mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-22 09:39:34 +08:00
Creation of the Polynomials module with the following features:
* convenient functions: - Horner and stabilized Horner evaluation - polynomial coefficients from a set of given roots - Cauchy bounds * a QR based polynomial solver
This commit is contained in:
parent
c68098b9be
commit
9a4a08da46
@ -1,4 +1,4 @@
|
||||
set(Eigen_HEADERS AdolcForward BVH IterativeSolvers MatrixFunctions MoreVectorization AutoDiff AlignedVector3)
|
||||
set(Eigen_HEADERS AdolcForward BVH IterativeSolvers MatrixFunctions MoreVectorization AutoDiff AlignedVector3 Polynomials)
|
||||
|
||||
install(FILES
|
||||
${Eigen_HEADERS}
|
||||
|
132
unsupported/Eigen/Polynomials
Normal file
132
unsupported/Eigen/Polynomials
Normal file
@ -0,0 +1,132 @@
|
||||
#ifndef EIGEN_POLYNOMIALS_MODULE_H
|
||||
#define EIGEN_POLYNOMIALS_MODULE_H
|
||||
|
||||
#include <Eigen/Core>
|
||||
|
||||
#include <Eigen/src/Core/util/DisableMSVCWarnings.h>
|
||||
|
||||
#include <Eigen/QR>
|
||||
|
||||
// Note that EIGEN_HIDE_HEAVY_CODE has to be defined per module
|
||||
#if (defined EIGEN_EXTERN_INSTANTIATIONS) && (EIGEN_EXTERN_INSTANTIATIONS>=2)
|
||||
#ifndef EIGEN_HIDE_HEAVY_CODE
|
||||
#define EIGEN_HIDE_HEAVY_CODE
|
||||
#endif
|
||||
#elif defined EIGEN_HIDE_HEAVY_CODE
|
||||
#undef EIGEN_HIDE_HEAVY_CODE
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \ingroup Unsupported_modules
|
||||
* \defgroup Polynomials_Module Polynomials module
|
||||
*
|
||||
* \nonstableyet
|
||||
*
|
||||
* \brief This module provides a QR based polynomial solver.
|
||||
*
|
||||
* To use this module, add
|
||||
* \code
|
||||
* #include <unsupported/Eigen/Polynomials>
|
||||
* \endcode
|
||||
* at the start of your source file.
|
||||
*/
|
||||
|
||||
#include "src/Polynomials/PolynomialUtils.h"
|
||||
#include "src/Polynomials/Companion.h"
|
||||
#include "src/Polynomials/PolynomialSolver.h"
|
||||
|
||||
/**
|
||||
\page polynomials Polynomials defines functions for dealing with polynomials
|
||||
and a QR based polynomial solver.
|
||||
\ingroup Polynomials_Module
|
||||
|
||||
The remainder of the page documents first the functions for evaluating, computing
|
||||
polynomials, computing estimates about polynomials and next the QR based polynomial
|
||||
solver.
|
||||
|
||||
\section polynomialUtils convenient functions to deal with polynomials
|
||||
\subsection roots_to_monicPolynomial
|
||||
The function
|
||||
\code
|
||||
void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
|
||||
\endcode
|
||||
computes the coefficients \f$ a_i \f$ of
|
||||
|
||||
\f$ p(x) = a_0 + a_{1}x + ... + a_{n-1}x^{n-1} + x^n \f$
|
||||
|
||||
where \f$ p \f$ is known through its roots i.e. \f$ p(x) = (x-r_1)(x-r_2)...(x-r_n) \f$.
|
||||
|
||||
\subsection poly_eval
|
||||
The function
|
||||
\code
|
||||
T poly_eval( const Polynomials& poly, const T& x )
|
||||
\endcode
|
||||
evaluates a polynomial at a given point using stabilized Hörner method.
|
||||
|
||||
The following code computes the coefficients in the monomial basis of the monic polynomial given through its roots then evaluate it at those roots.
|
||||
|
||||
\include PolynomialUtils1.cpp
|
||||
Output: \verbinclude PolynomialUtils1.out
|
||||
|
||||
\subsection Cauchy bounds
|
||||
The function
|
||||
\code
|
||||
Real cauchy_max_bound( const Polynomial& poly )
|
||||
\endcode
|
||||
provides a maximum bound (the Cauchy one: \f$C(p)\f$) for the absolute value of a root of the given polynomial i.e.
|
||||
\f$ \forall r_i \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$,
|
||||
\f$ |r_i| \le C(p) = \sum_{k=0}^{d} \left | \frac{a_k}{a_d} \right | \f$
|
||||
The leading coefficient \f$ p \f$: should be non zero \f$a_d \neq 0\f$.
|
||||
|
||||
|
||||
The function
|
||||
\code
|
||||
Real cauchy_min_bound( const Polynomial& poly )
|
||||
\endcode
|
||||
provides a minimum bound (the Cauchy one: \f$c(p)\f$) for the absolute value of a non zero root of the given polynomial i.e.
|
||||
\f$ \forall r_i \neq 0 \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$,
|
||||
\f$ |r_i| \ge c(p) = \left( \sum_{k=0}^{d} \left | \frac{a_k}{a_0} \right | \right)^{-1} \f$
|
||||
|
||||
|
||||
|
||||
|
||||
\section QR polynomial solver class
|
||||
Computes the complex roots of a polynomial by computing the eigenvalues of the associated companion matrix with the QR algorithm.
