Remove explicit mkldnn support and redundant TensorContractionKernelBlocking

This commit is contained in:
Eugene Zhulenev 2018-09-27 11:49:19 -07:00
parent b314376f9c
commit 9f4988959f
8 changed files with 113 additions and 504 deletions

View File

@ -1,18 +0,0 @@
# Intel mkl-dnn support.
# Link: https://github.com/intel/mkl-dnn
if (MKLDNN)
set(MKLDNN_FIND_QUIETLY TRUE)
set(MKLDNN_INCLUDES ${MKLDNN}/include)
set(MKLDNN_LIBRARIES ${MKLDNN}/lib)
endif (MKLDNN)
find_path(MKLDNN
NAMES
mkldnn.h
PATHS
$ENV{MKLDNNDIR}/include
${INCLUDE_INSTALL_DIR}
)
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(MKLDNN DEFAULT_MSG
MKLDNN)
mark_as_advanced(MKLDNN)

View File

@ -75,10 +75,6 @@ typedef unsigned __int64 uint64_t;
#include "libxsmm.h" #include "libxsmm.h"
#endif #endif
#if defined(EIGEN_USE_MKLDNN)
#include "mkldnn.h"
#endif
#ifdef EIGEN_USE_THREADS #ifdef EIGEN_USE_THREADS
#include "ThreadPool" #include "ThreadPool"
#endif #endif
@ -125,7 +121,6 @@ typedef unsigned __int64 uint64_t;
#include "src/Tensor/TensorArgMax.h" #include "src/Tensor/TensorArgMax.h"
#include "src/Tensor/TensorConcatenation.h" #include "src/Tensor/TensorConcatenation.h"
#include "src/Tensor/TensorContractionMapper.h" #include "src/Tensor/TensorContractionMapper.h"
#include "src/Tensor/TensorContractionMkldnn.h"
#include "src/Tensor/TensorContractionBlocking.h" #include "src/Tensor/TensorContractionBlocking.h"
#include "src/Tensor/TensorContraction.h" #include "src/Tensor/TensorContraction.h"
#include "src/Tensor/TensorContractionThreadPool.h" #include "src/Tensor/TensorContractionThreadPool.h"

