mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-01 08:14:10 +08:00
Further improved the testing of fp16
This commit is contained in:
parent
0451940fa4
commit
9a48688d37
@ -141,43 +141,43 @@ void test_cuda_trancendental() {
|
||||
|
||||
float* d_float1 = (float*)gpu_device.allocate(num_elem * sizeof(float));
|
||||
float* d_float2 = (float*)gpu_device.allocate(num_elem * sizeof(float));
|
||||
float* d_res1_half = (float*)gpu_device.allocate(num_elem * sizeof(float));
|
||||
float* d_res1_float = (float*)gpu_device.allocate(num_elem * sizeof(float));
|
||||
float* d_res2_half = (float*)gpu_device.allocate(num_elem * sizeof(float));
|
||||
float* d_res2_float = (float*)gpu_device.allocate(num_elem * sizeof(float));
|
||||
Eigen::half* d_res1_half = (Eigen::half*)gpu_device.allocate(num_elem * sizeof(Eigen::half));
|
||||
Eigen::half* d_res1_float = (Eigen::half*)gpu_device.allocate(num_elem * sizeof(Eigen::half));
|
||||
Eigen::half* d_res2_half = (Eigen::half*)gpu_device.allocate(num_elem * sizeof(Eigen::half));
|
||||
Eigen::half* d_res2_float = (Eigen::half*)gpu_device.allocate(num_elem * sizeof(Eigen::half));
|
||||
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_float1(
|
||||
d_float1, num_elem);
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_float2(
|
||||
d_float2, num_elem);
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_res1_half(
|
||||
Eigen::TensorMap<Eigen::Tensor<Eigen::half, 1>, Eigen::Aligned> gpu_res1_half(
|
||||
d_res1_half, num_elem);
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_res1_float(
|
||||
Eigen::TensorMap<Eigen::Tensor<Eigen::half, 1>, Eigen::Aligned> gpu_res1_float(
|
||||
d_res1_float, num_elem);
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_res2_half(
|
||||
Eigen::TensorMap<Eigen::Tensor<Eigen::half, 1>, Eigen::Aligned> gpu_res2_half(
|
||||
d_res2_half, num_elem);
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_res2_float(
|
||||
Eigen::TensorMap<Eigen::Tensor<Eigen::half, 1>, Eigen::Aligned> gpu_res2_float(
|
||||
d_res2_float, num_elem);
|
||||
|
||||
gpu_float1.device(gpu_device) = gpu_float1.random();
|
||||
gpu_float2.device(gpu_device) = gpu_float2.random();
|
||||
gpu_res1_float.device(gpu_device) = gpu_float1.exp();
|
||||
gpu_res2_float.device(gpu_device) = gpu_float2.log();
|
||||
gpu_res1_half.device(gpu_device) = gpu_float1.cast<Eigen::half>().exp().cast<float>();
|
||||
gpu_res2_half.device(gpu_device) = gpu_float2.cast<Eigen::half>().log().cast<float>();
|
||||
gpu_res1_float.device(gpu_device) = gpu_float1.exp().cast<Eigen::half>();
|
||||
gpu_res2_float.device(gpu_device) = gpu_float2.log().cast<Eigen::half>();
|
||||
gpu_res1_half.device(gpu_device) = gpu_float1.cast<Eigen::half>().exp();
|
||||
gpu_res2_half.device(gpu_device) = gpu_float2.cast<Eigen::half>().log();
|
||||
|
||||
Tensor<float, 1> input1(num_elem);
|
||||
Tensor<float, 1> half_prec1(num_elem);
|
||||
Tensor<float, 1> full_prec1(num_elem);
|
||||
Tensor<Eigen::half, 1> half_prec1(num_elem);
|
||||
Tensor<Eigen::half, 1> full_prec1(num_elem);
|
||||
Tensor<float, 1> input2(num_elem);
|
||||
Tensor<float, 1> half_prec2(num_elem);
|
||||
Tensor<float, 1> full_prec2(num_elem);
|
||||
Tensor<Eigen::half, 1> half_prec2(num_elem);
|
||||
Tensor<Eigen::half, 1> full_prec2(num_elem);
|
||||
gpu_device.memcpyDeviceToHost(input1.data(), d_float1, num_elem*sizeof(float));
|
||||
gpu_device.memcpyDeviceToHost(input2.data(), d_float2, num_elem*sizeof(float));
|
||||
gpu_device.memcpyDeviceToHost(half_prec1.data(), d_res1_half, num_elem*sizeof(float));
|
||||
gpu_device.memcpyDeviceToHost(full_prec1.data(), d_res1_float, num_elem*sizeof(float));
|
||||
gpu_device.memcpyDeviceToHost(half_prec2.data(), d_res2_half, num_elem*sizeof(float));
|
||||
gpu_device.memcpyDeviceToHost(full_prec2.data(), d_res2_float, num_elem*sizeof(float));
