Add custom formatting of complex numbers for Numpy/Native.

This commit is contained in:
Antonio Sánchez 2024-03-25 17:41:44 +00:00
parent 5570a27869
commit 9f77ce4f19
3 changed files with 162 additions and 109 deletions

View File

@ -999,8 +999,9 @@ class TensorBase<Derived, ReadOnlyAccessors>
} }
// Returns a formatted tensor ready for printing to a stream // Returns a formatted tensor ready for printing to a stream
inline const TensorWithFormat<Derived,DerivedTraits::Layout,DerivedTraits::NumDimensions> format(const TensorIOFormat& fmt) const { template<typename Format>
return TensorWithFormat<Derived,DerivedTraits::Layout,DerivedTraits::NumDimensions>(derived(), fmt); inline const TensorWithFormat<Derived,DerivedTraits::Layout,DerivedTraits::NumDimensions, Format> format(const Format& fmt) const {
return TensorWithFormat<Derived,DerivedTraits::Layout,DerivedTraits::NumDimensions, Format>(derived(), fmt);
} }
#ifdef EIGEN_READONLY_TENSORBASE_PLUGIN #ifdef EIGEN_READONLY_TENSORBASE_PLUGIN

View File

@ -18,33 +18,24 @@ namespace Eigen {
struct TensorIOFormat; struct TensorIOFormat;
namespace internal { namespace internal {
template <typename Tensor, std::size_t rank> template <typename Tensor, std::size_t rank, typename Format, typename EnableIf = void>
struct TensorPrinter; struct TensorPrinter;
} }
struct TensorIOFormat { template <typename Derived_>
TensorIOFormat(const std::vector<std::string>& _separator, const std::vector<std::string>& _prefix, struct TensorIOFormatBase {
const std::vector<std::string>& _suffix, int _precision = StreamPrecision, int _flags = 0, using Derived = Derived_;
const std::string& _tenPrefix = "", const std::string& _tenSuffix = "", const char _fill = ' ') TensorIOFormatBase(const std::vector<std::string>& separator, const std::vector<std::string>& prefix,
: tenPrefix(_tenPrefix), const std::vector<std::string>& suffix, int precision = StreamPrecision, int flags = 0,
tenSuffix(_tenSuffix), const std::string& tenPrefix = "", const std::string& tenSuffix = "", const char fill = ' ')
prefix(_prefix), : tenPrefix(tenPrefix),
suffix(_suffix), tenSuffix(tenSuffix),
separator(_separator), prefix(prefix),
fill(_fill), suffix(suffix),
precision(_precision), separator(separator),
flags(_flags) { fill(fill),
init_spacer(); precision(precision),
} flags(flags) {
TensorIOFormat(int _precision = StreamPrecision, int _flags = 0, const std::string& _tenPrefix = "",
const std::string& _tenSuffix = "", const char _fill = ' ')
: tenPrefix(_tenPrefix), tenSuffix(_tenSuffix), fill(_fill), precision(_precision), flags(_flags) {
// default values of prefix, suffix and separator
prefix = {"", "["};
suffix = {"", "]"};
separator = {", ", "\n"};
init_spacer(); init_spacer();
} }
@ -67,33 +58,6 @@ struct TensorIOFormat {
} }
} }
static inline const TensorIOFormat Numpy() {
std::vector<std::string> prefix = {"", "["};
std::vector<std::string> suffix = {"", "]"};
std::vector<std::string> separator = {" ", "\n"};
return TensorIOFormat(separator, prefix, suffix, StreamPrecision, 0, "[", "]");
}
static inline const TensorIOFormat Plain() {
std::vector<std::string> separator = {" ", "\n", "\n", ""};
std::vector<std::string> prefix = {""};
std::vector<std::string> suffix = {""};
