mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 02:33:59 +08:00
Add custom formatting of complex numbers for Numpy/Native.
This commit is contained in:
parent
5570a27869
commit
9f77ce4f19
@ -999,8 +999,9 @@ class TensorBase<Derived, ReadOnlyAccessors>
|
||||
}
|
||||
|
||||
// Returns a formatted tensor ready for printing to a stream
|
||||
inline const TensorWithFormat<Derived,DerivedTraits::Layout,DerivedTraits::NumDimensions> format(const TensorIOFormat& fmt) const {
|
||||
return TensorWithFormat<Derived,DerivedTraits::Layout,DerivedTraits::NumDimensions>(derived(), fmt);
|
||||
template<typename Format>
|
||||
inline const TensorWithFormat<Derived,DerivedTraits::Layout,DerivedTraits::NumDimensions, Format> format(const Format& fmt) const {
|
||||
return TensorWithFormat<Derived,DerivedTraits::Layout,DerivedTraits::NumDimensions, Format>(derived(), fmt);
|
||||
}
|
||||
|
||||
#ifdef EIGEN_READONLY_TENSORBASE_PLUGIN
|
||||
|
@ -18,33 +18,24 @@ namespace Eigen {
|
||||
struct TensorIOFormat;
|
||||
|
||||
namespace internal {
|
||||
template <typename Tensor, std::size_t rank>
|
||||
template <typename Tensor, std::size_t rank, typename Format, typename EnableIf = void>
|
||||
struct TensorPrinter;
|
||||
}
|
||||
|
||||
struct TensorIOFormat {
|
||||
TensorIOFormat(const std::vector<std::string>& _separator, const std::vector<std::string>& _prefix,
|
||||
const std::vector<std::string>& _suffix, int _precision = StreamPrecision, int _flags = 0,
|
||||
const std::string& _tenPrefix = "", const std::string& _tenSuffix = "", const char _fill = ' ')
|
||||
: tenPrefix(_tenPrefix),
|
||||
tenSuffix(_tenSuffix),
|
||||
prefix(_prefix),
|
||||
suffix(_suffix),
|
||||
separator(_separator),
|
||||
fill(_fill),
|
||||
precision(_precision),
|
||||
flags(_flags) {
|
||||
init_spacer();
|
||||
}
|
||||
|
||||
TensorIOFormat(int _precision = StreamPrecision, int _flags = 0, const std::string& _tenPrefix = "",
|
||||
const std::string& _tenSuffix = "", const char _fill = ' ')
|
||||
: tenPrefix(_tenPrefix), tenSuffix(_tenSuffix), fill(_fill), precision(_precision), flags(_flags) {
|
||||
// default values of prefix, suffix and separator
|
||||
prefix = {"", "["};
|
||||
suffix = {"", "]"};
|
||||
separator = {", ", "\n"};
|
||||
|
||||
template <typename Derived_>
|
||||
struct TensorIOFormatBase {
|
||||
using Derived = Derived_;
|
||||
TensorIOFormatBase(const std::vector<std::string>& separator, const std::vector<std::string>& prefix,
|
||||
const std::vector<std::string>& suffix, int precision = StreamPrecision, int flags = 0,
|
||||
const std::string& tenPrefix = "", const std::string& tenSuffix = "", const char fill = ' ')
|
||||
: tenPrefix(tenPrefix),
|
||||
tenSuffix(tenSuffix),
|
||||
prefix(prefix),
|
||||
suffix(suffix),
|
||||
separator(separator),
|
||||
fill(fill),
|
||||
precision(precision),
|
||||
flags(flags) {
|
||||
init_spacer();
|
||||
}
|
||||
|
||||
@ -67,33 +58,6 @@ struct TensorIOFormat {
|
||||
}
|
||||
}
|
||||
|
||||
static inline const TensorIOFormat Numpy() {
|
||||
std::vector<std::string> prefix = {"", "["};
|
||||
std::vector<std::string> suffix = {"", "]"};
|
||||
std::vector<std::string> separator = {" ", "\n"};
|
||||
return TensorIOFormat(separator, prefix, suffix, StreamPrecision, 0, "[", "]");
|
||||
}
|
||||
|
||||
static inline const TensorIOFormat Plain() {
|
||||
std::vector<std::string> separator = {" ", "\n", "\n", ""};
|
||||
std::vector<std::string> prefix = {""};
|
||||
std::vector<std::string> suffix = {""};
|
||||