View File

@ -136,6 +136,81 @@ struct traits<TensorEvaluator<const TensorContractionOp<Indices_, LeftArgType_,
static const int NumDimensions = traits<LeftArgType_>::NumDimensions + traits<RightArgType_>::NumDimensions - 2 * array_size<Indices_>::value; static const int NumDimensions = traits<LeftArgType_>::NumDimensions + traits<RightArgType_>::NumDimensions - 2 * array_size<Indices_>::value;
}; };
// WARNING: In this code we assume that Lhs and Rhs tensor expressions are in
// ColMajor storage order. This property is guaranteed by the
// TensorContractionOp evaluator. TensorContractionKernel specifies how we pack
// blocks of Lhs and Rhs tensor expressions, and how we invoke matrix
// multiplication for these blocks. Default tensor contraction uses
// gemm_pack_rhs, gemm_pack_lhs and gebp_kernel from Eigen Core (see
// GeneralBlocPanelKernel.h for details).
//
// By specializing contraction kernels we can use other low level libraries to
// perform matrix multiplication, and still rely on Eigen contraction evaluator.
// This also includes full support in TensorContractionThreadPool, assuming that
// underlying gemm do not use it's own threading.
//
// - ResScalar/LhsScalar/RhsScalar - scalar type for the result of
// multiplication, lhs tensor and rhs tensor respectively.
//
// - StorageIndex - index type for the tensor expressions. In practice almost
// always is Eigen::Index.
//
// - OutputMapper provides access to the memory of the output matrix. In
// practice it's always column major blas_data_mapper (it must be of ResScalar
// type).
//
// - LhsMapper/RhsMapper similarly to blas_data_mapper provide a two dimensional
// view into the Lhs/Rhs tensor expressions. In practice it's
// TensorContractionInputMapper, or some specialization of it based on the
// type of tensor expression (e.g. TensorImagePatchOp has optimized input
// mapper).
template<typename ResScalar, typename LhsScalar, typename RhsScalar,
typename StorageIndex, typename OutputMapper, typename LhsMapper,
typename RhsMapper>
struct TensorContractionKernel {
typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
typedef internal::gemm_pack_lhs<LhsScalar, StorageIndex,
typename LhsMapper::SubMapper,
Traits::mr, Traits::LhsProgress,
typename Traits::LhsPacket4Packing, ColMajor>
LhsPacker;
typedef internal::gemm_pack_rhs<RhsScalar, StorageIndex,
typename RhsMapper::SubMapper, Traits::nr,
ColMajor>
RhsPacker;
typedef internal::gebp_kernel<LhsScalar, RhsScalar, StorageIndex,
OutputMapper, Traits::mr, Traits::nr,
/*ConjugateLhs*/ false, /*ConjugateRhs*/ false>
GebpKernel;
EIGEN_DONT_INLINE
static void packLhs(LhsScalar* lhsBlock,
const typename LhsMapper::SubMapper& data_mapper,
const StorageIndex depth, const StorageIndex rows) {
LhsPacker()(lhsBlock, data_mapper, depth, rows, /*stride*/ 0, /*offset*/ 0);
}
EIGEN_DONT_INLINE
static void packRhs(RhsScalar* rhsBlock,
const typename RhsMapper::SubMapper& data_mapper,
const StorageIndex depth, const StorageIndex cols) {
RhsPacker()(rhsBlock, data_mapper, depth, cols);
}
EIGEN_DONT_INLINE
static void invoke(const OutputMapper& output_mapper,
const LhsScalar* lhsBlock, const RhsScalar* rhsBlock,
const StorageIndex rows, const StorageIndex depth,
const StorageIndex cols, const ResScalar alpha) {
GebpKernel()(output_mapper, lhsBlock, rhsBlock, rows, depth, cols, alpha,
/*strideA*/ -1, /*strideB*/ -1,
/*offsetA*/ 0, /*offsetB*/ 0);
}
};
} // end namespace internal } // end namespace internal
// Tensor contraction params that should enable to get from output matrix // Tensor contraction params that should enable to get from output matrix
@ -591,13 +666,9 @@ struct TensorContractionEvaluatorBase
// zero out the result buffer (which must be of size at least m * n * sizeof(Scalar) // zero out the result buffer (which must be of size at least m * n * sizeof(Scalar)
this->m_device.memset(buffer, 0, m * n * sizeof(Scalar)); this->m_device.memset(buffer, 0, m * n * sizeof(Scalar));
// define mr, nr, and all of my data mapper types // define data mappers for Lhs and Rhs
typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar; typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar; typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
const Index nr = Traits::nr;
const Index mr = Traits::mr;
typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator; typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator; typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
@ -619,11 +690,9 @@ struct TensorContractionEvaluatorBase
typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper; typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
// Declare GEBP packing and kernel structs typedef internal::TensorContractionKernel<
internal::gemm_pack_lhs<LhsScalar, Index, typename LhsMapper::SubMapper, mr, Traits::LhsProgress, typename Traits::LhsPacket4Packing, ColMajor> pack_lhs; Scalar, LhsScalar, RhsScalar, Index, OutputMapper, LhsMapper, RhsMapper>
internal::gemm_pack_rhs<RhsScalar, Index, typename RhsMapper::SubMapper, nr, ColMajor> pack_rhs; TensorContractionKernel;
internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper, mr, nr, false, false> gebp;
// initialize data mappers // initialize data mappers
LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides, LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides,
@ -635,7 +704,7 @@ struct TensorContractionEvaluatorBase
OutputMapper output(buffer, m); OutputMapper output(buffer, m);
// Sizes of the blocks to load in cache. See the Goto paper for details. // Sizes of the blocks to load in cache. See the Goto paper for details.
internal::TensorContractionBlocking<LhsScalar, RhsScalar, Index, internal::ShardByCol> blocking(k, m, n, 1); internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index, internal::ShardByCol> blocking(k, m, n, 1);
const Index kc = blocking.kc(); const Index kc = blocking.kc();
const Index mc = numext::mini(m, blocking.mc()); const Index mc = numext::mini(m, blocking.mc());
const Index nc = numext::mini(n, blocking.nc()); const Index nc = numext::mini(n, blocking.nc());
@ -651,19 +720,22 @@ struct TensorContractionEvaluatorBase
for (Index k2 = 0; k2 < k; k2 += kc) { for (Index k2 = 0; k2 < k; k2 += kc) {
// make sure we don't overshoot right edge of left matrix, then pack vertical panel // make sure we don't overshoot right edge of left matrix, then pack vertical panel
const Index actual_kc = numext::mini(k2 + kc, k) - k2; const Index actual_kc = numext::mini(k2 + kc, k) - k2;
pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc, 0, 0); TensorContractionKernel::packLhs(blockA, lhs.getSubMapper(i2, k2),
actual_kc, actual_mc);
// series of horizontal blocks // series of horizontal blocks
for (Index j2 = 0; j2 < n; j2 += nc) { for (Index j2 = 0; j2 < n; j2 += nc) {
// make sure we don't overshoot right edge of right matrix, then pack block // make sure we don't overshoot right edge of right matrix, then pack block
const Index actual_nc = numext::mini(j2 + nc, n) - j2; const Index actual_nc = numext::mini(j2 + nc, n) - j2;
pack_rhs(blockB, rhs.getSubMapper(k2, j2), actual_kc, actual_nc, 0, 0); TensorContractionKernel::packRhs(blockB, rhs.getSubMapper(k2, j2),
actual_kc, actual_nc);
// call gebp (matrix kernel) // call gebp (matrix kernel)
// The parameters here are copied from Eigen's GEMM implementation // The parameters here are copied from Eigen's GEMM implementation
const OutputMapper output_mapper = output.getSubMapper(i2, j2); const OutputMapper output_mapper = output.getSubMapper(i2, j2);
gebp(output_mapper, blockA, blockB, actual_mc, actual_kc, actual_nc, TensorContractionKernel::invoke(output_mapper, blockA, blockB,
Scalar(1), -1, -1, 0, 0); actual_mc, actual_kc, actual_nc,
Scalar(1));
// We are done with this [i2, j2] output block. // We are done with this [i2, j2] output block.
if (k2 + kc >= k) { if (k2 + kc >= k) {