return TensorIOFormat(separator, prefix, suffix, StreamPrecision, 0, "", "", ' ');
}
static inline const TensorIOFormat Native() {
std::vector<std::string> separator = {", ", ",\n", "\n"};
std::vector<std::string> prefix = {"", "{"};
std::vector<std::string> suffix = {"", "}"};
return TensorIOFormat(separator, prefix, suffix, StreamPrecision, 0, "{", "}", ' ');
}
static inline const TensorIOFormat Legacy() {
TensorIOFormat LegacyFormat(StreamPrecision, 0, "", "", ' ');
LegacyFormat.legacy_bit = true;
return LegacyFormat;
}
std::string tenPrefix; std::string tenPrefix;
std::string tenSuffix; std::string tenSuffix;
std::vector<std::string> prefix; std::vector<std::string> prefix;
@ -103,24 +67,67 @@ struct TensorIOFormat {
int precision; int precision;
int flags; int flags;
std::vector<std::string> spacer{}; std::vector<std::string> spacer{};
bool legacy_bit = false;
}; };
template <typename T, int Layout, int rank> struct TensorIOFormatNumpy : public TensorIOFormatBase<TensorIOFormatNumpy> {
using Base = TensorIOFormatBase<TensorIOFormatNumpy>;
TensorIOFormatNumpy()
: Base(/*separator=*/{" ", "\n"}, /*prefix=*/{"", "["}, /*suffix=*/{"", "]"}, /*precision=*/StreamPrecision,
/*flags=*/0, /*tenPrefix=*/"[", /*tenSuffix=*/"]") {}
};
struct TensorIOFormatNative : public TensorIOFormatBase<TensorIOFormatNative> {
using Base = TensorIOFormatBase<TensorIOFormatNative>;
TensorIOFormatNative()
: Base(/*separator=*/{", ", ",\n", "\n"}, /*prefix=*/{"", "{"}, /*suffix=*/{"", "}"},
/*precision=*/StreamPrecision, /*flags=*/0, /*tenPrefix=*/"{", /*tenSuffix=*/"}") {}
};
struct TensorIOFormatPlain : public TensorIOFormatBase<TensorIOFormatPlain> {
using Base = TensorIOFormatBase<TensorIOFormatPlain>;
TensorIOFormatPlain()
: Base(/*separator=*/{" ", "\n", "\n", ""}, /*prefix=*/{""}, /*suffix=*/{""}, /*precision=*/StreamPrecision,
/*flags=*/0, /*tenPrefix=*/"", /*tenSuffix=*/"") {}
};
struct TensorIOFormatLegacy : public TensorIOFormatBase<TensorIOFormatLegacy> {
using Base = TensorIOFormatBase<TensorIOFormatLegacy>;
TensorIOFormatLegacy()
: Base(/*separator=*/{", ", "\n"}, /*prefix=*/{"", "["}, /*suffix=*/{"", "]"}, /*precision=*/StreamPrecision,
/*flags=*/0, /*tenPrefix=*/"", /*tenSuffix=*/"") {}
};
struct TensorIOFormat : public TensorIOFormatBase<TensorIOFormat> {
using Base = TensorIOFormatBase<TensorIOFormat>;
TensorIOFormat(const std::vector<std::string>& separator, const std::vector<std::string>& prefix,
const std::vector<std::string>& suffix, int precision = StreamPrecision, int flags = 0,
const std::string& tenPrefix = "", const std::string& tenSuffix = "", const char fill = ' ')
: Base(separator, prefix, suffix, precision, flags, tenPrefix, tenSuffix, fill) {}
static inline const TensorIOFormatNumpy Numpy() { return TensorIOFormatNumpy{}; }
static inline const TensorIOFormatPlain Plain() { return TensorIOFormatPlain{}; }
static inline const TensorIOFormatNative Native() { return TensorIOFormatNative{}; }
static inline const TensorIOFormatLegacy Legacy() { return TensorIOFormatLegacy{}; }
};
template <typename T, int Layout, int rank, typename Format>
class TensorWithFormat; class TensorWithFormat;
// specialize for Layout=ColMajor, Layout=RowMajor and rank=0. // specialize for Layout=ColMajor, Layout=RowMajor and rank=0.
