mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-22 04:44:25 +08:00
Fix 4x4 matrix inversion. Applying Euler's trick is more tricky than what "high performance matrix inversion" websites would have you believe. Our 4x4 matrix inversion wasn't numerically stable, because in applying the Euler trick we didn't take the 2x2 block of biggest determinant. As a result, with float, we got relative errors above 1% every 1000 random matrices, and we got completely wrong results every 10000 matrices.
Note that this decreases the performance, but we're still significantly faster than the brutal cofactors approach.
This commit is contained in:
parent
3d365a75cd
commit
9e15a6da2e
@ -119,46 +119,42 @@ bool ei_compute_inverse_in_size4_case_helper(const MatrixType& matrix, MatrixTyp
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void ei_compute_inverse_in_size4_case(const MatrixType& matrix, MatrixType* result)
|
||||
void ei_compute_inverse_in_size4_case(const MatrixType& _matrix, MatrixType* result)
|
||||
{
|
||||
if(ei_compute_inverse_in_size4_case_helper(matrix, result))
|
||||
{
|
||||
// good ! The topleft 2x2 block was invertible, so the 2x2 blocks approach is successful.
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
// rare case: the topleft 2x2 block is not invertible (but the matrix itself is assumed to be).
|
||||
// since this is a rare case, we don't need to optimize it. We just want to handle it with little
|
||||
// additional code.
|
||||
MatrixType m(matrix);
|
||||
m.row(0).swap(m.row(2));
|
||||
m.row(1).swap(m.row(3));
|
||||
if(ei_compute_inverse_in_size4_case_helper(m, result))
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
|
||||
// we will do row permutations on the matrix. This copy should have negligible cost.
|
||||
// if not, consider working in-place on the matrix (const-cast it, but then undo the permutations
|
||||
// to nevertheless honor constness)
|
||||
typename MatrixType::PlainMatrixType matrix(_matrix);
|
||||
|
||||
// let's extract from the 2 first colums a 2x2 block whose determinant is as big as possible.
|
||||
int good_row0=0, good_row1=1;
|
||||
RealScalar good_absdet(-1);
|
||||
// this double for loop shouldn't be too costly: only 6 iterations
|
||||
for(int row0=0; row0<4; ++row0) {
|
||||
for(int row1=row0+1; row1<4; ++row1)
|
||||
{
|
||||
// good, the topleft 2x2 block of m is invertible. Since m is different from matrix in that some
|
||||
// rows were permuted, the actual inverse of matrix is derived from the inverse of m by permuting
|
||||
// the corresponding columns.
|
||||
result->col(0).swap(result->col(2));
|
||||
result->col(1).swap(result->col(3));
|
||||
}
|
||||
else
|
||||
{
|
||||
// last possible case. Since matrix is assumed to be invertible, this last case has to work.
|
||||
// first, undo the swaps previously made
|
||||
m.row(0).swap(m.row(2));
|
||||
m.row(1).swap(m.row(3));
|
||||
// swap row 0 with the the row among 0 and 1 that has the biggest 2 first coeffs
|
||||
int swap0with = ei_abs(m.coeff(0,0))+ei_abs(m.coeff(0,1))>ei_abs(m.coeff(1,0))+ei_abs(m.coeff(1,1)) ? 0 : 1;
|
||||
m.row(0).swap(m.row(swap0with));
|
||||
// swap row 1 with the the row among 2 and 3 that has the biggest 2 first coeffs
|
||||
int swap1with = ei_abs(m.coeff(2,0))+ei_abs(m.coeff(2,1))>ei_abs(m.coeff(3,0))+ei_abs(m.coeff(3,1)) ? 2 : 3;
|
||||
m.row(1).swap(m.row(swap1with));
|
||||
ei_compute_inverse_in_size4_case_helper(m, result);
|
||||
result->col(1).swap(result->col(swap1with));
|
||||
result->col(0).swap(result->col(swap0with));
|
||||
RealScalar absdet = ei_abs(matrix.coeff(row0,0)*matrix.coeff(row1,1)
|
||||
- matrix.coeff(row0,1)*matrix.coeff(row1,0));
|
||||
if(absdet > good_absdet)
|
||||
{
|
||||
good_absdet = absdet;
|
||||
good_row0 = row0;
|
||||
good_row1 = row1;
|
||||
}
|
||||
}
|
||||
}
|
||||
// do row permutations to move this 2x2 block to the top
|
||||
matrix.row(0).swap(matrix.row(good_row0));
|
||||
matrix.row(1).swap(matrix.row(good_row1));
|
||||
// now applying our helper function is numerically stable
|
||||
ei_compute_inverse_in_size4_case_helper(matrix, result);
|
||||
// Since we did row permutations on the original matrix, we need to do column permutations
|
||||
// in the reverse order on the inverse
|
||||
result->col(1).swap(result->col(good_row1));
|
||||
result->col(0).swap(result->col(good_row0));
|
||||
}
|
||||
|
||||
/***********************************************
|
||||
|
Loading…
x
Reference in New Issue
Block a user