|
||||
|
||||
The roots of \f$ p(x) = a_0 + a_1 x + a_2 x^2 + a_{3} x^3 + x^4 \f$ are the eigenvalues of
|
||||
\f$
|
||||
\left [
|
||||
\begin{array}{cccc}
|
||||
0 & 0 & 0 & a_0 \\
|
||||
1 & 0 & 0 & a_1 \\
|
||||
0 & 1 & 0 & a_2 \\
|
||||
0 & 0 & 1 & a_3
|
||||
\end{array} \right ]
|
||||
\f$
|
||||
|
||||
However, the QR algorithm is not guaranteed to converge when there are several eigenvalues with same modulus.
|
||||
|
||||
Therefore the current polynomial solver is guaranteed to provide a correct result only when the complex roots \f$r_1,r_2,...,r_d\f$ have distinct moduli i.e.
|
||||
|
||||
\f$ \forall i,j \in [1;d],~ \| r_i \| \neq \| r_j \| \f$.
|
||||
|
||||
With 32bit (float) floating types this problem shows up frequently.
|
||||
However, almost always, correct accuracy is reached even in these cases for 64bit
|
||||
(double) floating types and small polynomial degree (<20).
|
||||
|
||||
\include PolynomialSolver1.cpp
|
||||
In the example a polynomial with almost conjugate roots is provided to the solver.
|
||||
Those roots have almost same module therefore the QR algorithm failed to converge: the accuracy
|
||||
of the last root is bad.
|
||||
|
||||
This problem is less visible with double.
|
||||
Output: \verbinclude PolynomialSolver1.out
|
||||
*/
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#include <Eigen/src/Core/util/EnableMSVCWarnings.h>
|
||||
|
||||
#endif // EIGEN_POLYNOMIALS_MODULE_H
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
@ -5,3 +5,4 @@ ADD_SUBDIRECTORY(MoreVectorization)
|
||||
# ADD_SUBDIRECTORY(FFT)
|
||||
# ADD_SUBDIRECTORY(Skyline)
|
||||
ADD_SUBDIRECTORY(MatrixFunctions)
|
||||
ADD_SUBDIRECTORY(Polynomials)
|
||||
|
6
unsupported/Eigen/src/Polynomials/CMakeLists.txt
Normal file
6
unsupported/Eigen/src/Polynomials/CMakeLists.txt
Normal file
@ -0,0 +1,6 @@
|
||||
FILE(GLOB Eigen_Polynomials_SRCS "*.h")
|
||||
|
||||
INSTALL(FILES
|
||||
${Eigen_Polynomials_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/Polynomials COMPONENT Devel
|
||||
)
|
281
unsupported/Eigen/src/Polynomials/Companion.h
Normal file
281
unsupported/Eigen/src/Polynomials/Companion.h
Normal file
@ -0,0 +1,281 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_COMPANION_H
|
||||
#define EIGEN_COMPANION_H
|
||||
|
||||
// This file requires the user to include
|
||||
// * Eigen/Core
|
||||
// * Eigen/src/PolynomialSolver.h
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
template <typename T>
|
||||
T ei_radix(){ return 2; }
|
||||
|
||||
template <typename T>
|
||||
T ei_radix2(){ return ei_radix<T>()*ei_radix<T>(); }
|
||||
|
||||
template<int Size>
|
||||
struct ei_decrement_if_fixed_size
|
||||
{
|
||||
enum {
|
||||
ret = (Size == Dynamic) ? Dynamic : Size-1 };
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
template< typename _Scalar, int _Deg >
|
||||
class ei_companion
|
||||
{
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Deg==Dynamic ? Dynamic : _Deg)
|
||||
|
||||
enum {
|
||||
Deg = _Deg,
|
||||
Deg_1=ei_decrement_if_fixed_size<Deg>::ret
|
||||
};
|
||||
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, Deg, 1> RightColumn;
|
||||
//typedef DiagonalMatrix< Scalar, Deg_1, Deg_1 > BottomLeftDiagonal;
|
||||
typedef Matrix<Scalar, Deg_1, 1> BottomLeftDiagonal;
|
||||
|
||||
typedef Matrix<Scalar, Deg, Deg> DenseCompanionMatrixType;
|
||||
typedef Matrix< Scalar, _Deg, Deg_1 > LeftBlock;
|
||||
typedef Matrix< Scalar, Deg_1, Deg_1 > BottomLeftBlock;
|
||||
typedef Matrix< Scalar, 1, Deg_1 > LeftBlockFirstRow;
|
||||
|
||||
public:
|
||||
EIGEN_STRONG_INLINE const _Scalar operator()( int row, int col ) const
|
||||
{
|
||||
if( m_bl_diag.rows() > col )
|
||||
{
|
||||
if( 0 < row ){ return m_bl_diag[col]; }
|
||||
else{ return 0; }
|
||||
}
|
||||
else{ return m_monic[row]; }
|
||||
}
|
||||
|
||||
public:
|
||||
template<typename VectorType>
|
||||
void setPolynomial( const VectorType& poly )
|
||||
{
|
||||
const int deg = poly.size()-1;
|
||||
m_monic = -1/poly[deg] * poly.head(deg);
|
||||
//m_bl_diag.setIdentity( deg-1 );
|
||||
m_bl_diag.setOnes(deg-1);
|
||||
}
|
||||
|
||||
template<typename VectorType>
|
||||
ei_companion( const VectorType& poly ){
|
||||
setPolynomial( poly ); }
|
||||
|
||||
public:
|
||||
DenseCompanionMatrixType denseMatrix() const
|
||||
{
|
||||
const int deg = m_monic.size();
|
||||
const int deg_1 = deg-1;
|
||||
DenseCompanionMatrixType companion(deg,deg);
|
||||
companion <<
|
||||
( LeftBlock(deg,deg_1)
|
||||
<< LeftBlockFirstRow::Zero(1,deg_1),
|
||||
BottomLeftBlock::Identity(deg-1,deg-1)*m_bl_diag.asDiagonal() ).finished()
|
||||
, m_monic;
|
||||
return companion;
|
||||
}
|
||||
|
||||
|
||||
|
||||
protected:
|
||||
/** Helper function for the balancing algorithm.
