mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
improve Simplicial Cholesky analyzePattern
This commit is contained in:
parent
5d866a7a78
commit
a056b93114
@ -134,7 +134,7 @@ class SimplicialCholeskyBase : public SparseSolverBase<Derived> {
|
|||||||
<< "\n";
|
<< "\n";
|
||||||
s << " tree: " << ((total += m_parent.size() * sizeof(int)) >> 20) << "Mb"
|
s << " tree: " << ((total += m_parent.size() * sizeof(int)) >> 20) << "Mb"
|
||||||
<< "\n";
|
<< "\n";
|
||||||
s << " nonzeros: " << ((total += m_nonZerosPerCol.size() * sizeof(int)) >> 20) << "Mb"
|
s << " nonzeros: " << ((total += m_workSpace.size() * sizeof(int)) >> 20) << "Mb"
|
||||||
<< "\n";
|
<< "\n";
|
||||||
s << " perm: " << ((total += m_P.size() * sizeof(int)) >> 20) << "Mb"
|
s << " perm: " << ((total += m_P.size() * sizeof(int)) >> 20) << "Mb"
|
||||||
<< "\n";
|
<< "\n";
|
||||||
@ -240,7 +240,7 @@ class SimplicialCholeskyBase : public SparseSolverBase<Derived> {
|
|||||||
CholMatrixType m_matrix;
|
CholMatrixType m_matrix;
|
||||||
VectorType m_diag; // the diagonal coefficients (LDLT mode)
|
VectorType m_diag; // the diagonal coefficients (LDLT mode)
|
||||||
VectorI m_parent; // elimination tree
|
VectorI m_parent; // elimination tree
|
||||||
VectorI m_nonZerosPerCol;
|
VectorI m_workSpace;
|
||||||
PermutationMatrix<Dynamic, Dynamic, StorageIndex> m_P; // the permutation
|
PermutationMatrix<Dynamic, Dynamic, StorageIndex> m_P; // the permutation
|
||||||
PermutationMatrix<Dynamic, Dynamic, StorageIndex> m_Pinv; // the inverse permutation
|
PermutationMatrix<Dynamic, Dynamic, StorageIndex> m_Pinv; // the inverse permutation
|
||||||
|
|
||||||
@ -830,7 +830,7 @@ void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, ConstCholMat
|
|||||||
const Index size = a.rows();
|
const Index size = a.rows();
|
||||||
pmat = ≈
|
pmat = ≈
|
||||||
// Note that ordering methods compute the inverse permutation
|
// Note that ordering methods compute the inverse permutation
|
||||||
if (!internal::is_same<OrderingType, NaturalOrdering<Index> >::value) {
|
if (!internal::is_same<OrderingType, NaturalOrdering<StorageIndex> >::value) {
|
||||||
{
|
{
|
||||||
CholMatrixType C;
|
CholMatrixType C;
|
||||||
internal::permute_symm_to_fullsymm<UpLo, NonHermitian>(a, C, NULL);
|
internal::permute_symm_to_fullsymm<UpLo, NonHermitian>(a, C, NULL);
|
||||||
|
@ -25,40 +25,265 @@ the Mozilla Public License v. 2.0, as stated at the top of this file.
|
|||||||
|
|
||||||
namespace Eigen {
|
namespace Eigen {
|
||||||
|
|
||||||
template <typename Derived>
|
namespace internal {
|
||||||
void SimplicialCholeskyBase<Derived>::analyzePattern_preordered(const CholMatrixType& ap, bool doLDLT) {
|
|
||||||
const StorageIndex size = StorageIndex(ap.rows());
|
|
||||||
m_matrix.resize(size, size);
|
|
||||||
m_parent.resize(size);
|
|
||||||
m_nonZerosPerCol.resize(size);
|
|
||||||
|
|
||||||
ei_declare_aligned_stack_constructed_variable(StorageIndex, tags, size, 0);
|
template <typename Scalar, typename StorageIndex>
|
||||||
|
struct simpl_chol_helper {
|
||||||
|
using CholMatrixType = SparseMatrix<Scalar, ColMajor, StorageIndex>;
|
||||||
|
using InnerIterator = typename CholMatrixType::InnerIterator;
|
||||||
|
using VectorI = Matrix<StorageIndex, Dynamic, 1>;
|
||||||
|
static constexpr StorageIndex kEmpty = -1;
|
||||||
|
|
||||||
for (StorageIndex k = 0; k < size; ++k) {
|
// Implementation of a stack or last-in first-out structure with some debugging machinery.