template <typename T, int rank> template <typename T, int rank, typename Format>
class TensorWithFormat<T, RowMajor, rank> { class TensorWithFormat<T, RowMajor, rank, Format> {
public: public:
TensorWithFormat(const T& tensor, const TensorIOFormat& format) : t_tensor(tensor), t_format(format) {} TensorWithFormat(const T& tensor, const Format& format) : t_tensor(tensor), t_format(format) {}
friend std::ostream& operator<<(std::ostream& os, const TensorWithFormat<T, RowMajor, rank>& wf) { friend std::ostream& operator<<(std::ostream& os, const TensorWithFormat<T, RowMajor, rank, Format>& wf) {
// Evaluate the expression if needed // Evaluate the expression if needed
typedef TensorEvaluator<const TensorForcedEvalOp<const T>, DefaultDevice> Evaluator; typedef TensorEvaluator<const TensorForcedEvalOp<const T>, DefaultDevice> Evaluator;
TensorForcedEvalOp<const T> eval = wf.t_tensor.eval(); TensorForcedEvalOp<const T> eval = wf.t_tensor.eval();
Evaluator tensor(eval, DefaultDevice()); Evaluator tensor(eval, DefaultDevice());
tensor.evalSubExprsIfNeeded(NULL); tensor.evalSubExprsIfNeeded(NULL);
internal::TensorPrinter<Evaluator, rank>::run(os, tensor, wf.t_format); internal::TensorPrinter<Evaluator, rank, Format>::run(os, tensor, wf.t_format);
// Cleanup. // Cleanup.
tensor.cleanup(); tensor.cleanup();
return os; return os;
@ -128,15 +135,15 @@ class TensorWithFormat<T, RowMajor, rank> {
protected: protected:
T t_tensor; T t_tensor;
TensorIOFormat t_format; Format t_format;
}; };
template <typename T, int rank> template <typename T, int rank, typename Format>
class TensorWithFormat<T, ColMajor, rank> { class TensorWithFormat<T, ColMajor, rank, Format> {
public: public:
TensorWithFormat(const T& tensor, const TensorIOFormat& format) : t_tensor(tensor), t_format(format) {} TensorWithFormat(const T& tensor, const Format& format) : t_tensor(tensor), t_format(format) {}
friend std::ostream& operator<<(std::ostream& os, const TensorWithFormat<T, ColMajor, rank>& wf) { friend std::ostream& operator<<(std::ostream& os, const TensorWithFormat<T, ColMajor, rank, Format>& wf) {
// Switch to RowMajor storage and print afterwards // Switch to RowMajor storage and print afterwards
typedef typename T::Index IndexType; typedef typename T::Index IndexType;
std::array<IndexType, rank> shuffle; std::array<IndexType, rank> shuffle;
@ -150,7 +157,7 @@ class TensorWithFormat<T, ColMajor, rank> {
TensorForcedEvalOp<const decltype(tensor_row_major)> eval = tensor_row_major.eval(); TensorForcedEvalOp<const decltype(tensor_row_major)> eval = tensor_row_major.eval();
Evaluator tensor(eval, DefaultDevice()); Evaluator tensor(eval, DefaultDevice());
tensor.evalSubExprsIfNeeded(NULL); tensor.evalSubExprsIfNeeded(NULL);
internal::TensorPrinter<Evaluator, rank>::run(os, tensor, wf.t_format); internal::TensorPrinter<Evaluator, rank, Format>::run(os, tensor, wf.t_format);
// Cleanup. // Cleanup.