View File

@ -21,7 +21,7 @@ enum {
// Default Blocking Strategy // Default Blocking Strategy
template <typename LhsScalar, typename RhsScalar, typename Index, int ShardingType=ShardByCol> template<typename ResScalar, typename LhsScalar, typename RhsScalar, typename StorageIndex, int ShardingType = ShardByCol>
class TensorContractionBlocking { class TensorContractionBlocking {
public: public:
@ -42,7 +42,7 @@ class TensorContractionBlocking {
#if !defined(EIGEN_HIPCC) #if !defined(EIGEN_HIPCC)
EIGEN_DEVICE_FUNC EIGEN_DEVICE_FUNC
#endif #endif
TensorContractionBlocking(Index k, Index m, Index n, Index num_threads = 1) : TensorContractionBlocking(StorageIndex k, StorageIndex m, StorageIndex n, StorageIndex num_threads = 1) :
kc_(k), mc_(m), nc_(n) kc_(k), mc_(m), nc_(n)
{ {
if (ShardingType == ShardByCol) { if (ShardingType == ShardByCol) {
@ -53,23 +53,23 @@ class TensorContractionBlocking {
} }
} }
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index kc() const { return kc_; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE StorageIndex kc() const { return kc_; }
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index mc() const { return mc_; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE StorageIndex mc() const { return mc_; }
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index nc() const { return nc_; } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE StorageIndex nc() const { return nc_; }
private: private:
Index kc_; StorageIndex kc_;
Index mc_; StorageIndex mc_;
Index nc_; StorageIndex nc_;
}; };
#if defined(EIGEN_USE_LIBXSMM) #if defined(EIGEN_USE_LIBXSMM)
template <typename LhsScalar, typename RhsScalar, typename Index> template <typename LhsScalar, typename RhsScalar, typename StorageIndex>
class TensorXsmmContractionBlocking { class TensorXsmmContractionBlocking {
public: public:
TensorXsmmContractionBlocking(Index k, Index m, Index n, TensorXsmmContractionBlocking(StorageIndex k, StorageIndex m, StorageIndex n,
size_t max_num_threads = 1, bool transposeA = false, size_t max_num_threads = 1, bool transposeA = false,
bool transposeB = false): bool transposeB = false):
k_(k), m_(m), n_(n), transposeA_(transposeA), k_(k), m_(m), n_(n), transposeA_(transposeA),
@ -164,28 +164,28 @@ class TensorXsmmContractionBlocking {
eigen_assert(outer_n_ % nc_ == 0 || outer_n_ >= n); eigen_assert(outer_n_ % nc_ == 0 || outer_n_ >= n);
} }
EIGEN_ALWAYS_INLINE Index kc() const { return kc_; } EIGEN_ALWAYS_INLINE StorageIndex kc() const { return kc_; }
EIGEN_ALWAYS_INLINE Index mc() const { return mc_; } EIGEN_ALWAYS_INLINE StorageIndex mc() const { return mc_; }
EIGEN_ALWAYS_INLINE Index nc() const { return nc_; } EIGEN_ALWAYS_INLINE StorageIndex nc() const { return nc_; }
EIGEN_ALWAYS_INLINE Index outer_k() const { return outer_k_; } EIGEN_ALWAYS_INLINE StorageIndex outer_k() const { return outer_k_; }
EIGEN_ALWAYS_INLINE Index outer_m() const { return outer_m_; } EIGEN_ALWAYS_INLINE StorageIndex outer_m() const { return outer_m_; }
EIGEN_ALWAYS_INLINE Index outer_n() const { return outer_n_; } EIGEN_ALWAYS_INLINE StorageIndex outer_n() const { return outer_n_; }
EIGEN_ALWAYS_INLINE bool copyA() const { return copyA_; } EIGEN_ALWAYS_INLINE bool copyA() const { return copyA_; }
EIGEN_ALWAYS_INLINE bool copyB() const { return copyB_; } EIGEN_ALWAYS_INLINE bool copyB() const { return copyB_; }
EIGEN_ALWAYS_INLINE bool transposeA() const { return transposeA_; } EIGEN_ALWAYS_INLINE bool transposeA() const { return transposeA_; }
EIGEN_ALWAYS_INLINE bool transposeB() const { return transposeB_; } EIGEN_ALWAYS_INLINE bool transposeB() const { return transposeB_; }
EIGEN_ALWAYS_INLINE int num_threads() const { return num_threads_; } EIGEN_ALWAYS_INLINE int num_threads() const { return num_threads_; }
EIGEN_ALWAYS_INLINE Index blocks_m() const { return divup(m_, mc_); } EIGEN_ALWAYS_INLINE StorageIndex blocks_m() const { return divup(m_, mc_); }
EIGEN_ALWAYS_INLINE Index blocks_k() const { return divup(k_, kc_); } EIGEN_ALWAYS_INLINE StorageIndex blocks_k() const { return divup(k_, kc_); }
EIGEN_ALWAYS_INLINE Index blocks_n() const { return divup(n_, nc_); } EIGEN_ALWAYS_INLINE StorageIndex blocks_n() const { return divup(n_, nc_); }
EIGEN_ALWAYS_INLINE libxsmm_gemm_prefetch_type prefetch() const { EIGEN_ALWAYS_INLINE libxsmm_gemm_prefetch_type prefetch() const {
return prefetch_; return prefetch_;
} }
private: private:
Index k_, m_, n_; StorageIndex k_, m_, n_;
Index kc_, mc_, nc_; StorageIndex kc_, mc_, nc_;
Index outer_k_, outer_m_, outer_n_; StorageIndex outer_k_, outer_m_, outer_n_;
bool copyA_, copyB_, transposeA_, transposeB_; bool copyA_, copyB_, transposeA_, transposeB_;
size_t num_threads_; size_t num_threads_;

