (m_T.template block<1, 3>(k + 2, k) * S3).adjoint();
bprime.makeHouseholder(ess, tau, beta);
m_S.template middleCols<3>(k).topRows((std::min)(k + 4, m_n)).applyOnTheRight(S3);
m_S.template middleCols<3>(k)
.topRows((std::min)(k + 4, m_n))
.applyHouseholderOnTheRight(ess, std::conj(tau), m_ws.data());
m_S.template middleCols<3>(k).topRows((std::min)(k + 4, m_n)).applyOnTheRight(S3.transpose());
m_T.template middleCols<3>(k).topRows((std::min)(k + 3, m_n)).applyOnTheRight(S3);
m_T.template middleCols<3>(k)
.topRows((std::min)(k + 3, m_n))
.applyHouseholderOnTheRight(ess, std::conj(tau), m_ws.data());
m_T.template middleCols<3>(k).topRows((std::min)(k + 3, m_n)).applyOnTheRight(S3.transpose());
if (m_computeQZ) {
m_Z.template middleRows<3>(k).applyOnTheLeft(S3.transpose());
m_Z.template middleRows<3>(k).applyHouseholderOnTheLeft(ess, tau, m_ws.data());
m_Z.template middleRows<3>(k).applyOnTheLeft(S3);
}
Mat2 Zk2 = computeZk2(m_T.template block<1, 2>(k + 1, k));
m_S.template middleCols<2>(k).topRows((std::min)(k + 4, m_n)).applyOnTheRight(Zk2);
m_T.template middleCols<2>(k).topRows((std::min)(k + 3, m_n)).applyOnTheRight(Zk2);
if (m_computeQZ) m_Z.template middleRows<2>(k).applyOnTheLeft(Zk2.adjoint());
x = m_S(k + 1, k);
y = m_S(k + 2, k);
if (k < p + m - 3) {
z = m_S(k + 3, k);
}
};
// Find a Householdermartirx Qn1 s.t. Qn1 (x y)^T = (* 0)
JacobiRotation<Scalar> J;
J.makeGivens(x, y);
m_S.template middleRows<2>(p + m - 2).applyOnTheLeft(0, 1, J.adjoint());
m_T.template middleRows<2>(p + m - 2).applyOnTheLeft(0, 1, J.adjoint());
if (m_computeQZ) m_Q.template middleCols<2>(p + m - 2).applyOnTheRight(0, 1, J);
// Find a Householdermatrix Zn1 s.t. (b(n,n-1) b(n,n)) * Zn1 = (0 *)
Mat2 Zn1 = computeZk2(m_T.template block<1, 2>(p + m - 1, p + m - 2));
m_S.template middleCols<2>(p + m - 2).applyOnTheRight(Zn1);
m_T.template middleCols<2>(p + m - 2).applyOnTheRight(Zn1);
if (m_computeQZ) m_Z.template middleRows<2>(p + m - 2).applyOnTheLeft(Zn1.adjoint());
}
/** \internal we found an undesired non-zero at (i+1,i) on the subdiagonal of S and reduce the block */
template <typename MatrixType_>
void ComplexQZ<MatrixType_>::reduceDiagonal2x2block(Index i) {
// We have found a non-zero on the subdiagonal and want to eliminate it
Mat2 Si = m_S.template block<2, 2>(i, i), Ti = m_T.template block<2, 2>(i, i);
if (is_negligible(Ti(0, 0)) && !is_negligible(Ti(1, 1))) {
Eigen::JacobiRotation<Scalar> G;
G.makeGivens(m_S(i, i), m_S(i + 1, i));
m_S.applyOnTheLeft(i, i + 1, G.adjoint());
m_T.applyOnTheLeft(i, i + 1, G.adjoint());
if (m_computeQZ) m_Q.applyOnTheRight(i, i + 1, G);
} else if (!is_negligible(Ti(0, 0)) && is_negligible(Ti(1, 1))) {
Eigen::JacobiRotation<Scalar> G;
G.makeGivens(m_S(i + 1, i + 1), m_S(i + 1, i));
m_S.applyOnTheRight(i, i + 1, G.adjoint());
m_T.applyOnTheRight(i, i + 1, G.adjoint());
if (m_computeQZ) m_Z.applyOnTheLeft(i, i + 1, G);
} else if (!is_negligible(Ti(0, 0)) && !is_negligible((Ti(1, 1)))) {
Scalar mu = Si(0, 0) / Ti(0, 0);
Scalar a12_bar = Si(0, 1) - mu * Ti(0, 1);
Scalar a22_bar = Si(1, 1) - mu * Ti(1, 1);
Scalar p = Scalar(0.5) * (a22_bar / Ti(1, 1) - Ti(0, 1) * Si(1, 0) / (Ti(0, 0) * Ti(1, 1)));
RealScalar sgn_p = p.real() >= RealScalar(0) ? RealScalar(1) : RealScalar(-1);
Scalar q = Si(1, 0) * a12_bar / (Ti(0, 0) * Ti(1, 1));
Scalar r = p * p + q;