tensor.cleanup(); tensor.cleanup();
return os; return os;
@ -158,21 +165,21 @@ class TensorWithFormat<T, ColMajor, rank> {
protected: protected:
T t_tensor; T t_tensor;
TensorIOFormat t_format; Format t_format;
}; };
template <typename T> template <typename T, typename Format>
class TensorWithFormat<T, ColMajor, 0> { class TensorWithFormat<T, ColMajor, 0, Format> {
public: public:
TensorWithFormat(const T& tensor, const TensorIOFormat& format) : t_tensor(tensor), t_format(format) {} TensorWithFormat(const T& tensor, const Format& format) : t_tensor(tensor), t_format(format) {}
friend std::ostream& operator<<(std::ostream& os, const TensorWithFormat<T, ColMajor, 0>& wf) { friend std::ostream& operator<<(std::ostream& os, const TensorWithFormat<T, ColMajor, 0, Format>& wf) {
// Evaluate the expression if needed // Evaluate the expression if needed
typedef TensorEvaluator<const TensorForcedEvalOp<const T>, DefaultDevice> Evaluator; typedef TensorEvaluator<const TensorForcedEvalOp<const T>, DefaultDevice> Evaluator;
TensorForcedEvalOp<const T> eval = wf.t_tensor.eval(); TensorForcedEvalOp<const T> eval = wf.t_tensor.eval();
Evaluator tensor(eval, DefaultDevice()); Evaluator tensor(eval, DefaultDevice());
tensor.evalSubExprsIfNeeded(NULL); tensor.evalSubExprsIfNeeded(NULL);
internal::TensorPrinter<Evaluator, 0>::run(os, tensor, wf.t_format); internal::TensorPrinter<Evaluator, 0, Format>::run(os, tensor, wf.t_format);
// Cleanup. // Cleanup.
tensor.cleanup(); tensor.cleanup();
return os; return os;
@ -180,27 +187,39 @@ class TensorWithFormat<T, ColMajor, 0> {
protected: protected:
T t_tensor; T t_tensor;
TensorIOFormat t_format; Format t_format;
}; };
namespace internal { namespace internal {
template <typename Tensor, std::size_t rank>
// Default scalar printer.
template <typename Scalar, typename Format, typename EnableIf = void>
struct ScalarPrinter {
static void run(std::ostream& stream, const Scalar& scalar, const Format& fmt) { stream << scalar; }
};
template <typename Scalar>
struct ScalarPrinter<Scalar, TensorIOFormatNumpy, std::enable_if_t<NumTraits<Scalar>::IsComplex>> {
static void run(std::ostream& stream, const Scalar& scalar, const TensorIOFormatNumpy& fmt) {
stream << numext::real(scalar) << "+" << numext::imag(scalar) << "j";
}
};
template <typename Scalar>
struct ScalarPrinter<Scalar, TensorIOFormatNative, std::enable_if_t<NumTraits<Scalar>::IsComplex>> {
static void run(std::ostream& stream, const Scalar& scalar, const TensorIOFormatNative& fmt) {
stream << "{" << numext::real(scalar) << ", " << numext::imag(scalar) << "}";
}
};
template <typename Tensor, std::size_t rank, typename Format, typename EnableIf>
struct TensorPrinter { struct TensorPrinter {
static void run(std::ostream& s, const Tensor& _t, const TensorIOFormat& fmt) { using Scalar = std::remove_const_t<typename Tensor::Scalar>;
typedef std::remove_const_t<typename Tensor::Scalar> Scalar; using ScalarPrinter = ScalarPrinter<Scalar, Format>;
static void run(std::ostream& s, const Tensor& tensor, const Format& fmt) {
typedef typename Tensor::Index IndexType; typedef typename Tensor::Index IndexType;
static const int layout = Tensor::Layout; static const int layout = Tensor::Layout;
// backwards compatibility case: print tensor after reshaping to matrix of size dim(0) x
// (dim(1)*dim(2)*...*dim(rank-1)).