View File

@ -1,116 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2018 Eugene Zhulenev <ezhulenev@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MKLDNN_H
#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MKLDNN_H
#if defined(EIGEN_USE_MKLDNN)
// Support for MklDnn sgemm kernel in Tensor contractions:
//
// 1. Prepare packed Lhs/Rhs blocks from tensor expressions using
// DataMapper (see TensorContractionInputMapper).
// 2. Invoke gemm kernel with packed blocks (replacement for default
// gebp_kernel).
namespace Eigen {
namespace internal {
template <typename Scalar, typename StorageIndex, typename DataMapper,
int StorageOrder>
struct mkldnn_gemm_pack;
// mkl_gemm_pack for ColMajor storage order.
template <typename Scalar, typename StorageIndex, typename DataMapper>
struct mkldnn_gemm_pack<Scalar, StorageIndex, DataMapper,
/*StorageOrder*/ ColMajor> {
typedef typename internal::packet_traits<Scalar>::type Packet;
typedef typename DataMapper::LinearMapper LinearMapper;
enum { PacketSize = internal::packet_traits<Scalar>::size };
EIGEN_DONT_INLINE
void operator()(Scalar *block, const DataMapper &data_mapper,
StorageIndex rows, StorageIndex cols) {
const StorageIndex unrolled_rows =
(rows / (4 * PacketSize)) * (4 * PacketSize);
const StorageIndex vectorized_rows = (rows / PacketSize) * PacketSize;
for (StorageIndex col = 0; col < cols; ++col) {
LinearMapper lm = data_mapper.getLinearMapper(0, col);
// Give compiler a strong possibility to unroll the loop.
for (StorageIndex i = 0; i < unrolled_rows; i += 4 * PacketSize) {
for (StorageIndex j = 0; j < 4; ++j) {
const Packet p = lm.template loadPacket<Packet>(i + j * PacketSize);
internal::pstoreu(block + j * PacketSize, p);
}
block += 4 * PacketSize;
}
// Process remaining rows with packets.
for (StorageIndex i = unrolled_rows; i < vectorized_rows;
i += PacketSize) {
const Packet p = lm.template loadPacket<Packet>(i);
internal::pstoreu(block, p);
block += PacketSize;
}
// Finalize with coefficients.
for (StorageIndex i = vectorized_rows; i < rows; ++i) {
*block = lm(i);
++block;
}
}
}
};
template <typename Scalar, typename StorageIndex, typename OutputMapper,
bool ConjugateLhs = false, bool ConjugateRhs = false>
struct mkldnn_gemm_kernel;
// mkldnn_gemm_kernel for floats defined as a thin layer on top of mkldnn_sgemm.
template <typename StorageIndex, typename OutputMapper, bool ConjugateLhs,
bool ConjugateRhs>
struct mkldnn_gemm_kernel</*Scalar*/ float, StorageIndex, OutputMapper,
ConjugateLhs, ConjugateRhs> {
EIGEN_DONT_INLINE
void operator()(const OutputMapper &output, const float *blockA,
const float *blockB, const StorageIndex rows,
const StorageIndex depth, const StorageIndex cols,
float alpha) {
static const int max_index = (std::numeric_limits<int>::max)();
eigen_assert(max_index > rows);
eigen_assert(max_index > cols);
eigen_assert(max_index > depth);
eigen_assert(max_index > output.stride());
const int m = static_cast<int>(rows);
const int n = static_cast<int>(cols);
const int k = static_cast<int>(depth);
const char transposeA = ConjugateLhs ? 'Y' : 'N';
const char transposeB = ConjugateRhs ? 'Y' : 'N';
const int ldA = ConjugateLhs ? k : m;
const int ldB = ConjugateRhs ? n : k;
const int ldC = static_cast<int>(output.stride());
const float beta = 1.0;
mkldnn_status_t st = mkldnn_sgemm(&transposeA, &transposeB, &m, &n, &k,
&alpha, blockA, &ldA, blockB, &ldB, &beta,
const_cast<float*>(output.data()), &ldC);
eigen_assert(st == 0);
}
};
} // namespace internal
} // namespace Eigen
#endif // EIGEN_USE_MKLDNN
#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MKLDNN_H