return TensorIOFormat(separator, prefix, suffix, StreamPrecision, 0, "", "", ' ');
|
||||
}
|
||||
|
||||
static inline const TensorIOFormat Native() {
|
||||
std::vector<std::string> separator = {", ", ",\n", "\n"};
|
||||
std::vector<std::string> prefix = {"", "{"};
|
||||
std::vector<std::string> suffix = {"", "}"};
|
||||
return TensorIOFormat(separator, prefix, suffix, StreamPrecision, 0, "{", "}", ' ');
|
||||
}
|
||||
|
||||
static inline const TensorIOFormat Legacy() {
|
||||
TensorIOFormat LegacyFormat(StreamPrecision, 0, "", "", ' ');
|
||||
LegacyFormat.legacy_bit = true;
|
||||
return LegacyFormat;
|
||||
}
|
||||
|
||||
std::string tenPrefix;
|
||||
std::string tenSuffix;
|
||||
std::vector<std::string> prefix;
|
||||
@ -103,24 +67,67 @@ struct TensorIOFormat {
|
||||
int precision;
|
||||
int flags;
|
||||
std::vector<std::string> spacer{};
|
||||
bool legacy_bit = false;
|
||||
};
|
||||
|
||||
template <typename T, int Layout, int rank>
|
||||
struct TensorIOFormatNumpy : public TensorIOFormatBase<TensorIOFormatNumpy> {
|
||||
using Base = TensorIOFormatBase<TensorIOFormatNumpy>;
|
||||
TensorIOFormatNumpy()
|
||||
: Base(/*separator=*/{" ", "\n"}, /*prefix=*/{"", "["}, /*suffix=*/{"", "]"}, /*precision=*/StreamPrecision,
|
||||
/*flags=*/0, /*tenPrefix=*/"[", /*tenSuffix=*/"]") {}
|
||||
};
|
||||
|
||||
struct TensorIOFormatNative : public TensorIOFormatBase<TensorIOFormatNative> {
|
||||
using Base = TensorIOFormatBase<TensorIOFormatNative>;
|
||||
TensorIOFormatNative()
|
||||
: Base(/*separator=*/{", ", ",\n", "\n"}, /*prefix=*/{"", "{"}, /*suffix=*/{"", "}"},
|
||||
/*precision=*/StreamPrecision, /*flags=*/0, /*tenPrefix=*/"{", /*tenSuffix=*/"}") {}
|
||||
};
|
||||
|
||||
struct TensorIOFormatPlain : public TensorIOFormatBase<TensorIOFormatPlain> {
|
||||
using Base = TensorIOFormatBase<TensorIOFormatPlain>;
|
||||
TensorIOFormatPlain()
|
||||
: Base(/*separator=*/{" ", "\n", "\n", ""}, /*prefix=*/{""}, /*suffix=*/{""}, /*precision=*/StreamPrecision,
|
||||
/*flags=*/0, /*tenPrefix=*/"", /*tenSuffix=*/"") {}
|
||||
};
|
||||
|
||||
struct TensorIOFormatLegacy : public TensorIOFormatBase<TensorIOFormatLegacy> {
|
||||
using Base = TensorIOFormatBase<TensorIOFormatLegacy>;
|
||||
TensorIOFormatLegacy()
|
||||
: Base(/*separator=*/{", ", "\n"}, /*prefix=*/{"", "["}, /*suffix=*/{"", "]"}, /*precision=*/StreamPrecision,
|
||||
/*flags=*/0, /*tenPrefix=*/"", /*tenSuffix=*/"") {}
|
||||
};
|
||||
|
||||
struct TensorIOFormat : public TensorIOFormatBase<TensorIOFormat> {
|
||||
using Base = TensorIOFormatBase<TensorIOFormat>;
|
||||
TensorIOFormat(const std::vector<std::string>& separator, const std::vector<std::string>& prefix,
|
||||
const std::vector<std::string>& suffix, int precision = StreamPrecision, int flags = 0,
|
||||
const std::string& tenPrefix = "", const std::string& tenSuffix = "", const char fill = ' ')
|
||||
: Base(separator, prefix, suffix, precision, flags, tenPrefix, tenSuffix, fill) {}
|
||||
|
||||
static inline const TensorIOFormatNumpy Numpy() { return TensorIOFormatNumpy{}; }
|
||||
|
||||
static inline const TensorIOFormatPlain Plain() { return TensorIOFormatPlain{}; }
|
||||
|
||||
static inline const TensorIOFormatNative Native() { return TensorIOFormatNative{}; }
|
||||
|
||||
static inline const TensorIOFormatLegacy Legacy() { return TensorIOFormatLegacy{}; }
|
||||
};
|
||||
|
||||
template <typename T, int Layout, int rank, typename Format>
|
||||
class TensorWithFormat;
|
||||
// specialize for Layout=ColMajor, Layout=RowMajor and rank=0.