|
||||||
/* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */
|
struct Stack {
|
||||||
m_parent[k] = -1; /* parent of k is not yet known */
|
StorageIndex* m_data;
|
||||||
tags[k] = k; /* mark node k as visited */
|
Index m_size;
|
||||||
m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */
|
#ifndef EIGEN_NO_DEBUG
|
||||||
for (typename CholMatrixType::InnerIterator it(ap, k); it; ++it) {
|
const Index m_maxSize;
|
||||||
StorageIndex i = it.index();
|
Stack(StorageIndex* data, StorageIndex size, StorageIndex maxSize)
|
||||||
if (i < k) {
|
: m_data(data), m_size(size), m_maxSize(maxSize) {
|
||||||
/* follow path from i to root of etree, stop at flagged node */
|
eigen_assert(size >= 0);
|
||||||
for (; tags[i] != k; i = m_parent[i]) {
|
eigen_assert(maxSize >= size);
|
||||||
/* find parent of i if not yet determined */
|
}
|
||||||
if (m_parent[i] == -1) m_parent[i] = k;
|
#else
|
||||||
m_nonZerosPerCol[i]++; /* L (k,i) is nonzero */
|
Stack(StorageIndex* data, StorageIndex size, StorageIndex /*maxSize*/) : m_data(data), m_size(size) {}
|
||||||
tags[i] = k; /* mark i as visited */
|
#endif
|
||||||
|
bool empty() const { return m_size == 0; }
|
||||||
|
Index size() const { return m_size; }
|
||||||
|
StorageIndex back() const {
|
||||||
|
eigen_assert(m_size > 0);
|
||||||
|
return m_data[m_size - 1];
|
||||||
|
}
|
||||||
|
void push(const StorageIndex& value) {
|
||||||
|
#ifndef EIGEN_NO_DEBUG
|
||||||
|
eigen_assert(m_size < m_maxSize);
|
||||||
|
#endif
|
||||||
|
m_data[m_size] = value;
|
||||||
|
m_size++;
|
||||||
|
}
|
||||||
|
void pop() {
|
||||||
|
eigen_assert(m_size > 0);
|
||||||
|
m_size--;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
// Implementation of a disjoint-set or union-find structure with path compression.
|
||||||
|
struct DisjointSet {
|
||||||
|
StorageIndex* m_set;
|
||||||
|
DisjointSet(StorageIndex* set, StorageIndex size) : m_set(set) { std::iota(set, set + size, 0); }
|
||||||
|
// Find the set representative or root of `u`.
|
||||||
|
StorageIndex find(StorageIndex u) const {
|
||||||
|
eigen_assert(u != kEmpty);
|
||||||
|
while (m_set[u] != u) {
|
||||||
|
// manually unroll the loop by a factor of 2 to improve performance
|
||||||
|
u = m_set[m_set[u]];
|
||||||
|
}
|
||||||
|
return u;
|
||||||
|
}
|
||||||
|
// Perform full path compression such that each node from `u` to `v` points to `v`.
|
||||||
|
void compress(StorageIndex u, StorageIndex v) {
|
||||||
|
eigen_assert(u != kEmpty);
|
||||||
|
eigen_assert(v != kEmpty);
|
||||||
|
while (m_set[u] != v) {
|
||||||
|
StorageIndex next = m_set[u];
|
||||||
|
m_set[u] = v;
|
||||||
|
u = next;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
// Computes the higher adjacency pattern by transposing the input lower adjacency matrix.
|
||||||
|
// Only the index arrays are calculated, as the values are not needed for the symbolic factorization.
|
||||||
|
// The outer index array provides the size requirements of the inner index array.