|
||||
gpu_device.memcpyDeviceToHost(half_prec1.data(), d_res1_half, num_elem*sizeof(Eigen::half));
|
||||
gpu_device.memcpyDeviceToHost(full_prec1.data(), d_res1_float, num_elem*sizeof(Eigen::half));
|
||||
gpu_device.memcpyDeviceToHost(half_prec2.data(), d_res2_half, num_elem*sizeof(Eigen::half));
|
||||
gpu_device.memcpyDeviceToHost(full_prec2.data(), d_res2_float, num_elem*sizeof(Eigen::half));
|
||||
gpu_device.synchronize();
|
||||
|
||||
for (int i = 0; i < num_elem; ++i) {
|
||||
@ -206,16 +206,16 @@ void test_cuda_contractions() {
|
||||
|
||||
float* d_float1 = (float*)gpu_device.allocate(num_elem * sizeof(float));
|
||||
float* d_float2 = (float*)gpu_device.allocate(num_elem * sizeof(float));
|
||||
float* d_res_half = (float*)gpu_device.allocate(num_elem * sizeof(float));
|
||||
float* d_res_float = (float*)gpu_device.allocate(num_elem * sizeof(float));
|
||||
Eigen::half* d_res_half = (Eigen::half*)gpu_device.allocate(num_elem * sizeof(Eigen::half));
|
||||
Eigen::half* d_res_float = (Eigen::half*)gpu_device.allocate(num_elem * sizeof(Eigen::half));
|
||||
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 2>, Eigen::Aligned> gpu_float1(
|
||||
d_float1, rows, cols);
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 2>, Eigen::Aligned> gpu_float2(
|
||||
d_float2, rows, cols);
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 2>, Eigen::Aligned> gpu_res_half(
|
||||
Eigen::TensorMap<Eigen::Tensor<Eigen::half, 2>, Eigen::Aligned> gpu_res_half(
|
||||
d_res_half, rows, cols);
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 2>, Eigen::Aligned> gpu_res_float(
|
||||
Eigen::TensorMap<Eigen::Tensor<Eigen::half, 2>, Eigen::Aligned> gpu_res_float(
|
||||
d_res_float, rows, cols);
|
||||
|
||||
gpu_float1.device(gpu_device) = gpu_float1.random() - gpu_float1.constant(0.5f);
|
||||
@ -223,13 +223,13 @@ void test_cuda_contractions() {
|
||||
|
||||
typedef Tensor<float, 2>::DimensionPair DimPair;
|
||||
Eigen::array<DimPair, 1> dims(DimPair(1, 0));
|
||||
gpu_res_float.device(gpu_device) = gpu_float1.contract(gpu_float2, dims);
|
||||
gpu_res_half.device(gpu_device) = gpu_float1.cast<Eigen::half>().contract(gpu_float2.cast<Eigen::half>(), dims).cast<float>();
|
||||
gpu_res_float.device(gpu_device) = gpu_float1.contract(gpu_float2, dims).cast<Eigen::half>();
|
||||
gpu_res_half.device(gpu_device) = gpu_float1.cast<Eigen::half>().contract(gpu_float2.cast<Eigen::half>(), dims);
|
||||
|
||||
Tensor<float, 2> half_prec(rows, cols);
|
||||
Tensor<float, 2> full_prec(rows, cols);
|
||||
gpu_device.memcpyDeviceToHost(half_prec.data(), d_res_half, num_elem*sizeof(float));
|
||||
gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, num_elem*sizeof(float));
|
||||
Tensor<Eigen::half, 2> half_prec(rows, cols);
|
||||
Tensor<Eigen::half, 2> full_prec(rows, cols);
|
||||
gpu_device.memcpyDeviceToHost(half_prec.data(), d_res_half, num_elem*sizeof(Eigen::half));
|
||||
gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, num_elem*sizeof(Eigen::half));
|
||||
gpu_device.synchronize();
|
||||
|
||||
for (int i = 0; i < rows; ++i) {
|
||||
@ -254,29 +254,42 @@ void test_cuda_reductions() {
|
||||
|
||||
float* d_float1 = (float*)gpu_device.allocate(num_elem * sizeof(float));
|
||||
float* d_float2 = (float*)gpu_device.allocate(num_elem * sizeof(float));
|
||||
float* d_res_half = (float*)gpu_device.allocate(size * sizeof(float));
|
||||
float* d_res_float = (float*)gpu_device.allocate(size * sizeof(float));
|
||||
Eigen::half* d_res_half = (Eigen::half*)gpu_device.allocate(size * sizeof(Eigen::half));
|
||||
Eigen::half* d_res_float = (Eigen::half*)gpu_device.allocate(size * sizeof(Eigen::half));
|
||||
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 2>, Eigen::Aligned> gpu_float1(
|
||||
d_float1, size, size);