|
||||
* \returns true if the row and the column, having colNorm and rowNorm
|
||||
* as norms, are balanced, false otherwise.
|
||||
* colB and rowB are repectively the multipliers for
|
||||
* the column and the row in order to balance them.
|
||||
* */
|
||||
bool balanced( Scalar colNorm, Scalar rowNorm,
|
||||
bool& isBalanced, Scalar& colB, Scalar& rowB );
|
||||
|
||||
/** Helper function for the balancing algorithm.
|
||||
* \returns true if the row and the column, having colNorm and rowNorm
|
||||
* as norms, are balanced, false otherwise.
|
||||
* colB and rowB are repectively the multipliers for
|
||||
* the column and the row in order to balance them.
|
||||
* */
|
||||
bool balancedR( Scalar colNorm, Scalar rowNorm,
|
||||
bool& isBalanced, Scalar& colB, Scalar& rowB );
|
||||
|
||||
public:
|
||||
/**
|
||||
* Balancing algorithm from B. N. PARLETT and C. REINSCH (1969)
|
||||
* "Balancing a matrix for calculation of eigenvalues and eigenvectors"
|
||||
* adapted to the case of companion matrices.
|
||||
* A matrix with non zero row and non zero column is balanced
|
||||
* for a certain norm if the i-th row and the i-th column
|
||||
* have same norm for all i.
|
||||
*/
|
||||
void balance();
|
||||
|
||||
protected:
|
||||
RightColumn m_monic;
|
||||
BottomLeftDiagonal m_bl_diag;
|
||||
};
|
||||
|
||||
|
||||
|
||||
template< typename _Scalar, int _Deg >
|
||||
inline
|
||||
bool ei_companion<_Scalar,_Deg>::balanced( Scalar colNorm, Scalar rowNorm,
|
||||
bool& isBalanced, Scalar& colB, Scalar& rowB )
|
||||
{
|
||||
if( Scalar(0) == colNorm || Scalar(0) == rowNorm ){ return true; }
|
||||
else
|
||||
{
|
||||
//To find the balancing coefficients, if the radix is 2,
|
||||
//one finds \f$ \sigma \f$ such that
|
||||
// \f$ 2^{2\sigma-1} < rowNorm / colNorm \le 2^{2\sigma+1} \f$
|
||||
// then the balancing coefficient for the row is \f$ 1/2^{\sigma} \f$
|
||||
// and the balancing coefficient for the column is \f$ 2^{\sigma} \f$
|
||||
rowB = rowNorm / ei_radix<Scalar>();
|
||||
colB = Scalar(1);
|
||||
const Scalar s = colNorm + rowNorm;
|
||||
|
||||
while (colNorm < rowB)
|
||||
{
|
||||
colB *= ei_radix<Scalar>();
|
||||
colNorm *= ei_radix2<Scalar>();
|
||||
}
|
||||
|
||||
rowB = rowNorm * ei_radix<Scalar>();
|
||||
|
||||
while (colNorm >= rowB)
|
||||
{
|
||||
colB /= ei_radix<Scalar>();
|
||||
colNorm /= ei_radix2<Scalar>();
|
||||
}
|
||||
|
||||
//This line is used to avoid insubstantial balancing
|
||||
if ((rowNorm + colNorm) < Scalar(0.95) * s * colB)
|
||||
{
|
||||
isBalanced = false;
|
||||
rowB = Scalar(1) / colB;
|
||||
return false;
|
||||
}
|
||||
else{
|
||||
return true; }
|
||||
}
|
||||
}
|
||||
|
||||
template< typename _Scalar, int _Deg >
|
||||
inline
|
||||
bool ei_companion<_Scalar,_Deg>::balancedR( Scalar colNorm, Scalar rowNorm,
|
||||
bool& isBalanced, Scalar& colB, Scalar& rowB )
|
||||
{
|
||||
if( Scalar(0) == colNorm || Scalar(0) == rowNorm ){ return true; }
|
||||
else
|
||||
{
|
||||
/**
|
||||
* Set the norm of the column and the row to the geometric mean
|
||||
* of the row and column norm
|
||||
*/
|
||||
const _Scalar q = colNorm/rowNorm;
|
||||
if( !ei_isApprox( q, _Scalar(1) ) )
|
||||
{
|
||||
rowB = ei_sqrt( colNorm/rowNorm );
|
||||
colB = Scalar(1)/rowB;
|
||||
|
||||
isBalanced = false;
|
||||
return false;
|
||||
}
|
||||
else{
|
||||
return true; }
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template< typename _Scalar, int _Deg >
|
||||
void ei_companion<_Scalar,_Deg>::balance()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT( 1 < Deg, YOU_MADE_A_PROGRAMMING_MISTAKE );
|
||||
const int deg = m_monic.size();
|
||||
const int deg_1 = deg-1;
|
||||
|
||||
bool hasConverged=false;
|
||||
while( !hasConverged )
|
||||
{
|
||||
hasConverged = true;
|
||||
Scalar colNorm,rowNorm;
|
||||
Scalar colB,rowB;
|
||||
|
||||
//First row, first column excluding the diagonal
|
||||
//==============================================
|
||||
colNorm = ei_abs(m_bl_diag[0]);
|
||||
rowNorm = ei_abs(m_monic[0]);
|
||||
|
||||
//Compute balancing of the row and the column
|
||||
if( !balanced( colNorm, rowNorm, hasConverged, colB, rowB ) )
|
||||
{
|
||||
m_bl_diag[0] *= colB;
|
||||
m_monic[0] *= rowB;
|
||||
}
|
||||
|
||||
//Middle rows and columns excluding the diagonal
|
||||
//==============================================
|
||||
for( int i=1; i<deg_1; ++i )
|
||||
{
|
||||
// column norm, excluding the diagonal
|
||||