if (fmt.legacy_bit) {
const IndexType total_size = internal::array_prod(_t.dimensions());
if (total_size > 0) {
const IndexType first_dim = Eigen::internal::array_get<0>(_t.dimensions());
Map<const Array<Scalar, Dynamic, Dynamic, layout>> matrix(_t.data(), first_dim, total_size / first_dim);
s << matrix;
return;
}
}
eigen_assert(layout == RowMajor); eigen_assert(layout == RowMajor);
typedef std::conditional_t<is_same<Scalar, char>::value || is_same<Scalar, unsigned char>::value || typedef std::conditional_t<is_same<Scalar, char>::value || is_same<Scalar, unsigned char>::value ||
@ -213,7 +232,7 @@ struct TensorPrinter {
std::complex<int>, const Scalar&>> std::complex<int>, const Scalar&>>
PrintType; PrintType;
const IndexType total_size = array_prod(_t.dimensions()); const IndexType total_size = array_prod(tensor.dimensions());
std::streamsize explicit_precision; std::streamsize explicit_precision;
if (fmt.precision == StreamPrecision) { if (fmt.precision == StreamPrecision) {
@ -232,20 +251,16 @@ struct TensorPrinter {
if (explicit_precision) old_precision = s.precision(explicit_precision); if (explicit_precision) old_precision = s.precision(explicit_precision);
IndexType width = 0; IndexType width = 0;
bool align_cols = !(fmt.flags & DontAlignCols); bool align_cols = !(fmt.flags & DontAlignCols);
if (align_cols) { if (align_cols) {
// compute the largest width // compute the largest width
for (IndexType i = 0; i < total_size; i++) { for (IndexType i = 0; i < total_size; i++) {
std::stringstream sstr; std::stringstream sstr;
sstr.copyfmt(s); sstr.copyfmt(s);
sstr << static_cast<PrintType>(_t.data()[i]); ScalarPrinter::run(sstr, static_cast<PrintType>(tensor.data()[i]), fmt);
width = std::max<IndexType>(width, IndexType(sstr.str().length())); width = std::max<IndexType>(width, IndexType(sstr.str().length()));
} }
} }
std::streamsize old_width = s.width();
char old_fill_character = s.fill();
s << fmt.tenPrefix; s << fmt.tenPrefix;
for (IndexType i = 0; i < total_size; i++) { for (IndexType i = 0; i < total_size; i++) {
std::array<bool, rank> is_at_end{}; std::array<bool, rank> is_at_end{};
@ -253,7 +268,7 @@ struct TensorPrinter {
// is the ith element the end of an coeff (always true), of a row, of a matrix, ...? // is the ith element the end of an coeff (always true), of a row, of a matrix, ...?
for (std::size_t k = 0; k < rank; k++) { for (std::size_t k = 0; k < rank; k++) {
if ((i + 1) % (std::accumulate(_t.dimensions().rbegin(), _t.dimensions().rbegin() + k, 1, if ((i + 1) % (std::accumulate(tensor.dimensions().rbegin(), tensor.dimensions().rbegin() + k, 1,
std::multiplies<IndexType>())) == std::multiplies<IndexType>())) ==
0) { 0) {
is_at_end[k] = true; is_at_end[k] = true;
@ -262,7 +277,7 @@ struct TensorPrinter {
// is the ith element the begin of an coeff (always true), of a row, of a matrix, ...? // is the ith element the begin of an coeff (always true), of a row, of a matrix, ...?
for (std::size_t k = 0; k < rank; k++) { for (std::size_t k = 0; k < rank; k++) {
if (i % (std::accumulate(_t.dimensions().rbegin(), _t.dimensions().rbegin() + k, 1, if (i % (std::accumulate(tensor.dimensions().rbegin(), tensor.dimensions().rbegin() + k, 1,
std::multiplies<IndexType>())) == std::multiplies<IndexType>())) ==
0) { 0) {
is_at_begin[k] = true; is_at_begin[k] = true;
@ -318,12 +333,20 @@ struct TensorPrinter {
} }
s << prefix.str(); s << prefix.str();
if (width) { // So we don't mess around with formatting, output scalar to a string stream, and adjust the width/fill manually.