View File

@ -15,177 +15,6 @@
namespace Eigen { namespace Eigen {
namespace internal {
// WARNING: In this code we assume that Lhs and Rhs tensor expressions are in
// ColMajor storage order. This property is guaranteed by the
// TensorContractionOp evaluator. TensorContractionKernel specifies how we pack
// blocks of Lhs and Rhs tensor expressions, and how we invoke matrix
// multiplication for these blocks. Default tensor contraction uses
// gemm_pack_rhs, gemm_pack_lhs and gebp_kernel from Eigen Core (see
// GeneralBlocPanelKernel.h for details).
//
// By specializing contraction kernels we can use other low level libraries to
// perform matrix multiplication, and still rely on Eigen thread pool evaluator
// for scaling. Assumption is that custom gemm do not use it's own threading for
// parallelisation.
//
// - ResScalar/LhsScalar/RhsScalar - scalar type for the result of
// multiplication, lhs tensor and rhs tensor respectively.
//
// - StorageIndex - index type for the tensor expressions. In practice almost
// always is Eigen::Index.
//
// - OutputMapper provides access to the memory of the output matrix. In
// practice it's always column major blas_data_mapper (it must be of ResScalar
// type).
//
// - LhsMapper/RhsMapper similarly to blas_data_mapper provide a two dimensional
// view into the Lhs/Rhs tensor expressions. In practice it's
// TensorContractionInputMapper, or some specialization of it based on the
// type of tensor expression (e.g. TensorImagePatchOp has optimized input
// mapper).
//
// TODO(ezhulenev): Use TensorContractionKernel in default tensor contraction
// evaluator.
template<typename ResScalar, typename LhsScalar, typename RhsScalar,
typename StorageIndex, typename OutputMapper, typename LhsMapper,
typename RhsMapper>
struct TensorContractionKernel {
typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
typedef internal::gemm_pack_lhs<LhsScalar, StorageIndex,
typename LhsMapper::SubMapper,
Traits::mr, Traits::LhsProgress,
typename Traits::LhsPacket4Packing, ColMajor>
LhsPacker;
typedef internal::gemm_pack_rhs<RhsScalar, StorageIndex,
typename RhsMapper::SubMapper, Traits::nr,
ColMajor>
RhsPacker;
typedef internal::gebp_kernel<LhsScalar, RhsScalar, StorageIndex,
OutputMapper, Traits::mr, Traits::nr,
/*ConjugateLhs*/ false, /*ConjugateRhs*/ false>
GebpKernel;
EIGEN_DONT_INLINE
static void packLhs(LhsScalar* lhsBlock,
const typename LhsMapper::SubMapper& data_mapper,
const StorageIndex depth, const StorageIndex rows) {
LhsPacker()(lhsBlock, data_mapper, depth, rows);
}
EIGEN_DONT_INLINE
static void packRhs(RhsScalar* rhsBlock,
const typename RhsMapper::SubMapper& data_mapper,
const StorageIndex depth, const StorageIndex cols) {
RhsPacker()(rhsBlock, data_mapper, depth, cols);
}
EIGEN_DONT_INLINE
static void invoke(const OutputMapper& output_mapper,
const LhsScalar* lhsBlock, const RhsScalar* rhsBlock,
const StorageIndex rows, const StorageIndex depth,
const StorageIndex cols, const ResScalar alpha) {
GebpKernel()(output_mapper, lhsBlock, rhsBlock, rows, depth, cols, alpha,
/*strideA*/ -1, /*strideB*/ -1,
/*offsetA*/ 0, /*offsetB*/ 0);
}
};
// Some tensor contraction kernels might rely on the gemm libraries that are
// optimized for a specific dimension sizes. By default Eigen picks block
// sizes to fit the working set in the L1/L2 caches, by specializing we can
// refine this choice and round up these sizes to work well with underlying gemm
// library.
// TODO(ezhulenev): Move it to TensorContractionBlocking, or keep separate?
template<typename ResScalar, typename LhsScalar, typename RhsScalar,
typename StorageIndex>
struct TensorContractionKernelBlocking {
static void refine(const StorageIndex /*m*/,
const StorageIndex /*n*/,
const StorageIndex /*k*/,
StorageIndex* /*bm*/,
StorageIndex* /*bn*/,
StorageIndex* /*bk*/) {
// By default we do nothing and stick to the block sizes picked by Eigen.
}
};
#if defined(EIGEN_USE_MKLDNN)
// If all scalar types in tensor contraction are floats, we can use mkldnn gemm
// as our low level kernel.
template<typename StorageIndex, typename OutputMapper, typename LhsMapper,
typename RhsMapper>
struct TensorContractionKernel<float, float, float, StorageIndex, OutputMapper,
LhsMapper, RhsMapper> {
// For now mkldnn has only mkldnn_sgemm (gemm for floats).
typedef float Scalar;
typedef typename internal::gebp_traits<Scalar, Scalar> Traits;
typedef internal::mkldnn_gemm_pack<Scalar, StorageIndex,
typename LhsMapper::SubMapper, ColMajor>
LhsPacker;
typedef internal::mkldnn_gemm_pack<Scalar, StorageIndex,