Scalar lambda = mu + p + sgn_p * numext::sqrt(r);
Mat2 E = Si - lambda * Ti;
Index l;
E.rowwise().norm().maxCoeff(&l);
JacobiRotation<Scalar> G;
G.makeGivens(E(l, 1), E(l, 0));
m_S.applyOnTheRight(i, i + 1, G.adjoint());
m_T.applyOnTheRight(i, i + 1, G.adjoint());
if (m_computeQZ) m_Z.applyOnTheLeft(i, i + 1, G);
Mat2 tildeSi = m_S.template block<2, 2>(i, i), tildeTi = m_T.template block<2, 2>(i, i);
Mat2 C = tildeSi.norm() < (lambda * tildeTi).norm() ? tildeSi : lambda * tildeTi;
G.makeGivens(C(0, 0), C(1, 0));
m_S.applyOnTheLeft(i, i + 1, G.adjoint());
m_T.applyOnTheLeft(i, i + 1, G.adjoint());
if (m_computeQZ) m_Q.applyOnTheRight(i, i + 1, G);
}
if (!is_negligible(m_S(i + 1, i), m_normOfS * NumTraits<RealScalar>::epsilon())) {
m_info = ComputationInfo::NumericalIssue;
} else {
m_S(i + 1, i) = Scalar(0);
}
}
/** \internal We found a zero at T(k,k) and want to "push it down" to T(l,l) */
template <typename MatrixType_>
void ComplexQZ<MatrixType_>::push_down_zero_ST(Index k, Index l) {
// Test Preconditions
JacobiRotation<Scalar> J;
for (Index j = k + 1; j <= l; j++) {
// Create a 0 at _T(j, j)
J.makeGivens(m_T(j - 1, j), m_T(j, j), &m_T.coeffRef(j - 1, j));
m_T.rightCols(m_n - j - 1).applyOnTheLeft(j - 1, j, J.adjoint());
m_T.coeffRef(j, j) = Scalar(0);
m_S.applyOnTheLeft(j - 1, j, J.adjoint());
if (m_computeQZ) m_Q.applyOnTheRight(j - 1, j, J);
// Delete the non-desired non-zero at _S(j, j-2)
if (j > 1) {
J.makeGivens(std::conj(m_S(j, j - 1)), std::conj(m_S(j, j - 2)));
m_S.applyOnTheRight(j - 1, j - 2, J);
m_S(j, j - 2) = Scalar(0);
m_T.applyOnTheRight(j - 1, j - 2, J);
if (m_computeQZ) m_Z.applyOnTheLeft(j - 1, j - 2, J.adjoint());
}
}
// Assume we have the desired structure now, up to the non-zero entry at
// _S(l, l-1) which we will delete through a last right-jacobi-rotation
J.makeGivens(std::conj(m_S(l, l)), std::conj(m_S(l, l - 1)));
m_S.topRows(l + 1).applyOnTheRight(l, l - 1, J);
if (!is_negligible(m_S(l, l - 1), m_normOfS * NumTraits<Scalar>::epsilon())) {
m_info = ComputationInfo::NumericalIssue;
} else {
m_S(l, l - 1) = Scalar(0);
}
m_T.topRows(l + 1).applyOnTheRight(l, l - 1, J);
if (m_computeQZ) m_Z.applyOnTheLeft(l, l - 1, J.adjoint());
// Ensure postconditions
if (!is_negligible(m_T(l, l)) || !is_negligible(m_S(l, l - 1))) {
m_info = ComputationInfo::NumericalIssue;
} else {
m_T(l, l) = Scalar(0);
m_S(l, l - 1) = Scalar(0);
}
};
/** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */
template <typename MatrixType_>
void ComplexQZ<MatrixType_>::computeNorms() {
const Index size = m_S.cols();
m_normOfS = RealScalar(0);
m_normOfT = RealScalar(0);
for (Index j = 0; j < size; ++j) {
m_normOfS += m_S.col(j).segment(0, (std::min)(size, j + 2)).cwiseAbs().sum();
m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum();
}
};
/** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0). Copied from Eigen3 RealQZ
* implementation */
template <typename MatrixType_>
inline Index ComplexQZ<MatrixType_>::findSmallSubdiagEntry(Index iu) {
Index res = iu;
while (res > 0) {
RealScalar s = numext::abs(m_S.coeff(res - 1, res - 1)) + numext::abs(m_S.coeff(res, res));
if (s == Scalar(0)) s = m_normOfS;
if (numext::abs(m_S.coeff(res, res - 1)) < NumTraits<RealScalar>::epsilon() * s) break;
res--;
}
return res;
}
//
/** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1).