|
||||||
|
|
||||||
|
// Computes the outer index array of the higher adjacency matrix.
|
||||||
|
static void calc_hadj_outer(const StorageIndex size, const CholMatrixType& ap, StorageIndex* outerIndex) {
|
||||||
|
for (StorageIndex j = 1; j < size; j++) {
|
||||||
|
for (InnerIterator it(ap, j); it; ++it) {
|
||||||
|
StorageIndex i = it.index();
|
||||||
|
if (i < j) outerIndex[i + 1]++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::partial_sum(outerIndex, outerIndex + size + 1, outerIndex);
|
||||||
|
}
|
||||||
|
|
||||||
|
// inner index array
|
||||||
|
static void calc_hadj_inner(const StorageIndex size, const CholMatrixType& ap, const StorageIndex* outerIndex,
|
||||||
|
StorageIndex* innerIndex, StorageIndex* tmp) {
|
||||||
|
std::fill_n(tmp, size, 0);
|
||||||
|
|
||||||
|
for (StorageIndex j = 1; j < size; j++) {
|
||||||
|
for (InnerIterator it(ap, j); it; ++it) {
|
||||||
|
StorageIndex i = it.index();
|
||||||
|
if (i < j) {
|
||||||
|
StorageIndex b = outerIndex[i] + tmp[i];
|
||||||
|
innerIndex[b] = j;
|
||||||
|
tmp[i]++;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/* construct Lp index array from m_nonZerosPerCol column counts */
|
// Adapted from:
|
||||||
StorageIndex* Lp = m_matrix.outerIndexPtr();
|
// Joseph W. Liu. (1986).
|
||||||
Lp[0] = 0;
|
// A compact row storage scheme for Cholesky factors using elimination trees.
|
||||||
for (StorageIndex k = 0; k < size; ++k) Lp[k + 1] = Lp[k] + m_nonZerosPerCol[k] + (doLDLT ? 0 : 1);
|
// ACM Trans. Math. Softw. 12, 2 (June 1986), 127–148. https://doi.org/10.1145/6497.6499
|
||||||
|
|
||||||
m_matrix.resizeNonZeros(Lp[size]);
|
// Computes the elimination forest of the lower adjacency matrix, a compact representation of the sparse L factor.
|
||||||
|
// The L factor may contain multiple elimination trees if a column contains only its diagonal element.
|
||||||
|
// Each elimination tree is an n-ary tree in which each node points to its parent.
|
||||||
|
static void calc_etree(const StorageIndex size, const CholMatrixType& ap, StorageIndex* parent, StorageIndex* tmp) {
|
||||||
|
std::fill_n(parent, size, kEmpty);
|
||||||
|
|
||||||
|
DisjointSet ancestor(tmp, size);
|
||||||
|
|
||||||
|
for (StorageIndex j = 1; j < size; j++) {
|
||||||
|
for (InnerIterator it(ap, j); it; ++it) {
|
||||||
|
StorageIndex i = it.index();
|
||||||
|
if (i < j) {
|
||||||
|
StorageIndex r = ancestor.find(i);
|
||||||
|
if (r != j) parent[r] = j;
|
||||||
|
ancestor.compress(i, j);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Computes the child pointers of the parent tree to facilitate a depth-first search traversal.
|
||||||
|
static void calc_lineage(const StorageIndex size, const StorageIndex* parent, StorageIndex* firstChild,
|
||||||
|
StorageIndex* firstSibling) {
|
||||||
|
std::fill_n(firstChild, size, kEmpty);
|
||||||
|
std::fill_n(firstSibling, size, kEmpty);
|
||||||
|
|
||||||
|
for (StorageIndex j = 0; j < size; j++) {
|
||||||
|
StorageIndex p = parent[j];
|
||||||
|
if (p == kEmpty) continue;
|
||||||
|
StorageIndex c = firstChild[p];
|
||||||
|
if (c == kEmpty)
|
||||||
|
firstChild[p] = j;
|
||||||
|
else {
|
||||||
|
while (firstSibling[c] != kEmpty) c = firstSibling[c];
|
||||||
|
firstSibling[c] = j;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Computes a post-ordered traversal of the elimination tree.