s.fill(fmt.fill); std::stringstream sstr;
s.width(width); sstr.copyfmt(s);
s << std::right; ScalarPrinter::run(sstr, static_cast<PrintType>(tensor.data()[i]), fmt);
std::string scalar_str = sstr.str();
IndexType scalar_width = scalar_str.length();
if (width && scalar_width < width) {
std::string filler;
for (IndexType i = scalar_width; i < width; ++i) {
filler.push_back(fmt.fill);
}
s << filler;
} }
s << _t.data()[i]; s << scalar_str;
s << suffix.str(); s << suffix.str();
if (i < total_size - 1) { if (i < total_size - 1) {
s << separator.str(); s << separator.str();
@ -331,17 +354,35 @@ struct TensorPrinter {
} }
s << fmt.tenSuffix; s << fmt.tenSuffix;
if (explicit_precision) s.precision(old_precision); if (explicit_precision) s.precision(old_precision);
if (width) { }
s.fill(old_fill_character); };
s.width(old_width);
template <typename Tensor, std::size_t rank>
struct TensorPrinter<Tensor, rank, TensorIOFormatLegacy, std::enable_if_t<rank != 0>> {
using Format = TensorIOFormatLegacy;
using Scalar = std::remove_const_t<typename Tensor::Scalar>;
using ScalarPrinter = ScalarPrinter<Scalar, Format>;
static void run(std::ostream& s, const Tensor& tensor, const Format& fmt) {
typedef typename Tensor::Index IndexType;
static const int layout = Tensor::Layout;
// backwards compatibility case: print tensor after reshaping to matrix of size dim(0) x
// (dim(1)*dim(2)*...*dim(rank-1)).
const IndexType total_size = internal::array_prod(tensor.dimensions());
if (total_size > 0) {
const IndexType first_dim = Eigen::internal::array_get<0>(tensor.dimensions());
Map<const Array<Scalar, Dynamic, Dynamic, layout>> matrix(tensor.data(), first_dim, total_size / first_dim);
s << matrix;
return;
} }
} }
}; };
template <typename Tensor> template <typename Tensor, typename Format>
struct TensorPrinter<Tensor, 0> { struct TensorPrinter<Tensor, 0, Format> {
static void run(std::ostream& s, const Tensor& _t, const TensorIOFormat& fmt) { static void run(std::ostream& s, const Tensor& tensor, const Format& fmt) {
typedef typename Tensor::Scalar Scalar; using Scalar = std::remove_const_t<typename Tensor::Scalar>;
using ScalarPrinter = ScalarPrinter<Scalar, Format>;
std::streamsize explicit_precision; std::streamsize explicit_precision;
if (fmt.precision == StreamPrecision) { if (fmt.precision == StreamPrecision) {
@ -358,8 +399,9 @@ struct TensorPrinter<Tensor, 0> {
std::streamsize old_precision = 0; std::streamsize old_precision = 0;
if (explicit_precision) old_precision = s.precision(explicit_precision); if (explicit_precision) old_precision = s.precision(explicit_precision);
s << fmt.tenPrefix;
s << fmt.tenPrefix << _t.coeff(0) << fmt.tenSuffix; ScalarPrinter::run(s, tensor.coeff(0), fmt);
s << fmt.tenSuffix;
if (explicit_precision) s.precision(old_precision); if (explicit_precision) s.precision(old_precision);
} }
}; };

View File

@ -82,6 +82,16 @@ struct test_tensor_ostream_impl<std::complex<Scalar>, 2, Layout> {
std::ostringstream os; std::ostringstream os;
os << t.format(Eigen::TensorIOFormat::Plain()); os << t.format(Eigen::TensorIOFormat::Plain());
VERIFY(os.str() == " (1,2) (12,3)\n(-4,2) (0,5)\n(-1,4) (5,27)"); VERIFY(os.str() == " (1,2) (12,3)\n(-4,2) (0,5)\n(-1,4) (5,27)");
os.str("");
os.clear();
os << t.format(Eigen::TensorIOFormat::Numpy());
VERIFY(os.str() == "[[ 1+2j 12+3j]\n [-4+2j 0+5j]\n [-1+4j 5+27j]]");
os.str("");
os.clear();
os << t.format(Eigen::TensorIOFormat::Native());
VERIFY(os.str() == "{{ {1, 2}, {12, 3}},\n {{-4, 2}, {0, 5}},\n {{-1, 4}, {5, 27}}}");
} }
}; };