|
||||
template <typename T, int rank>
|
||||
class TensorWithFormat<T, RowMajor, rank> {
|
||||
template <typename T, int rank, typename Format>
|
||||
class TensorWithFormat<T, RowMajor, rank, Format> {
|
||||
public:
|
||||
TensorWithFormat(const T& tensor, const TensorIOFormat& format) : t_tensor(tensor), t_format(format) {}
|
||||
TensorWithFormat(const T& tensor, const Format& format) : t_tensor(tensor), t_format(format) {}
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const TensorWithFormat<T, RowMajor, rank>& wf) {
|
||||
friend std::ostream& operator<<(std::ostream& os, const TensorWithFormat<T, RowMajor, rank, Format>& wf) {
|
||||
// Evaluate the expression if needed
|
||||
typedef TensorEvaluator<const TensorForcedEvalOp<const T>, DefaultDevice> Evaluator;
|
||||
TensorForcedEvalOp<const T> eval = wf.t_tensor.eval();
|
||||
Evaluator tensor(eval, DefaultDevice());
|
||||
tensor.evalSubExprsIfNeeded(NULL);
|
||||
internal::TensorPrinter<Evaluator, rank>::run(os, tensor, wf.t_format);
|
||||
internal::TensorPrinter<Evaluator, rank, Format>::run(os, tensor, wf.t_format);
|
||||
// Cleanup.
|
||||
tensor.cleanup();
|
||||
return os;
|
||||
@ -128,15 +135,15 @@ class TensorWithFormat<T, RowMajor, rank> {
|
||||
|
||||
protected:
|
||||
T t_tensor;
|
||||
TensorIOFormat t_format;
|
||||
Format t_format;
|
||||
};
|
||||
|
||||
template <typename T, int rank>
|
||||
class TensorWithFormat<T, ColMajor, rank> {
|
||||
template <typename T, int rank, typename Format>
|
||||
class TensorWithFormat<T, ColMajor, rank, Format> {
|
||||
public:
|
||||
TensorWithFormat(const T& tensor, const TensorIOFormat& format) : t_tensor(tensor), t_format(format) {}
|
||||
TensorWithFormat(const T& tensor, const Format& format) : t_tensor(tensor), t_format(format) {}
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const TensorWithFormat<T, ColMajor, rank>& wf) {
|
||||
friend std::ostream& operator<<(std::ostream& os, const TensorWithFormat<T, ColMajor, rank, Format>& wf) {
|
||||
// Switch to RowMajor storage and print afterwards
|
||||
typedef typename T::Index IndexType;
|
||||
std::array<IndexType, rank> shuffle;
|
||||
@ -150,7 +157,7 @@ class TensorWithFormat<T, ColMajor, rank> {
|
||||
TensorForcedEvalOp<const decltype(tensor_row_major)> eval = tensor_row_major.eval();
|
||||
Evaluator tensor(eval, DefaultDevice());
|
||||
tensor.evalSubExprsIfNeeded(NULL);
|
||||
internal::TensorPrinter<Evaluator, rank>::run(os, tensor, wf.t_format);
|
||||
internal::TensorPrinter<Evaluator, rank, Format>::run(os, tensor, wf.t_format);
|
||||
// Cleanup.