|
||||||
|
static void calc_post(const StorageIndex size, const StorageIndex* parent, StorageIndex* firstChild,
|
||||||
|
const StorageIndex* firstSibling, StorageIndex* post, StorageIndex* dfs) {
|
||||||
|
Stack post_stack(post, 0, size);
|
||||||
|
for (StorageIndex j = 0; j < size; j++) {
|
||||||
|
if (parent[j] != kEmpty) continue;
|
||||||
|
// Begin at a root
|
||||||
|
Stack dfs_stack(dfs, 0, size);
|
||||||
|
dfs_stack.push(j);
|
||||||
|
while (!dfs_stack.empty()) {
|
||||||
|
StorageIndex i = dfs_stack.back();
|
||||||
|
StorageIndex c = firstChild[i];
|
||||||
|
if (c == kEmpty) {
|
||||||
|
post_stack.push(i);
|
||||||
|
dfs_stack.pop();
|
||||||
|
} else {
|
||||||
|
dfs_stack.push(c);
|
||||||
|
// Remove the path from `i` to `c` for future traversals.
|
||||||
|
firstChild[i] = firstSibling[c];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
eigen_assert(post_stack.size() == size);
|
||||||
|
eigen_assert(std::all_of(firstChild, firstChild + size, [](StorageIndex a) { return a == kEmpty; }));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Adapted from:
|
||||||
|
// Gilbert, J. R., Ng, E., & Peyton, B. W. (1994).
|
||||||
|
// An efficient algorithm to compute row and column counts for sparse Cholesky factorization.
|
||||||
|
// SIAM Journal on Matrix Analysis and Applications, 15(4), 1075–1091.
|
||||||
|
|
||||||
|
// Computes the non-zero pattern of the L factor.
|
||||||
|
static void calc_colcount(const StorageIndex size, const StorageIndex* hadjOuter, const StorageIndex* hadjInner,
|
||||||
|
const StorageIndex* parent, StorageIndex* prevLeaf, StorageIndex* tmp,
|
||||||
|
const StorageIndex* post, StorageIndex* nonZerosPerCol, bool doLDLT) {
|
||||||
|
// initialize nonZerosPerCol with 1 for leaves, 0 for non-leaves
|
||||||
|
std::fill_n(nonZerosPerCol, size, 1);
|
||||||
|
for (StorageIndex j = 0; j < size; j++) {
|
||||||
|
StorageIndex p = parent[j];
|
||||||
|
// p is not a leaf
|
||||||
|
if (p != kEmpty) nonZerosPerCol[p] = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
DisjointSet parentSet(tmp, size);
|
||||||
|
// prevLeaf is already initialized
|
||||||
|
eigen_assert(std::all_of(prevLeaf, prevLeaf + size, [](StorageIndex a) { return a == kEmpty; }));
|
||||||
|
|
||||||
|
for (StorageIndex j_ = 0; j_ < size; j_++) {
|
||||||
|
StorageIndex j = post[j_];
|
||||||
|
nonZerosPerCol[j] += hadjOuter[j + 1] - hadjOuter[j];
|
||||||
|
for (StorageIndex k = hadjOuter[j]; k < hadjOuter[j + 1]; k++) {
|
||||||
|
StorageIndex i = hadjInner[k];
|
||||||
|
eigen_assert(i > j);
|
||||||
|
StorageIndex prev = prevLeaf[i];
|
||||||
|
if (prev != kEmpty) {
|
||||||
|
StorageIndex q = parentSet.find(prev);
|
||||||
|
parentSet.compress(prev, q);
|
||||||
|
nonZerosPerCol[q]--;
|
||||||
|
}
|
||||||
|
prevLeaf[i] = j;
|
||||||
|
}
|
||||||
|
StorageIndex p = parent[j];
|
||||||
|
if (p != kEmpty) parentSet.compress(j, p);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (StorageIndex j = 0; j < size; j++) {
|
||||||
|
StorageIndex p = parent[j];
|
||||||
|
if (p != kEmpty) nonZerosPerCol[p] += nonZerosPerCol[j] - 1;
|
||||||
|
if (doLDLT) nonZerosPerCol[j]--;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Finalizes the non zero pattern of the L factor and allocates the memory for the factorization.