colNorm = ei_abs(m_bl_diag[i]);
|
||||
|
||||
// row norm, excluding the diagonal
|
||||
rowNorm = ei_abs(m_bl_diag[i-1]) + ei_abs(m_monic[i]);
|
||||
|
||||
//Compute balancing of the row and the column
|
||||
if( !balanced( colNorm, rowNorm, hasConverged, colB, rowB ) )
|
||||
{
|
||||
m_bl_diag[i] *= colB;
|
||||
m_bl_diag[i-1] *= rowB;
|
||||
m_monic[i] *= rowB;
|
||||
}
|
||||
}
|
||||
|
||||
//Last row, last column excluding the diagonal
|
||||
//============================================
|
||||
const int ebl = m_bl_diag.size()-1;
|
||||
VectorBlock<RightColumn,Deg_1> headMonic( m_monic, 0, deg_1 );
|
||||
colNorm = headMonic.array().abs().sum();
|
||||
rowNorm = ei_abs( m_bl_diag[ebl] );
|
||||
|
||||
//Compute balancing of the row and the column
|
||||
if( !balanced( colNorm, rowNorm, hasConverged, colB, rowB ) )
|
||||
{
|
||||
headMonic *= colB;
|
||||
m_bl_diag[ebl] *= rowB;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif // EIGEN_COMPANION_H
|
395
unsupported/Eigen/src/Polynomials/PolynomialSolver.h
Normal file
395
unsupported/Eigen/src/Polynomials/PolynomialSolver.h
Normal file
@ -0,0 +1,395 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_POLYNOMIAL_SOLVER_H
|
||||
#define EIGEN_POLYNOMIAL_SOLVER_H
|
||||
|
||||
/** \ingroup Polynomials_Module
|
||||
* \class PolynomialSolverBase.
|
||||
*
|
||||
* \brief Defined to be inherited by polynomial solvers: it provides
|
||||
* convenient methods such as
|
||||
* - real roots,
|
||||
* - greatest, smallest complex roots,
|
||||
* - real roots with greatest, smallest absolute real value,
|
||||
* - greatest, smallest real roots.
|
||||
*
|
||||
* It stores the set of roots as a vector of complexes.
|
||||
*
|
||||
*/
|
||||
template< typename _Scalar, int _Deg >
|
||||
class PolynomialSolverBase
|
||||
{
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Deg==Dynamic ? Dynamic : _Deg)
|
||||
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef std::complex<RealScalar> RootType;
|
||||
typedef Matrix<RootType,_Deg,1> RootsType;
|
||||
|
||||
protected:
|
||||
template< typename OtherPolynomial >
|
||||
inline void setPolynomial( const OtherPolynomial& poly ){
|
||||
m_roots.resize(poly.size()); }
|
||||
|
||||
public:
|
||||
template< typename OtherPolynomial >
|
||||
inline PolynomialSolverBase( const OtherPolynomial& poly ){
|
||||
setPolynomial( poly() ); }
|
||||
|
||||
inline PolynomialSolverBase(){}
|
||||
|
||||
public:
|
||||
/** \returns the complex roots of the polynomial */
|
||||
inline const RootsType& roots() const { return m_roots; }
|
||||
|
||||
public:
|
||||
/** Clear and fills the back insertion sequence with the real roots of the polynomial
|
||||
* i.e. the real part of the complex roots that have an imaginary part which
|
||||
* absolute value is smaller than absImaginaryThreshold.
|
||||
* absImaginaryThreshold takes the dummy_precision associated
|
||||
* with the _Scalar template parameter of the PolynomialSolver class as the default value.
|
||||
*
|
||||
* \param[out] bi_seq : the back insertion sequence (stl concept)
|
||||
* \param[in] absImaginaryThreshold : the maximum bound of the imaginary part of a complex
|
||||
* number that is considered as real.
|
||||
* */
|
||||
template<typename Stl_back_insertion_sequence>
|
||||
inline void realRoots( Stl_back_insertion_sequence& bi_seq,
|
||||
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
|
||||
{
|
||||
bi_seq.clear();
|
||||
for( int i=0; i<m_roots.size(); ++i )
|
||||
{
|
||||
if( ei_abs( m_roots[i].imag() ) < absImaginaryThreshold ){
|
||||
bi_seq.push_back( m_roots[i].real() ); }
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
template<typename squaredNormBinaryPredicate>
|
||||
inline const RootType& selectComplexRoot_withRespectToNorm( squaredNormBinaryPredicate& pred ) const
|
||||
{
|
||||
int res=0;
|
||||
RealScalar norm2 = ei_abs2( m_roots[0] );
|
||||
for( int i=1; i<m_roots.size(); ++i )
|
||||
{
|
||||
const RealScalar currNorm2 = ei_abs2( m_roots[i] );
|
||||
if( pred( currNorm2, norm2 ) ){
|
||||
res=i; norm2=currNorm2; }
|
||||
}
|
||||
return m_roots[res];
|
||||
}
|
||||
|
||||
public:
|
||||
/**
|
||||
* \returns the complex root with greatest norm.
|
||||
*/
|
||||
inline const RootType& greatestRoot() const
|
||||
{
|
||||
std::greater<Scalar> greater;
|
||||
return selectComplexRoot_withRespectToNorm( greater );
|
||||
}
|
||||
|
||||
/**
|
||||
* \returns the complex root with smallest norm.