|
||||
tensor.cleanup();
|
||||
return os;
|
||||
@ -158,21 +165,21 @@ class TensorWithFormat<T, ColMajor, rank> {
|
||||
|
||||
protected:
|
||||
T t_tensor;
|
||||
TensorIOFormat t_format;
|
||||
Format t_format;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class TensorWithFormat<T, ColMajor, 0> {
|
||||
template <typename T, typename Format>
|
||||
class TensorWithFormat<T, ColMajor, 0, Format> {
|
||||
public:
|
||||
TensorWithFormat(const T& tensor, const TensorIOFormat& format) : t_tensor(tensor), t_format(format) {}
|
||||
TensorWithFormat(const T& tensor, const Format& format) : t_tensor(tensor), t_format(format) {}
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const TensorWithFormat<T, ColMajor, 0>& wf) {
|
||||
friend std::ostream& operator<<(std::ostream& os, const TensorWithFormat<T, ColMajor, 0, Format>& wf) {
|
||||
// Evaluate the expression if needed
|
||||
typedef TensorEvaluator<const TensorForcedEvalOp<const T>, DefaultDevice> Evaluator;
|
||||
TensorForcedEvalOp<const T> eval = wf.t_tensor.eval();
|
||||
Evaluator tensor(eval, DefaultDevice());
|
||||
tensor.evalSubExprsIfNeeded(NULL);
|
||||
internal::TensorPrinter<Evaluator, 0>::run(os, tensor, wf.t_format);
|
||||
internal::TensorPrinter<Evaluator, 0, Format>::run(os, tensor, wf.t_format);
|
||||
// Cleanup.
|
||||
tensor.cleanup();
|
||||
return os;
|
||||
@ -180,27 +187,39 @@ class TensorWithFormat<T, ColMajor, 0> {
|
||||
|
||||
protected:
|
||||
T t_tensor;
|
||||
TensorIOFormat t_format;
|
||||
Format t_format;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
template <typename Tensor, std::size_t rank>
|
||||
|
||||
// Default scalar printer.
|
||||
template <typename Scalar, typename Format, typename EnableIf = void>
|
||||
struct ScalarPrinter {
|
||||
static void run(std::ostream& stream, const Scalar& scalar, const Format& fmt) { stream << scalar; }
|
||||
};
|
||||
|
||||
template <typename Scalar>
|
||||
struct ScalarPrinter<Scalar, TensorIOFormatNumpy, std::enable_if_t<NumTraits<Scalar>::IsComplex>> {
|
||||
static void run(std::ostream& stream, const Scalar& scalar, const TensorIOFormatNumpy& fmt) {
|
||||
stream << numext::real(scalar) << "+" << numext::imag(scalar) << "j";
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Scalar>
|
||||
struct ScalarPrinter<Scalar, TensorIOFormatNative, std::enable_if_t<NumTraits<Scalar>::IsComplex>> {
|
||||
static void run(std::ostream& stream, const Scalar& scalar, const TensorIOFormatNative& fmt) {
|
||||
stream << "{" << numext::real(scalar) << ", " << numext::imag(scalar) << "}";
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Tensor, std::size_t rank, typename Format, typename EnableIf>
|
||||
struct TensorPrinter {
|
||||
static void run(std::ostream& s, const Tensor& _t, const TensorIOFormat& fmt) {
|
||||
typedef std::remove_const_t<typename Tensor::Scalar> Scalar;
|
||||
using Scalar = std::remove_const_t<typename Tensor::Scalar>;
|
||||
using ScalarPrinter = ScalarPrinter<Scalar, Format>;
|
||||
|
||||
static void run(std::ostream& s, const Tensor& tensor, const Format& fmt) {
|
||||
typedef typename Tensor::Index IndexType;
|
||||
static const int layout = Tensor::Layout;
|
||||
// backwards compatibility case: print tensor after reshaping to matrix of size dim(0) x
|
||||
// (dim(1)*dim(2)*...*dim(rank-1)).