typename RhsMapper::SubMapper, ColMajor>
RhsPacker;
typedef internal::mkldnn_gemm_kernel<Scalar, StorageIndex, OutputMapper>
GemmKernel;
EIGEN_DONT_INLINE
static void packLhs(Scalar* lhsBlock,
const typename LhsMapper::SubMapper& data_mapper,
StorageIndex depth, StorageIndex rows) {
LhsPacker()(lhsBlock, data_mapper, rows, depth);
}
EIGEN_DONT_INLINE
static void packRhs(Scalar* rhsBlock,
const typename RhsMapper::SubMapper& data_mapper,
const StorageIndex depth, const StorageIndex cols) {
RhsPacker()(rhsBlock, data_mapper, depth, cols);
}
EIGEN_DONT_INLINE
static void invoke(const OutputMapper& output_mapper, const Scalar* lhsBlock,
const Scalar* rhsBlock, const StorageIndex rows,
const StorageIndex depth, const StorageIndex cols,
const Scalar alpha) {
GemmKernel()(output_mapper, lhsBlock, rhsBlock, rows, depth, cols, alpha);
}
};
// For mkldnn_sgemm having the right dimensions (especially for small matrices)
// is more important than fitting all the working set in L1/L2 caches.
template<typename StorageIndex>
struct TensorContractionKernelBlocking<float, float, float, StorageIndex> {
// Mkldnn Avx/Avx2/Avx512 unroll factors are: 8/16/48. We pick the largest.
static const StorageIndex kUnrollM = 48;
// Mkldnn Avx/Avx2/Avx512 unroll factors are: 6/6/8. We pick the closest
// number that divides to both of them.
static const StorageIndex kUnrollN = 24;
static void refine(const StorageIndex m,
const StorageIndex n,
const StorageIndex /*k*/,
StorageIndex* bm,
StorageIndex* bn,
StorageIndex* /*bk*/) {
// TODO(ezhulenev): There is probably a better way to pick block sizes.
*bm = (std::min)(m, Eigen::divup(*bm, kUnrollM) * kUnrollM);
*bn = (std::min)(n, Eigen::divup(*bn, kUnrollN) * kUnrollN);
// Stick with default bk.
}
};
#endif // EIGEN_USE_MKLDNN
} // namespace internal
template<typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType> template<typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType>
struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, ThreadPoolDevice> : struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, ThreadPoolDevice> :
public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, ThreadPoolDevice> > { public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, ThreadPoolDevice> > {
@ -295,14 +124,14 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
// Again, we don't know number of threads yet, so we use 2. // Again, we don't know number of threads yet, so we use 2.
Index bm, bn, bk; Index bm, bn, bk;
if (shard_by_col) { if (shard_by_col) {
internal::TensorContractionBlocking<LhsScalar, RhsScalar, Index, internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index,
internal::ShardByCol> internal::ShardByCol>
blocking(k, m, n, 2); blocking(k, m, n, 2);
bm = blocking.mc(); bm = blocking.mc();
bn = blocking.nc(); bn = blocking.nc();
bk = blocking.kc(); bk = blocking.kc();
} else { } else {
internal::TensorContractionBlocking<LhsScalar, RhsScalar, Index, internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index,
internal::ShardByRow> internal::ShardByRow>
blocking(k, m, n, 2); blocking(k, m, n, 2);
bm = blocking.mc(); bm = blocking.mc();
@ -332,24 +161,20 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
// Now that we know number of threads, recalculate sharding and blocking. // Now that we know number of threads, recalculate sharding and blocking.
shard_by_col = shardByCol(m, n, num_threads); shard_by_col = shardByCol(m, n, num_threads);
if (shard_by_col) { if (shard_by_col) {
internal::TensorContractionBlocking<LhsScalar, RhsScalar, Index, internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index,
internal::ShardByCol> internal::ShardByCol>
blocking(k, m, n, num_threads); blocking(k, m, n, num_threads);
bm = blocking.mc(); bm = blocking.mc();
bn = blocking.nc(); bn = blocking.nc();
bk = blocking.kc(); bk = blocking.kc();
} else { } else {
internal::TensorContractionBlocking<LhsScalar, RhsScalar, Index, internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index,
internal::ShardByRow> internal::ShardByRow>
blocking(k, m, n, num_threads); blocking(k, m, n, num_threads);
bm = blocking.mc(); bm = blocking.mc();
bn = blocking.nc(); bn = blocking.nc();
bk = blocking.kc(); bk = blocking.kc();
} }
// Refine blocking choice to work well with contraction kernel.
internal::TensorContractionKernelBlocking<Scalar, LhsScalar, RhsScalar,
Index>::refine(m, n, k, &bm,
&bn, &bk);
// Number of kernels for each dimension. // Number of kernels for each dimension.
Index nm0 = divup(m, bm); Index nm0 = divup(m, bm);