|
||||
*/
|
||||
inline const RootType& smallestRoot() const
|
||||
{
|
||||
std::less<Scalar> less;
|
||||
return selectComplexRoot_withRespectToNorm( less );
|
||||
}
|
||||
|
||||
protected:
|
||||
template<typename squaredRealPartBinaryPredicate>
|
||||
inline const RealScalar& selectRealRoot_withRespectToAbsRealPart(
|
||||
squaredRealPartBinaryPredicate& pred,
|
||||
bool& hasArealRoot,
|
||||
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
|
||||
{
|
||||
hasArealRoot = false;
|
||||
int res=0;
|
||||
RealScalar abs2;
|
||||
|
||||
for( int i=0; i<m_roots.size(); ++i )
|
||||
{
|
||||
if( ei_abs( m_roots[i].imag() ) < absImaginaryThreshold )
|
||||
{
|
||||
if( !hasArealRoot )
|
||||
{
|
||||
hasArealRoot = true;
|
||||
res = i;
|
||||
abs2 = m_roots[i].real() * m_roots[i].real();
|
||||
}
|
||||
else
|
||||
{
|
||||
const RealScalar currAbs2 = m_roots[i].real() * m_roots[i].real();
|
||||
if( pred( currAbs2, abs2 ) )
|
||||
{
|
||||
abs2 = currAbs2;
|
||||
res = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if( ei_abs( m_roots[i].imag() ) < ei_abs( m_roots[res].imag() ) ){
|
||||
res = i; }
|
||||
}
|
||||
}
|
||||
return m_roots[res].real();
|
||||
}
|
||||
|
||||
|
||||
template<typename RealPartBinaryPredicate>
|
||||
inline const RealScalar& selectRealRoot_withRespectToRealPart(
|
||||
RealPartBinaryPredicate& pred,
|
||||
bool& hasArealRoot,
|
||||
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
|
||||
{
|
||||
hasArealRoot = false;
|
||||
int res=0;
|
||||
RealScalar val;
|
||||
|
||||
for( int i=0; i<m_roots.size(); ++i )
|
||||
{
|
||||
if( ei_abs( m_roots[i].imag() ) < absImaginaryThreshold )
|
||||
{
|
||||
if( !hasArealRoot )
|
||||
{
|
||||
hasArealRoot = true;
|
||||
res = i;
|
||||
val = m_roots[i].real();
|
||||
}
|
||||
else
|
||||
{
|
||||
const RealScalar curr = m_roots[i].real();
|
||||
if( pred( curr, val ) )
|
||||
{
|
||||
val = curr;
|
||||
res = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if( ei_abs( m_roots[i].imag() ) < ei_abs( m_roots[res].imag() ) ){
|
||||
res = i; }
|
||||
}
|
||||
}
|
||||
return m_roots[res].real();
|
||||
}
|
||||
|
||||
public:
|
||||
/**
|
||||
* \returns a real root with greatest absolute magnitude.
|
||||
* A real root is defined as the real part of a complex root with absolute imaginary
|
||||
* part smallest than absImaginaryThreshold.
|
||||
* absImaginaryThreshold takes the dummy_precision associated
|
||||
* with the _Scalar template parameter of the PolynomialSolver class as the default value.
|
||||
* If no real root is found the boolean hasArealRoot is set to false and the real part of
|
||||
* the root with smallest absolute imaginary part is returned instead.
|
||||
*
|
||||
* \param[out] hasArealRoot : boolean true if a real root is found according to the
|
||||
* absImaginaryThreshold criterion, false otherwise.
|
||||
* \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
|
||||
* whether or not a root is real.
|
||||
*/
|
||||
inline const RealScalar& absGreatestRealRoot(
|
||||
bool& hasArealRoot,
|
||||
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
|
||||
{
|
||||
std::greater<Scalar> greater;
|
||||
return selectRealRoot_withRespectToAbsRealPart( greater, hasArealRoot, absImaginaryThreshold );
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* \returns a real root with smallest absolute magnitude.
|
||||
* A real root is defined as the real part of a complex root with absolute imaginary
|
||||
* part smallest than absImaginaryThreshold.
|
||||
* absImaginaryThreshold takes the dummy_precision associated
|
||||
* with the _Scalar template parameter of the PolynomialSolver class as the default value.
|
||||
* If no real root is found the boolean hasArealRoot is set to false and the real part of
|
||||
* the root with smallest absolute imaginary part is returned instead.
|
||||
*
|
||||
* \param[out] hasArealRoot : boolean true if a real root is found according to the
|
||||
* absImaginaryThreshold criterion, false otherwise.
|
||||
* \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
|
||||
* whether or not a root is real.
|
||||
*/
|
||||
inline const RealScalar& absSmallestRealRoot(
|
||||
bool& hasArealRoot,
|
||||
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
|
||||
{
|
||||
std::less<Scalar> less;
|
||||
return selectRealRoot_withRespectToAbsRealPart( less, hasArealRoot, absImaginaryThreshold );
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* \returns the real root with greatest value.
|
||||
* A real root is defined as the real part of a complex root with absolute imaginary
|
||||
* part smallest than absImaginaryThreshold.
|
||||
* absImaginaryThreshold takes the dummy_precision associated
|
||||
* with the _Scalar template parameter of the PolynomialSolver class as the default value.
|
||||
* If no real root is found the boolean hasArealRoot is set to false and the real part of
|
||||
* the root with smallest absolute imaginary part is returned instead.
|
||||
*
|
||||
* \param[out] hasArealRoot : boolean true if a real root is found according to the
|
||||
* absImaginaryThreshold criterion, false otherwise.
|
||||
* \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
|
||||
* whether or not a root is real.
|
||||
*/
|
||||
inline const RealScalar& greatestRealRoot(
|
||||
bool& hasArealRoot,
|
||||
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
|
||||
{
|
||||
std::greater<Scalar> greater;
|
||||
return selectRealRoot_withRespectToRealPart( greater, hasArealRoot, absImaginaryThreshold );
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* \returns the real root with smallest value.
