Split Rotation.h to Rotation2D.h and RotationBase.h,

and more code factorization based on RotationBase.
Added notes about the main aim of the Translation and Scaling classes.
This commit is contained in:
Gael Guennebaud 2008-08-30 21:36:04 +00:00
parent 6ba991aa3a
commit 9c450a52a2
9 changed files with 159 additions and 150 deletions

View File

@ -28,7 +28,8 @@ namespace Eigen {
#include "src/Array/PartialRedux.h"
#include "src/Geometry/OrthoMethods.h"
#include "src/Geometry/Rotation.h"
#include "src/Geometry/RotationBase.h"
#include "src/Geometry/Rotation2D.h"
#include "src/Geometry/Quaternion.h"
#include "src/Geometry/AngleAxis.h"
#include "src/Geometry/Transform.h"

View File

@ -364,10 +364,10 @@ class Matrix
/////////// Geometry module ///////////
explicit Matrix(const Quaternion<Scalar>& q);
Matrix& operator=(const Quaternion<Scalar>& q);
explicit Matrix(const AngleAxis<Scalar>& aa);
Matrix& operator=(const AngleAxis<Scalar>& aa);
template<typename OtherDerived>
explicit Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
template<typename OtherDerived>
Matrix& operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
};
/** \defgroup matrixtypedefs Global matrix typedefs

View File

@ -100,6 +100,7 @@ template<typename MatrixType> class Cholesky;
template<typename MatrixType> class CholeskyWithoutSquareRoot;
// Geometry module:
template<typename Derived, int _Dim> class RotationBase;
template<typename Lhs, typename Rhs> class Cross;
template<typename Scalar> class Quaternion;
template<typename Scalar> class Rotation2D;

View File

@ -44,6 +44,10 @@
* \include AngleAxis_mimic_euler.cpp
* Output: \verbinclude AngleAxis_mimic_euler.out
*
* \note This class is not aimed to be used to store a rotation transformation,
* but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
* and transformation objects.
*
* \sa class Quaternion, class Transform, MatrixBase::UnitX()
*/
@ -104,18 +108,15 @@ public:
{ return a * QuaternionType(b); }
/** Concatenates two rotations */
inline Matrix3
operator* (const Matrix3& other) const
inline Matrix3 operator* (const Matrix3& other) const
{ return toRotationMatrix() * other; }
/** Concatenates two rotations */
inline friend Matrix3
operator* (const Matrix3& a, const AngleAxis& b)
inline friend Matrix3 operator* (const Matrix3& a, const AngleAxis& b)
{ return a * b.toRotationMatrix(); }
/** Applies rotation to vector */
inline Vector3
operator* (const Vector3& other) const
inline Vector3 operator* (const Vector3& other) const
{ return toRotationMatrix() * other; }
/** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
@ -198,29 +199,4 @@ AngleAxis<Scalar>::toRotationMatrix(void) const
return res;
}
/** \geometry_module
*
* Constructs a 3x3 rotation matrix from the angle-axis \a aa
*
* \sa Matrix(const Quaternion&)
*/
template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>::Matrix(const AngleAxis<Scalar>& aa)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,3,3);
*this = aa.toRotationMatrix();
}
/** \geometry_module
*
* Set a 3x3 rotation matrix from the angle-axis \a aa
*/
template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>&
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>::operator=(const AngleAxis<Scalar>& aa)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,3,3);
return *this = aa.toRotationMatrix();
}
#endif // EIGEN_ANGLEAXIS_H

View File

@ -432,29 +432,4 @@ struct ei_quaternion_assign_impl<Other,4,1>
}
};
/** \geometry_module
*
* Constructs a 3x3 rotation matrix from the quaternion \a q
*
* \sa Matrix(const AngleAxis&)
*/
template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>::Matrix(const Quaternion<Scalar>& q)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,3,3);
*this = q.toRotationMatrix();
}
/** \geometry_module
*
* Set a 3x3 rotation matrix from the quaternion \a q
*/
template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>&
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>::operator=(const Quaternion<Scalar>& q)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,3,3);
return *this = q.toRotationMatrix();
}
#endif // EIGEN_QUATERNION_H