|
||||
if (fmt.legacy_bit) {
|
||||
const IndexType total_size = internal::array_prod(_t.dimensions());
|
||||
if (total_size > 0) {
|
||||
const IndexType first_dim = Eigen::internal::array_get<0>(_t.dimensions());
|
||||
Map<const Array<Scalar, Dynamic, Dynamic, layout>> matrix(_t.data(), first_dim, total_size / first_dim);
|
||||
s << matrix;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
eigen_assert(layout == RowMajor);
|
||||
typedef std::conditional_t<is_same<Scalar, char>::value || is_same<Scalar, unsigned char>::value ||
|
||||
@ -213,7 +232,7 @@ struct TensorPrinter {
|
||||
std::complex<int>, const Scalar&>>
|
||||
PrintType;
|
||||
|
||||
const IndexType total_size = array_prod(_t.dimensions());
|
||||
const IndexType total_size = array_prod(tensor.dimensions());
|
||||
|
||||
std::streamsize explicit_precision;
|
||||
if (fmt.precision == StreamPrecision) {
|
||||
@ -232,20 +251,16 @@ struct TensorPrinter {
|
||||
if (explicit_precision) old_precision = s.precision(explicit_precision);
|
||||
|
||||
IndexType width = 0;
|
||||
|
||||
bool align_cols = !(fmt.flags & DontAlignCols);
|
||||
if (align_cols) {
|
||||
// compute the largest width
|
||||
for (IndexType i = 0; i < total_size; i++) {
|
||||
std::stringstream sstr;
|
||||
sstr.copyfmt(s);
|
||||
sstr << static_cast<PrintType>(_t.data()[i]);
|
||||
ScalarPrinter::run(sstr, static_cast<PrintType>(tensor.data()[i]), fmt);
|
||||
width = std::max<IndexType>(width, IndexType(sstr.str().length()));
|
||||
}
|
||||
}
|
||||
std::streamsize old_width = s.width();
|
||||
char old_fill_character = s.fill();
|
||||
|
||||
s << fmt.tenPrefix;
|
||||
for (IndexType i = 0; i < total_size; i++) {
|
||||
std::array<bool, rank> is_at_end{};
|
||||
@ -253,7 +268,7 @@ struct TensorPrinter {
|
||||
|
||||
// is the ith element the end of an coeff (always true), of a row, of a matrix, ...?
|
||||
for (std::size_t k = 0; k < rank; k++) {
|
||||
if ((i + 1) % (std::accumulate(_t.dimensions().rbegin(), _t.dimensions().rbegin() + k, 1,
|
||||
if ((i + 1) % (std::accumulate(tensor.dimensions().rbegin(), tensor.dimensions().rbegin() + k, 1,
|
||||
std::multiplies<IndexType>())) ==
|
||||
0) {
|
||||
is_at_end[k] = true;
|
||||
@ -262,7 +277,7 @@ struct TensorPrinter {
|
||||
|
||||
// is the ith element the begin of an coeff (always true), of a row, of a matrix, ...?
|
||||
for (std::size_t k = 0; k < rank; k++) {
|
||||
if (i % (std::accumulate(_t.dimensions().rbegin(), _t.dimensions().rbegin() + k, 1,
|
||||
if (i % (std::accumulate(tensor.dimensions().rbegin(), tensor.dimensions().rbegin() + k, 1,
|
||||
std::multiplies<IndexType>())) ==
|
||||
0) {
|
||||
is_at_begin[k] = true;
|
||||
@ -318,12 +333,20 @@ struct TensorPrinter {
|
||||
}
|
||||
|
||||
s << prefix.str();
|
||||
if (width) {
|
||||
s.fill(fmt.fill);
|
||||
s.width(width);
|
||||
s << std::right;
|
||||
// So we don't mess around with formatting, output scalar to a string stream, and adjust the width/fill manually.