|
||||
* A real root is defined as the real part of a complex root with absolute imaginary
|
||||
* part smallest than absImaginaryThreshold.
|
||||
* absImaginaryThreshold takes the dummy_precision associated
|
||||
* with the _Scalar template parameter of the PolynomialSolver class as the default value.
|
||||
* If no real root is found the boolean hasArealRoot is set to false and the real part of
|
||||
* the root with smallest absolute imaginary part is returned instead.
|
||||
*
|
||||
* \param[out] hasArealRoot : boolean true if a real root is found according to the
|
||||
* absImaginaryThreshold criterion, false otherwise.
|
||||
* \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
|
||||
* whether or not a root is real.
|
||||
*/
|
||||
inline const RealScalar& smallestRealRoot(
|
||||
bool& hasArealRoot,
|
||||
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
|
||||
{
|
||||
std::less<Scalar> less;
|
||||
return selectRealRoot_withRespectToRealPart( less, hasArealRoot, absImaginaryThreshold );
|
||||
}
|
||||
|
||||
protected:
|
||||
RootsType m_roots;
|
||||
};
|
||||
|
||||
#define EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( BASE ) \
|
||||
typedef typename BASE::Scalar Scalar; \
|
||||
typedef typename BASE::RealScalar RealScalar; \
|
||||
typedef typename BASE::RootType RootType; \
|
||||
typedef typename BASE::RootsType RootsType;
|
||||
|
||||
|
||||
|
||||
/** \ingroup Polynomials_Module
|
||||
*
|
||||
* \class PolynomialSolver
|
||||
*
|
||||
* \brief A polynomial solver
|
||||
*
|
||||
* Computes the complex roots of a real polynomial.
|
||||
*
|
||||
* \param _Scalar the scalar type, i.e., the type of the polynomial coefficients
|
||||
* \param _Deg the degree of the polynomial, can be a compile time value or Dynamic.
|
||||
* Notice that the number of polynomial coefficients is _Deg+1.
|
||||
*
|
||||
* This class implements a polynomial solver and provides convenient methods such as
|
||||
* - real roots,
|
||||
* - greatest, smallest complex roots,
|
||||
* - real roots with greatest, smallest absolute real value.
|
||||
* - greatest, smallest real roots.
|
||||
*
|
||||
* WARNING: this polynomial solver is experimental, part of the unsuported Eigen modules.
|
||||
*
|
||||
*
|
||||
* Currently a QR algorithm is used to compute the eigenvalues of the companion matrix of
|
||||
* the polynomial to compute its roots.
|
||||
* This supposes that the complex moduli of the roots are all distinct: e.g. there should
|
||||
* be no multiple roots or conjugate roots for instance.
|
||||
* With 32bit (float) floating types this problem shows up frequently.
|
||||
* However, almost always, correct accuracy is reached even in these cases for 64bit
|
||||
* (double) floating types and small polynomial degree (<20).
|
||||
*/
|
||||
template< typename _Scalar, int _Deg >
|
||||
class PolynomialSolver : public PolynomialSolverBase<_Scalar,_Deg>
|
||||
{
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Deg==Dynamic ? Dynamic : _Deg)
|
||||
|
||||
typedef PolynomialSolverBase<_Scalar,_Deg> PS_Base;
|
||||
EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( PS_Base )
|
||||
|
||||
typedef Matrix<Scalar,_Deg,_Deg> CompanionMatrixType;
|
||||
typedef EigenSolver<CompanionMatrixType> EigenSolverType;
|
||||
|
||||
public:
|
||||
/** Computes the complex roots of a new polynomial. */
|
||||
template< typename OtherPolynomial >
|
||||
void compute( const OtherPolynomial& poly )
|
||||
{
|
||||
assert( Scalar(0) != poly[poly.size()-1] );
|
||||
ei_companion<Scalar,_Deg> companion( poly );
|
||||
companion.balance();
|
||||
m_eigenSolver.compute( companion.denseMatrix() );
|
||||
m_roots = m_eigenSolver.eigenvalues();
|
||||
}
|
||||
|
||||
public:
|
||||
template< typename OtherPolynomial >
|
||||
inline PolynomialSolver( const OtherPolynomial& poly ){
|
||||
compute( poly ); }
|
||||
|
||||
inline PolynomialSolver(){}
|
||||
|
||||
protected:
|
||||
using PS_Base::m_roots;
|
||||
EigenSolverType m_eigenSolver;
|
||||
};
|
||||
|
||||
|
||||
template< typename _Scalar >
|
||||
class PolynomialSolver<_Scalar,1> : public PolynomialSolverBase<_Scalar,1>
|
||||
{
|
||||
public:
|
||||
typedef PolynomialSolverBase<_Scalar,1> PS_Base;
|
||||
EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( PS_Base )
|
||||
|
||||
public:
|
||||
/** Computes the complex roots of a new polynomial. */
|
||||
template< typename OtherPolynomial >
|
||||
void compute( const OtherPolynomial& poly )
|
||||
{
|
||||
assert( Scalar(0) != poly[poly.size()-1] );
|
||||
m_roots[0] = -poly[0]/poly[poly.size()-1];
|
||||
}
|
||||
|
||||
protected:
|
||||
using PS_Base::m_roots;
|
||||
};
|
||||
|
||||
#endif // EIGEN_POLYNOMIAL_SOLVER_H
|
153
unsupported/Eigen/src/Polynomials/PolynomialUtils.h
Normal file
153
unsupported/Eigen/src/Polynomials/PolynomialUtils.h
Normal file
@ -0,0 +1,153 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_POLYNOMIAL_UTILS_H
|
||||
#define EIGEN_POLYNOMIAL_UTILS_H
|
||||
|
||||
/** \ingroup Polynomials_Module
|
||||
* \returns the evaluation of the polynomial at x using Horner algorithm.