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 2>, Eigen::Aligned> gpu_float2(
|
||||
d_float2, size, size);
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_res_half(
|
||||
Eigen::TensorMap<Eigen::Tensor<Eigen::half, 1>, Eigen::Aligned> gpu_res_half(
|
||||
d_res_half, size);
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_res_float(
|
||||
Eigen::TensorMap<Eigen::Tensor<Eigen::half, 1>, Eigen::Aligned> gpu_res_float(
|
||||
d_res_float, size);
|
||||
|
||||
gpu_float1.device(gpu_device) = gpu_float1.random();
|
||||
gpu_float2.device(gpu_device) = gpu_float2.random();
|
||||
|
||||
Eigen::array<int, 1> redux_dim = {{0}};
|
||||
gpu_res_float.device(gpu_device) = gpu_float1.sum(redux_dim);
|
||||
gpu_res_half.device(gpu_device) = gpu_float1.cast<Eigen::half>().sum(redux_dim).cast<float>();
|
||||
gpu_res_float.device(gpu_device) = gpu_float1.sum(redux_dim).cast<Eigen::half>();
|
||||
gpu_res_half.device(gpu_device) = gpu_float1.cast<Eigen::half>().sum(redux_dim);
|
||||
|
||||
Tensor<float, 1> half_prec(size);
|
||||
Tensor<float, 1> full_prec(size);
|
||||
gpu_device.memcpyDeviceToHost(half_prec.data(), d_res_half, size*sizeof(float));
|
||||
gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, size*sizeof(float));
|
||||
Tensor<Eigen::half, 1> half_prec(size);
|
||||
Tensor<Eigen::half, 1> full_prec(size);
|
||||
gpu_device.memcpyDeviceToHost(half_prec.data(), d_res_half, size*sizeof(Eigen::half));
|
||||
gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, size*sizeof(Eigen::half));
|
||||
gpu_device.synchronize();
|
||||
|
||||
for (int i = 0; i < size; ++i) {
|
||||
std::cout << "Checking redux " << i << std::endl;
|
||||
VERIFY_IS_APPROX(full_prec(i), half_prec(i));
|
||||
}
|
||||
|
||||
redux_dim = {{1}};
|
||||
gpu_res_float.device(gpu_device) = gpu_float1.sum(redux_dim).cast<Eigen::half>();
|
||||
gpu_res_half.device(gpu_device) = gpu_float1.cast<Eigen::half>().sum(redux_dim);
|
||||
|
||||
gpu_device.memcpyDeviceToHost(half_prec.data(), d_res_half, size*sizeof(Eigen::half));
|
||||
gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, size*sizeof(Eigen::half));
|
||||
gpu_device.synchronize();
|
||||
|
||||
for (int i = 0; i < size; ++i) {
|
||||
@ -333,23 +346,14 @@ void test_cuda_forced_evals() {
|
||||
void test_cxx11_tensor_of_float16_cuda()
|
||||
{
|
||||
#ifdef EIGEN_HAS_CUDA_FP16
|
||||
Eigen::CudaStreamDevice stream;
|
||||
Eigen::GpuDevice device(&stream);
|
||||
if (device.majorDeviceVersion() > 5 ||
|
||||
(device.majorDeviceVersion() == 5 && device.minorDeviceVersion() >= 3)) {
|
||||
std::cout << "Running test on device with capability " << device.majorDeviceVersion() << "." << device.minorDeviceVersion() << std::endl;
|
||||
CALL_SUBTEST_1(test_cuda_conversion());
|
||||
CALL_SUBTEST_1(test_cuda_unary());
|
||||
CALL_SUBTEST_1(test_cuda_elementwise());
|
||||
CALL_SUBTEST_1(test_cuda_trancendental());
|
||||
CALL_SUBTEST_2(test_cuda_contractions());
|
||||
CALL_SUBTEST_3(test_cuda_reductions());
|
||||
CALL_SUBTEST_4(test_cuda_forced_evals());
|
||||
|
||||
CALL_SUBTEST_1(test_cuda_conversion());
|
||||
CALL_SUBTEST_1(test_cuda_unary());
|
||||
CALL_SUBTEST_1(test_cuda_elementwise());
|
||||
CALL_SUBTEST_1(test_cuda_trancendental());
|
||||
CALL_SUBTEST_2(test_cuda_contractions());
|
||||
CALL_SUBTEST_3(test_cuda_reductions());
|
||||
CALL_SUBTEST_4(test_cuda_forced_evals());
|
||||
}
|
||||
else {
|
||||
std::cout << "Half floats require compute capability of at least 5.3. This device only supports " << device.majorDeviceVersion() << "." << device.minorDeviceVersion() << ". Skipping the test" << std::endl;
|
||||
}
|
||||
#else
|
||||
std::cout << "Half floats are not supported by this version of cuda: skipping the test" << std::endl;
|
||||
#endif
|
||||
|
Loading…
x
Reference in New Issue
Block a user