|
||||
std::stringstream sstr;
|
||||
sstr.copyfmt(s);
|
||||
ScalarPrinter::run(sstr, static_cast<PrintType>(tensor.data()[i]), fmt);
|
||||
std::string scalar_str = sstr.str();
|
||||
IndexType scalar_width = scalar_str.length();
|
||||
if (width && scalar_width < width) {
|
||||
std::string filler;
|
||||
for (IndexType i = scalar_width; i < width; ++i) {
|
||||
filler.push_back(fmt.fill);
|
||||
}
|
||||
s << filler;
|
||||
}
|
||||
s << _t.data()[i];
|
||||
s << scalar_str;
|
||||
s << suffix.str();
|
||||
if (i < total_size - 1) {
|
||||
s << separator.str();
|
||||
@ -331,17 +354,35 @@ struct TensorPrinter {
|
||||
}
|
||||
s << fmt.tenSuffix;
|
||||
if (explicit_precision) s.precision(old_precision);
|
||||
if (width) {
|
||||
s.fill(old_fill_character);
|
||||
s.width(old_width);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Tensor, std::size_t rank>
|
||||
struct TensorPrinter<Tensor, rank, TensorIOFormatLegacy, std::enable_if_t<rank != 0>> {
|
||||
using Format = TensorIOFormatLegacy;
|
||||
using Scalar = std::remove_const_t<typename Tensor::Scalar>;
|
||||
using ScalarPrinter = ScalarPrinter<Scalar, Format>;
|
||||
|
||||
static void run(std::ostream& s, const Tensor& tensor, const Format& fmt) {
|
||||
typedef typename Tensor::Index IndexType;
|
||||
static const int layout = Tensor::Layout;
|
||||
// backwards compatibility case: print tensor after reshaping to matrix of size dim(0) x
|
||||
// (dim(1)*dim(2)*...*dim(rank-1)).
|
||||
const IndexType total_size = internal::array_prod(tensor.dimensions());
|
||||
if (total_size > 0) {
|
||||
const IndexType first_dim = Eigen::internal::array_get<0>(tensor.dimensions());
|
||||
Map<const Array<Scalar, Dynamic, Dynamic, layout>> matrix(tensor.data(), first_dim, total_size / first_dim);
|
||||
s << matrix;
|
||||
return;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Tensor>
|
||||
struct TensorPrinter<Tensor, 0> {
|
||||
static void run(std::ostream& s, const Tensor& _t, const TensorIOFormat& fmt) {
|
||||
typedef typename Tensor::Scalar Scalar;
|
||||
template <typename Tensor, typename Format>
|
||||
struct TensorPrinter<Tensor, 0, Format> {
|
||||
static void run(std::ostream& s, const Tensor& tensor, const Format& fmt) {
|
||||
using Scalar = std::remove_const_t<typename Tensor::Scalar>;
|
||||
using ScalarPrinter = ScalarPrinter<Scalar, Format>;
|
||||
|
||||
std::streamsize explicit_precision;
|
||||
if (fmt.precision == StreamPrecision) {
|
||||
@ -358,8 +399,9 @@ struct TensorPrinter<Tensor, 0> {
|
||||
|
||||
std::streamsize old_precision = 0;
|
||||
if (explicit_precision) old_precision = s.precision(explicit_precision);
|
||||
|
||||
s << fmt.tenPrefix << _t.coeff(0) << fmt.tenSuffix;
|
||||
s << fmt.tenPrefix;
|
||||
ScalarPrinter::run(s, tensor.coeff(0), fmt);
|
||||
s << fmt.tenSuffix;
|
||||
if (explicit_precision) s.precision(old_precision);
|
||||
}
|
||||
};
|
||||
|
@ -82,6 +82,16 @@ struct test_tensor_ostream_impl<std::complex<Scalar>, 2, Layout> {
|
||||
std::ostringstream os;
|
||||
os << t.format(Eigen::TensorIOFormat::Plain());
|
||||
VERIFY(os.str() == " (1,2) (12,3)\n(-4,2) (0,5)\n(-1,4) (5,27)");
|
||||
|
||||
os.str("");
|
||||
os.clear();
|
||||
os << t.format(Eigen::TensorIOFormat::Numpy());
|
||||
VERIFY(os.str() == "[[ 1+2j 12+3j]\n [-4+2j 0+5j]\n [-1+4j 5+27j]]");
|
||||
|
||||
os.str("");
|
||||
os.clear();
|
||||
os << t.format(Eigen::TensorIOFormat::Native());
|
||||
VERIFY(os.str() == "{{ {1, 2}, {12, 3}},\n {{-4, 2}, {0, 5}},\n {{-1, 4}, {5, 27}}}");
|
||||
}
|
||||
};
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user