|
||||
*
|
||||
* \param[in] poly : the vector of coefficients of the polynomial ordered
|
||||
* by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
|
||||
* e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
|
||||
* \param[in] x : the value to evaluate the polynomial at.
|
||||
*
|
||||
* <i><b>Note for stability:</b></i>
|
||||
* <dd> \f$ |x| \le 1 \f$ </dd>
|
||||
*/
|
||||
template <typename Polynomials, typename T>
|
||||
inline
|
||||
T poly_eval_horner( const Polynomials& poly, const T& x )
|
||||
{
|
||||
T val=poly[poly.size()-1];
|
||||
for( int i=poly.size()-2; i>=0; --i ){
|
||||
val = val*x + poly[i]; }
|
||||
return val;
|
||||
}
|
||||
|
||||
/** \ingroup Polynomials_Module
|
||||
* \returns the evaluation of the polynomial at x using stabilized Horner algorithm.
|
||||
*
|
||||
* \param[in] poly : the vector of coefficients of the polynomial ordered
|
||||
* by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
|
||||
* e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
|
||||
* \param[in] x : the value to evaluate the polynomial at.
|
||||
*/
|
||||
template <typename Polynomials, typename T>
|
||||
inline
|
||||
T poly_eval( const Polynomials& poly, const T& x )
|
||||
{
|
||||
typedef typename NumTraits<T>::Real Real;
|
||||
|
||||
if( ei_abs2( x ) <= Real(1) ){
|
||||
return poly_eval_horner( poly, x ); }
|
||||
else
|
||||
{
|
||||
T val=poly[0];
|
||||
T inv_x = T(1)/x;
|
||||
for( int i=1; i<poly.size(); ++i ){
|
||||
val = val*inv_x + poly[i]; }
|
||||
|
||||
return std::pow(x,(T)(poly.size()-1)) * val;
|
||||
}
|
||||
}
|
||||
|
||||
/** \ingroup Polynomials_Module
|
||||
* \returns a maximum bound for the absolute value of any root of the polynomial.
|
||||
*
|
||||
* \param[in] poly : the vector of coefficients of the polynomial ordered
|
||||
* by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
|
||||
* e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
|
||||
*
|
||||
* <i><b>Precondition:</b></i>
|
||||
* <dd> the leading coefficient of the input polynomial poly must be non zero </dd>
|
||||
*/
|
||||
template <typename Polynomial>
|
||||
inline
|
||||
typename NumTraits<typename Polynomial::Scalar>::Real cauchy_max_bound( const Polynomial& poly )
|
||||
{
|
||||
typedef typename Polynomial::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real Real;
|
||||
|
||||
assert( Scalar(0) != poly[poly.size()-1] );
|
||||
const Scalar inv_leading_coeff = Scalar(1)/poly[poly.size()-1];
|
||||
Real cb(0);
|
||||
|
||||
for( int i=0; i<poly.size()-1; ++i ){
|
||||
cb += ei_abs(poly[i]*inv_leading_coeff); }
|
||||
return cb + Real(1);
|
||||
}
|
||||
|
||||
/** \ingroup Polynomials_Module
|
||||
* \returns a minimum bound for the absolute value of any non zero root of the polynomial.
|
||||
* \param[in] poly : the vector of coefficients of the polynomial ordered
|
||||
* by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
|
||||
* e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
|
||||
*/
|
||||
template <typename Polynomial>
|
||||
inline
|
||||
typename NumTraits<typename Polynomial::Scalar>::Real cauchy_min_bound( const Polynomial& poly )
|
||||
{
|
||||
typedef typename Polynomial::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real Real;
|
||||
|
||||
int i=0;
|
||||
while( i<poly.size()-1 && Scalar(0) == poly(i) ){ ++i; }
|
||||
if( poly.size()-1 == i ){
|
||||
return Real(1); }
|
||||
|
||||
const Scalar inv_min_coeff = Scalar(1)/poly[i];
|
||||
Real cb(1);
|
||||
for( int j=i+1; j<poly.size(); ++j ){
|
||||
cb += ei_abs(poly[j]*inv_min_coeff); }
|
||||
return Real(1)/cb;
|
||||
}
|
||||
|
||||
/** \ingroup Polynomials_Module
|
||||
* Given the roots of a polynomial compute the coefficients in the
|
||||
* monomial basis of the monic polynomial with same roots and minimal degree.
|
||||
* If RootVector is a vector of complexes, Polynomial should also be a vector
|
||||
* of complexes.
|
||||
* \param[in] rv : a vector containing the roots of a polynomial.
|
||||
* \param[out] poly : the vector of coefficients of the polynomial ordered
|
||||
* by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
|
||||
* e.g. \f$ 3 + x^2 \f$ is stored as a vector \f$ [ 3, 0, 1 ] \f$.