View File

@ -22,49 +22,8 @@
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ROTATION_H
#define EIGEN_ROTATION_H
// this file aims to contains the various representations of rotation/orientation
// in 2D and 3D space excepted Matrix and Quaternion.
/** \class RotationBase
*
* \brief Common base class for compact rotation representations
*
* \param Derived is the derived type, i.e., a rotation type
* \param _Dim the dimension of the space
*/
template<typename Derived, int _Dim>
class RotationBase
{
public:
enum { Dim = _Dim };
/** the scalar type of the coefficients */
typedef typename ei_traits<Derived>::Scalar Scalar;
/** corresponding linear transformation matrix type */
typedef Matrix<Scalar,Dim,Dim> RotationMatrixType;
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
inline Derived& derived() { return *static_cast<Derived*>(this); }
/** \returns an equivalent rotation matrix */
inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); }
/** \returns the concatenation of the rotation \c *this with a translation \a t */
inline Transform<Scalar,Dim> operator*(const Translation<Scalar,Dim>& t) const
{ return toRotationMatrix() * t; }
/** \returns the concatenation of the rotation \c *this with a scaling \a s */
inline RotationMatrixType operator*(const Scaling<Scalar,Dim>& s) const
{ return toRotationMatrix() * s; }
/** \returns the concatenation of the rotation \c *this with an affine transformation \a t */
inline Transform<Scalar,Dim> operator*(const Transform<Scalar,Dim>& t) const
{ return toRotationMatrix() * t; }
};
#ifndef EIGEN_ROTATION2D_H
#define EIGEN_ROTATION2D_H
/** \geometry_module \ingroup GeometryModule
*
@ -115,11 +74,6 @@ public:
/** \returns a read-write reference to the rotation angle */
inline Scalar& angle() { return m_angle; }
/** Automatic convertion to a 2D rotation matrix.
* \sa toRotationMatrix()
*/
inline operator Matrix2() const { return toRotationMatrix(); }
/** \returns the inverse rotation */
inline Rotation2D inverse() const { return -m_angle; }
@ -143,7 +97,7 @@ public:
* parameter \a t. It is in fact equivalent to a linear interpolation.
*/
inline Rotation2D slerp(Scalar t, const Rotation2D& other) const
{ return m_angle * (1-t) + t * other; }
{ return m_angle * (1-t) + other.angle() * t; }
};
/** \ingroup GeometryModule
@ -177,43 +131,4 @@ Rotation2D<Scalar>::toRotationMatrix(void) const
return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
}
/** \internal
*
* Helper function to return an arbitrary rotation object to a rotation matrix.
*
* \param Scalar the numeric type of the matrix coefficients
* \param Dim the dimension of the current space
*
* It returns a Dim x Dim fixed size matrix.
*
* Default specializations are provided for:
* - any scalar type (2D),
* - any matrix expression,
* - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D)
*
* Currently ei_toRotationMatrix is only used by Transform.
*
* \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis
*/
template<typename Scalar, int Dim>
inline static Matrix<Scalar,2,2> ei_toRotationMatrix(const Scalar& s)
{
EIGEN_STATIC_ASSERT(Dim==2,you_did_a_programming_error);
return Rotation2D<Scalar>(s).toRotationMatrix();
}
template<typename Scalar, int Dim, typename OtherDerived>
inline static Matrix<Scalar,Dim,Dim> ei_toRotationMatrix(const RotationBase<OtherDerived,Dim>& r)
{
return r.toRotationMatrix();
}
template<typename Scalar, int Dim, typename OtherDerived>
inline static const MatrixBase<OtherDerived>& ei_toRotationMatrix(const MatrixBase<OtherDerived>& mat)
{
EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim,
you_did_a_programming_error);
return mat;
}
#endif // EIGEN_ROTATION_H
#endif // EIGEN_ROTATION2D_H