|
||||||
|
static void init_matrix(const StorageIndex size, const StorageIndex* nonZerosPerCol, CholMatrixType& L) {
|
||||||
|
eigen_assert(L.outerIndexPtr()[0] == 0);
|
||||||
|
std::partial_sum(nonZerosPerCol, nonZerosPerCol + size, L.outerIndexPtr() + 1);
|
||||||
|
L.resizeNonZeros(L.outerIndexPtr()[size]);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Driver routine for the symbolic sparse Cholesky factorization.
|
||||||
|
static void run(const StorageIndex size, const CholMatrixType& ap, CholMatrixType& L, VectorI& parent,
|
||||||
|
VectorI& workSpace, bool doLDLT) {
|
||||||
|
parent.resize(size);
|
||||||
|
workSpace.resize(4 * size);
|
||||||
|
L.resize(size, size);
|
||||||
|
|
||||||
|
StorageIndex* tmp1 = workSpace.data();
|
||||||
|
StorageIndex* tmp2 = workSpace.data() + size;
|
||||||
|
StorageIndex* tmp3 = workSpace.data() + 2 * size;
|
||||||
|
StorageIndex* tmp4 = workSpace.data() + 3 * size;
|
||||||
|
|
||||||
|
// Borrow L's outer index array for the higher adjacency pattern.
|
||||||
|
StorageIndex* hadj_outer = L.outerIndexPtr();
|
||||||
|
calc_hadj_outer(size, ap, hadj_outer);
|
||||||
|
// Request additional temporary storage for the inner indices of the higher adjacency pattern.
|
||||||
|
ei_declare_aligned_stack_constructed_variable(StorageIndex, hadj_inner, hadj_outer[size], nullptr);
|
||||||
|
calc_hadj_inner(size, ap, hadj_outer, hadj_inner, tmp1);
|
||||||
|
|
||||||
|
calc_etree(size, ap, parent.data(), tmp1);
|
||||||
|
calc_lineage(size, parent.data(), tmp1, tmp2);
|
||||||
|
calc_post(size, parent.data(), tmp1, tmp2, tmp3, tmp4);
|
||||||
|
calc_colcount(size, hadj_outer, hadj_inner, parent.data(), tmp1, tmp2, tmp3, tmp4, doLDLT);
|
||||||
|
init_matrix(size, tmp4, L);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace internal
|
||||||
|
|
||||||
|
template <typename Derived>
|
||||||
|
void SimplicialCholeskyBase<Derived>::analyzePattern_preordered(const CholMatrixType& ap, bool doLDLT) {
|
||||||
|
using Helper = internal::simpl_chol_helper<Scalar, StorageIndex>;
|
||||||
|
|
||||||
|
eigen_assert(ap.innerSize() == ap.outerSize());
|
||||||
|
const StorageIndex size = internal::convert_index<StorageIndex>(ap.outerSize());
|
||||||
|
|
||||||
|
Helper::run(size, ap, m_matrix, m_parent, m_workSpace, doLDLT);
|
||||||
|
|
||||||
m_isInitialized = true;
|
m_isInitialized = true;
|
||||||
m_info = Success;
|
m_info = Success;
|
||||||
@ -70,20 +295,21 @@ template <typename Derived>
|
|||||||
template <bool DoLDLT, bool NonHermitian>
|
template <bool DoLDLT, bool NonHermitian>
|
||||||
void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType& ap) {
|
void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType& ap) {
|
||||||
using std::sqrt;
|
using std::sqrt;
|
||||||
|
const StorageIndex size = StorageIndex(ap.rows());
|
||||||
|
|
||||||
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
||||||
eigen_assert(ap.rows() == ap.cols());
|
eigen_assert(ap.rows() == ap.cols());
|
||||||
eigen_assert(m_parent.size() == ap.rows());
|
eigen_assert(m_parent.size() == size);