* Copied from Eigen3 RealQZ implementation. */
template <typename MatrixType_>
inline Index ComplexQZ<MatrixType_>::findSmallDiagEntry(Index f, Index l) {
Index res = l;
while (res >= f) {
if (numext::abs(m_T.coeff(res, res)) <= NumTraits<RealScalar>::epsilon() * m_normOfT) break;
res--;
}
return res;
}
} // namespace Eigen
#endif // _COMPLEX_QZ_H_

View File

@ -257,6 +257,7 @@ ei_add_test(eigensolver_selfadjoint)
ei_add_test(eigensolver_generic)
ei_add_test(eigensolver_complex)
ei_add_test(real_qz)
ei_add_test(complex_qz)
ei_add_test(eigensolver_generalized_real)
ei_add_test(jacobi)
ei_add_test(jacobisvd)

86
test/complex_qz.cpp Normal file
View File

@ -0,0 +1,86 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 The Eigen Authors
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_RUNTIME_NO_MALLOC
#include "main.h"
#include <Eigen/Eigenvalues>
/* this test covers the following files:
ComplexQZ.h
*/
template <typename MatrixType>
void generate_random_matrix_pair(const Index dim, MatrixType& A, MatrixType& B) {
A.resize(dim, dim);
B.resize(dim, dim);
A.setRandom();
B.setRandom();
// Set each row of B with a probability of 10% to 0
for (int i = 0; i < dim; i++) {
if (internal::random<int>(0, 10) == 0) B.row(i).setZero();
}
}
template <typename MatrixType>
void complex_qz(const MatrixType& A, const MatrixType& B) {
using std::abs;
const Index dim = A.rows();
ComplexQZ<MatrixType> qz(A, B);
VERIFY_IS_EQUAL(qz.info(), Success);
auto T = qz.matrixT(), S = qz.matrixS();
bool is_all_zero_T = true, is_all_zero_S = true;
using RealScalar = typename MatrixType::RealScalar;
RealScalar tol = dim * 10 * NumTraits<RealScalar>::epsilon();
for (Index j = 0; j < dim; j++) {
for (Index i = j + 1; i < dim; i++) {
if (std::abs(T(i, j)) > tol) {
std::cerr << std::abs(T(i, j)) << std::endl;
is_all_zero_T = false;
}
if (std::abs(S(i, j)) > tol) {
std::cerr << std::abs(S(i, j)) << std::endl;
is_all_zero_S = false;
}
}
}
VERIFY_IS_EQUAL(is_all_zero_T, true);
VERIFY_IS_EQUAL(is_all_zero_S, true);
VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixS() * qz.matrixZ(), A);
VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixT() * qz.matrixZ(), B);
VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixQ().adjoint(), MatrixType::Identity(dim, dim));
VERIFY_IS_APPROX(qz.matrixZ() * qz.matrixZ().adjoint(), MatrixType::Identity(dim, dim));
}
EIGEN_DECLARE_TEST(complex_qz) {
// const Index dim1 = 15;
// const Index dim2 = 80;
for (int i = 0; i < g_repeat; i++) {
// Check for very small, fixed-sized double- and float complex matrices
Eigen::Matrix2cd A_2x2, B_2x2;
A_2x2.setRandom();
B_2x2.setRandom();
B_2x2.row(1).setZero();
Eigen::Matrix3cf A_3x3, B_3x3;
A_3x3.setRandom();
B_3x3.setRandom();
B_3x3.col(i % 3).setRandom();
// Test for small float complex matrices
Eigen::MatrixXcf A_float, B_float;
const Index dim1 = internal::random<Index>(15, 80), dim2 = internal::random<Index>(15, 80);
generate_random_matrix_pair(dim1, A_float, B_float);
// Test for a bit larger double complex matrices
Eigen::MatrixXcd A_double, B_double;
generate_random_matrix_pair(dim2, A_double, B_double);
CALL_SUBTEST_1(complex_qz(A_2x2, B_2x2));
CALL_SUBTEST_2(complex_qz(A_3x3, B_3x3));
CALL_SUBTEST_3(complex_qz(A_float, B_float));
CALL_SUBTEST_4(complex_qz(A_double, B_double));
}
}