View File

@ -0,0 +1,137 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ROTATIONBASE_H
#define EIGEN_ROTATIONBASE_H
// this file aims to contains the various representations of rotation/orientation
// in 2D and 3D space excepted Matrix and Quaternion.
/** \class RotationBase
*
* \brief Common base class for compact rotation representations
*
* \param Derived is the derived type, i.e., a rotation type
* \param _Dim the dimension of the space
*/
template<typename Derived, int _Dim>
class RotationBase
{
public:
enum { Dim = _Dim };
/** the scalar type of the coefficients */
typedef typename ei_traits<Derived>::Scalar Scalar;
/** corresponding linear transformation matrix type */
typedef Matrix<Scalar,Dim,Dim> RotationMatrixType;
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
inline Derived& derived() { return *static_cast<Derived*>(this); }
/** \returns an equivalent rotation matrix */
inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); }
/** \returns the inverse rotation */
inline Derived inverse() const { return derived().inverse(); }
/** \returns the concatenation of the rotation \c *this with a translation \a t */
inline Transform<Scalar,Dim> operator*(const Translation<Scalar,Dim>& t) const
{ return toRotationMatrix() * t; }
/** \returns the concatenation of the rotation \c *this with a scaling \a s */
inline RotationMatrixType operator*(const Scaling<Scalar,Dim>& s) const
{ return toRotationMatrix() * s; }
/** \returns the concatenation of the rotation \c *this with an affine transformation \a t */
inline Transform<Scalar,Dim> operator*(const Transform<Scalar,Dim>& t) const
{ return toRotationMatrix() * t; }
};
/** \geometry_module
*
* Constructs a Dim x Dim rotation matrix from the rotation \a r
*/
template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
template<typename OtherDerived>
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
::Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,OtherDerived::Dim,OtherDerived::Dim);
*this = r.toRotationMatrix();
}
/** \geometry_module
*
* Set a Dim x Dim rotation matrix from the rotation \a r
*/
template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
template<typename OtherDerived>
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>&
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
::operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,OtherDerived::Dim,OtherDerived::Dim);
return *this = r.toRotationMatrix();
}
/** \internal
*
* Helper function to return an arbitrary rotation object to a rotation matrix.
*
* \param Scalar the numeric type of the matrix coefficients
* \param Dim the dimension of the current space
*
* It returns a Dim x Dim fixed size matrix.
*
* Default specializations are provided for:
* - any scalar type (2D),
* - any matrix expression,
* - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D)
*
* Currently ei_toRotationMatrix is only used by Transform.
*
* \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis
*/
template<typename Scalar, int Dim>
inline static Matrix<Scalar,2,2> ei_toRotationMatrix(const Scalar& s)
{
EIGEN_STATIC_ASSERT(Dim==2,you_did_a_programming_error);
return Rotation2D<Scalar>(s).toRotationMatrix();
}
template<typename Scalar, int Dim, typename OtherDerived>
inline static Matrix<Scalar,Dim,Dim> ei_toRotationMatrix(const RotationBase<OtherDerived,Dim>& r)
{
return r.toRotationMatrix();
}
template<typename Scalar, int Dim, typename OtherDerived>
inline static const MatrixBase<OtherDerived>& ei_toRotationMatrix(const MatrixBase<OtherDerived>& mat)
{
EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim,
you_did_a_programming_error);
return mat;
}
#endif // EIGEN_ROTATIONBASE_H

View File

@ -34,6 +34,8 @@
* \param _Scalar the scalar type, i.e., the type of the coefficients.
* \param _Dim the dimension of the space, can be a compile time value or Dynamic
*
* \note This class is not aimed to be used to store a scaling transformation,
* but rather to make easier the constructions and updates of Transformation object.
*
* \sa class Translation, class Transform
*/

View File

@ -34,6 +34,8 @@
* \param _Scalar the scalar type, i.e., the type of the coefficients.
* \param _Dim the dimension of the space, can be a compile time value or Dynamic
*
* \note This class is not aimed to be used to store a translation transformation,
* but rather to make easier the constructions and updates of Transformation object.
*
* \sa class Scaling, class Transform
*/