|
||||
*/
|
||||
template <typename RootVector, typename Polynomial>
|
||||
void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
|
||||
{
|
||||
|
||||
typedef typename Polynomial::Scalar Scalar;
|
||||
|
||||
poly.setZero( rv.size()+1 );
|
||||
poly[0] = -rv[0]; poly[1] = Scalar(1);
|
||||
for( int i=1; i<(int)rv.size(); ++i )
|
||||
{
|
||||
for( int j=i+1; j>0; --j ){ poly[j] = poly[j-1] - rv[i]*poly[j]; }
|
||||
poly[0] = -rv[i]*poly[0];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif // EIGEN_POLYNOMIAL_UTILS_H
|
53
unsupported/doc/examples/PolynomialSolver1.cpp
Normal file
53
unsupported/doc/examples/PolynomialSolver1.cpp
Normal file
@ -0,0 +1,53 @@
|
||||
#include <unsupported/Eigen/Polynomials>
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
using namespace Eigen;
|
||||
using namespace std;
|
||||
|
||||
int main()
|
||||
{
|
||||
typedef Matrix<double,5,1> Vector5d;
|
||||
|
||||
Vector5d roots = Vector5d::Random();
|
||||
cout << "Roots: " << roots.transpose() << endl;
|
||||
Eigen::Matrix<double,6,1> polynomial;
|
||||
roots_to_monicPolynomial( roots, polynomial );
|
||||
|
||||
PolynomialSolver<double,5> psolve( polynomial );
|
||||
cout << "Complex roots: " << psolve.roots().transpose() << endl;
|
||||
|
||||
std::vector<double> realRoots;
|
||||
psolve.realRoots( realRoots );
|
||||
Map<Vector5d> mapRR( &realRoots[0] );
|
||||
cout << "Real roots: " << mapRR.transpose() << endl;
|
||||
|
||||
cout << endl;
|
||||
cout << "Illustration of the convergence problem with the QR algorithm: " << endl;
|
||||
cout << "---------------------------------------------------------------" << endl;
|
||||
Eigen::Matrix<float,7,1> hardCase_polynomial;
|
||||
hardCase_polynomial <<
|
||||
-0.957, 0.9219, 0.3516, 0.9453, -0.4023, -0.5508, -0.03125;
|
||||
cout << "Hard case polynomial defined by floats: " << hardCase_polynomial.transpose() << endl;
|
||||
PolynomialSolver<float,6> psolvef( hardCase_polynomial );
|
||||
cout << "Complex roots: " << psolvef.roots().transpose() << endl;
|
||||
Eigen::Matrix<float,6,1> evals;
|
||||
for( int i=0; i<6; ++i ){ evals[i] = std::abs( poly_eval( hardCase_polynomial, psolvef.roots()[i] ) ); }
|
||||
cout << "Norms of the evaluations of the polynomial at the roots: " << evals.transpose() << endl << endl;
|
||||
|
||||
cout << "Using double's almost always solves the problem for small degrees: " << endl;
|
||||
cout << "-------------------------------------------------------------------" << endl;
|
||||
PolynomialSolver<double,6> psolve6d( hardCase_polynomial.cast<double>() );
|
||||
cout << "Complex roots: " << psolve6d.roots().transpose() << endl;
|
||||
for( int i=0; i<6; ++i )
|
||||
{
|
||||
std::complex<float> castedRoot( psolve6d.roots()[i].real(), psolve6d.roots()[i].imag() );
|
||||
evals[i] = std::abs( poly_eval( hardCase_polynomial, castedRoot ) );
|
||||
}
|
||||
cout << "Norms of the evaluations of the polynomial at the roots: " << evals.transpose() << endl << endl;
|
||||
|
||||
cout.precision(10);
|
||||
cout << "The last root in float then in double: " << psolvef.roots()[5] << "\t" << psolve6d.roots()[5] << endl;
|
||||
std::complex<float> castedRoot( psolve6d.roots()[5].real(), psolve6d.roots()[5].imag() );
|
||||
cout << "Norm of the difference: " << ei_abs( psolvef.roots()[5] - castedRoot ) << endl;
|
||||
}
|
20
unsupported/doc/examples/PolynomialUtils1.cpp
Normal file
20
unsupported/doc/examples/PolynomialUtils1.cpp
Normal file
@ -0,0 +1,20 @@
|
||||
#include <unsupported/Eigen/Polynomials>
|
||||
#include <iostream>
|
||||
|
||||
using namespace Eigen;
|
||||
using namespace std;
|
||||
|
||||
int main()
|
||||
{
|
||||
Vector4d roots = Vector4d::Random();
|
||||
cout << "Roots: " << roots.transpose() << endl;
|
||||
Eigen::Matrix<double,5,1> polynomial;
|
||||
roots_to_monicPolynomial( roots, polynomial );
|
||||
cout << "Polynomial: ";
|
||||
for( int i=0; i<4; ++i ){ cout << polynomial[i] << ".x^" << i << "+ "; }
|
||||
cout << polynomial[4] << ".x^4" << endl;
|
||||
Vector4d evaluation;
|
||||
for( int i=0; i<4; ++i ){
|
||||
evaluation[i] = poly_eval( polynomial, roots[i] ); }
|
||||
cout << "Evaluation of the polynomial at the roots: " << evaluation.transpose();
|
||||
}
|
@ -24,3 +24,19 @@ if(FFTW_FOUND)
|
||||
ei_add_test(FFTW "-DEIGEN_FFTW_DEFAULT " "-lfftw3 -lfftw3f -lfftw3l" )
|
||||
endif(FFTW_FOUND)
|
||||
|
||||
find_package(GSL)
|
||||
if(GSL_FOUND AND GSL_VERSION_MINOR LESS 9)
|
||||
set(GSL_FOUND "")
|
||||
endif(GSL_FOUND AND GSL_VERSION_MINOR LESS 9)
|
||||
if(GSL_FOUND)
|
||||
add_definitions("-DHAS_GSL" ${GSL_DEFINITIONS})
|
||||
include_directories(${GSL_INCLUDE_DIR})
|
||||
ei_add_property(EIGEN_TESTED_BACKENDS "GSL, ")
|
||||
else(GSL_FOUND)
|
||||
ei_add_property(EIGEN_MISSING_BACKENDS "GSL, ")
|
||||
set(GSL_LIBRARIES " ")
|
||||
endif(GSL_FOUND)
|
||||
|
||||
ei_add_test(polynomialutils)
|
||||
ei_add_test(polynomialsolver " " "${GSL_LIBRARIES}" )
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user