View File

@ -23,17 +23,6 @@ else(XSMM_FOUND)
ei_add_property(EIGEN_MISSING_BACKENDS "Xsmm, ") ei_add_property(EIGEN_MISSING_BACKENDS "Xsmm, ")
endif(XSMM_FOUND) endif(XSMM_FOUND)
find_package(Mkldnn)
if(MKLDNN_FOUND)
add_definitions("-DEIGEN_USE_MKLDNN")
include_directories(${MKLDNN_INCLUDES})
link_directories(${MKLDNN_LIBRARIES})
set(EXTERNAL_LIBS ${EXTERNAL_LIBS} mkldnn)
ei_add_property(EIGEN_TESTED_BACKENDS "Mkldd, ")
else(MKLDNN_FOUND)
ei_add_property(EIGEN_MISSING_BACKENDS "Mkldnn, ")
endif(MKLDNN_FOUND)
find_package(GoogleHash) find_package(GoogleHash)
if(GOOGLEHASH_FOUND) if(GOOGLEHASH_FOUND)
add_definitions("-DEIGEN_GOOGLEHASH_SUPPORT") add_definitions("-DEIGEN_GOOGLEHASH_SUPPORT")
@ -191,10 +180,6 @@ if(EIGEN_TEST_CXX11)
ei_add_test_sycl(cxx11_tensor_custom_op_sycl ${STD_CXX_FLAG}) ei_add_test_sycl(cxx11_tensor_custom_op_sycl ${STD_CXX_FLAG})
endif(EIGEN_TEST_SYCL) endif(EIGEN_TEST_SYCL)
if (MKLDNN_FOUND)
ei_add_test(cxx11_tensor_contraction_mkldnn)
endif (MKLDNN_FOUND)
ei_add_test(cxx11_eventcount "-pthread" "${CMAKE_THREAD_LIBS_INIT}") ei_add_test(cxx11_eventcount "-pthread" "${CMAKE_THREAD_LIBS_INIT}")
ei_add_test(cxx11_runqueue "-pthread" "${CMAKE_THREAD_LIBS_INIT}") ei_add_test(cxx11_runqueue "-pthread" "${CMAKE_THREAD_LIBS_INIT}")
ei_add_test(cxx11_non_blocking_thread_pool "-pthread" "${CMAKE_THREAD_LIBS_INIT}") ei_add_test(cxx11_non_blocking_thread_pool "-pthread" "${CMAKE_THREAD_LIBS_INIT}")

View File

@ -1,134 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2018 Eugene Zhulenev <ezhulenev@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/CXX11/Tensor>
using Eigen::internal::blas_data_mapper;
using Eigen::internal::mkldnn_gemm_kernel;
using Eigen::internal::mkldnn_gemm_pack;
template <int NumDims>
static array<Index, NumDims> RandomDims(int min_dim = 1, int max_dim = 20) {
array<Index, NumDims> dims;
for (int i = 0; i < NumDims; ++i) {
dims[i] = internal::random<int>(min_dim, max_dim);
}
return dims;
}
// Packing with mkldnn_gemm_pack is the same as taking a slice of 2 dimensional
// Tensor.
template <typename Scalar>
static void test_mkldnn_gemm_pack() {
static const int Options = 0 | ColMajor;
typedef blas_data_mapper<Scalar, Index, ColMajor> DataMapper;
typedef mkldnn_gemm_pack<Scalar, Index, DataMapper, ColMajor> MkldnnGemmPack;
typedef Tensor<Scalar, 2, Options, Index> Tensor2d;
array<Index, 2> dims = RandomDims<2>(1, 500);
// Create a tensor initialized with random data.
Tensor2d src(dims);
src.setRandom();
// Pick a random slice of src tensor.
array<Index, 2> slice_start = RandomDims<2>(0, 250);
array<Index, 2> slice_size = RandomDims<2>(100, 500);
// Make sure that slice start + size do not overflow tensor dims.
for (int i = 0; i < 2; ++i) {
slice_start[i] = numext::mini(dims[i] - 1, slice_start[i]);
slice_size[i] = numext::mini(slice_size[i], dims[i] - slice_start[i]);
}
// Prepare tensors for packing and slicing results.
Tensor2d pack_dst(slice_size[0], slice_size[1]);
Tensor2d slice_dst(slice_size[0], slice_size[1]);
// Pack memory using mkldnn_gemm_pack.
DataMapper data_mapper(src.data(), dims[0]);
MkldnnGemmPack gemm_pack;
gemm_pack(pack_dst.data(),
data_mapper.getSubMapper(slice_start[0], slice_start[1]),
slice_size[0], slice_size[1]);
// Slice the source tensor.
slice_dst = src.slice(slice_start, slice_size);
// Verify that dst tensors are equal.
VERIFY_IS_EQUAL(pack_dst.dimensions().TotalSize(),
slice_dst.dimensions().TotalSize());
for (Index i = 0; i < pack_dst.dimensions().TotalSize(); ++i) {
Scalar packed = pack_dst.coeff(i);
Scalar sliced = slice_dst.coeff(i);
VERIFY_IS_EQUAL(packed, sliced);
}
}
template <typename Scalar>
static void test_mkldnn_gemm_kernel() {
static const int Options = 0 | ColMajor;
typedef Tensor<Scalar, 2, Options, Index> Tensor2d;
int m = internal::random<int>(1, 100);
int n = internal::random<int>(1, 100);
int k = internal::random<int>(1, 100);
Tensor2d lhs(m, k);
lhs.setRandom();
Tensor2d rhs(k, n);
rhs.setRandom();
// Compute matmul with mkldnn gemm kernel.
typedef blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
typedef mkldnn_gemm_kernel<Scalar, Index, OutputMapper, ColMajor>
MkldnnGemmKernel;
Tensor2d mkldnn_result(m, n);
mkldnn_result.setZero();
OutputMapper output_mapper(mkldnn_result.data(), m);
MkldnnGemmKernel gemm_kernel;
gemm_kernel(output_mapper, lhs.data(), rhs.data(), m, k, n, /*alpha*/ 1.0);
// Compute matmul with Eigen::Matrix.
typedef Eigen::Matrix<Scalar, Dynamic, Dynamic, ColMajor> Matrix;
typedef Map<Eigen::Matrix<Scalar, Dynamic, Dynamic, ColMajor> > MatrixMap;
MatrixMap lhs_mat(lhs.data(), m, k);
MatrixMap rhs_mat(rhs.data(), k, n);
Matrix matmul_result(m, n);
matmul_result.setZero();
matmul_result = lhs_mat * rhs_mat;
static const float error_threshold = 1e-4f;
// Verify that results are equal.
for (Index i = 0; i < m * n; ++i) {
Scalar gemm = mkldnn_result(i);
Scalar matmul = matmul_result(i % m, i / m);
if ((std::abs)(gemm) > error_threshold &&
(std::abs)(matmul) > error_threshold) {
if (!Eigen::internal::isApprox(gemm, matmul, error_threshold))
std::cout << "gemm=" << gemm << " matmul=" << matmul << std::endl;
VERIFY(Eigen::internal::isApprox(gemm, matmul, error_threshold));
}
}
}
EIGEN_DECLARE_TEST(cxx11_tensor_contraction_mkldnn) {
CALL_SUBTEST(test_mkldnn_gemm_pack<float>());
CALL_SUBTEST(test_mkldnn_gemm_pack<double>());
// mkldnn has only sgemm (aka gemm for floats).
CALL_SUBTEST(test_mkldnn_gemm_kernel<float>());
}