|
||||||
eigen_assert(m_nonZerosPerCol.size() == ap.rows());
|
eigen_assert(m_workSpace.size() >= 3 * size);
|
||||||
|
|
||||||
const StorageIndex size = StorageIndex(ap.rows());
|
|
||||||
const StorageIndex* Lp = m_matrix.outerIndexPtr();
|
const StorageIndex* Lp = m_matrix.outerIndexPtr();
|
||||||
StorageIndex* Li = m_matrix.innerIndexPtr();
|
StorageIndex* Li = m_matrix.innerIndexPtr();
|
||||||
Scalar* Lx = m_matrix.valuePtr();
|
Scalar* Lx = m_matrix.valuePtr();
|
||||||
|
|
||||||
ei_declare_aligned_stack_constructed_variable(Scalar, y, size, 0);
|
ei_declare_aligned_stack_constructed_variable(Scalar, y, size, 0);
|
||||||
ei_declare_aligned_stack_constructed_variable(StorageIndex, pattern, size, 0);
|
StorageIndex* nonZerosPerCol = m_workSpace.data();
|
||||||
ei_declare_aligned_stack_constructed_variable(StorageIndex, tags, size, 0);
|
StorageIndex* pattern = m_workSpace.data() + size;
|
||||||
|
StorageIndex* tags = m_workSpace.data() + 2 * size;
|
||||||
|
|
||||||
bool ok = true;
|
bool ok = true;
|
||||||
m_diag.resize(DoLDLT ? size : 0);
|
m_diag.resize(DoLDLT ? size : 0);
|
||||||
@ -93,7 +319,7 @@ void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType&
|
|||||||
y[k] = Scalar(0); // Y(0:k) is now all zero
|
y[k] = Scalar(0); // Y(0:k) is now all zero
|
||||||
StorageIndex top = size; // stack for pattern is empty
|
StorageIndex top = size; // stack for pattern is empty
|
||||||
tags[k] = k; // mark node k as visited
|
tags[k] = k; // mark node k as visited
|
||||||
m_nonZerosPerCol[k] = 0; // count of nonzeros in column k of L
|
nonZerosPerCol[k] = 0; // count of nonzeros in column k of L
|
||||||
for (typename CholMatrixType::InnerIterator it(ap, k); it; ++it) {
|
for (typename CholMatrixType::InnerIterator it(ap, k); it; ++it) {
|
||||||
StorageIndex i = it.index();
|
StorageIndex i = it.index();
|
||||||
if (i <= k) {
|
if (i <= k) {
|
||||||
@ -124,13 +350,13 @@ void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType&
|
|||||||
else
|
else
|
||||||
yi = l_ki = yi / Lx[Lp[i]];
|
yi = l_ki = yi / Lx[Lp[i]];
|
||||||
|
|
||||||
Index p2 = Lp[i] + m_nonZerosPerCol[i];
|
Index p2 = Lp[i] + nonZerosPerCol[i];
|
||||||
Index p;
|
Index p;
|
||||||
for (p = Lp[i] + (DoLDLT ? 0 : 1); p < p2; ++p) y[Li[p]] -= getSymm(Lx[p]) * yi;
|
for (p = Lp[i] + (DoLDLT ? 0 : 1); p < p2; ++p) y[Li[p]] -= getSymm(Lx[p]) * yi;
|
||||||
d -= getDiag(l_ki * getSymm(yi));
|
d -= getDiag(l_ki * getSymm(yi));
|
||||||
Li[p] = k; /* store L(k,i) in column form of L */
|
Li[p] = k; /* store L(k,i) in column form of L */
|
||||||
Lx[p] = l_ki;
|
Lx[p] = l_ki;
|
||||||
++m_nonZerosPerCol[i]; /* increment count of nonzeros in col i */
|
++nonZerosPerCol[i]; /* increment count of nonzeros in col i */
|
||||||
}
|
}
|
||||||
if (DoLDLT) {
|
if (DoLDLT) {
|
||||||
m_diag[k] = d;
|
m_diag[k] = d;
|
||||||
@ -139,7 +365,7 @@ void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType&
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
Index p = Lp[k] + m_nonZerosPerCol[k]++;
|
Index p = Lp[k] + nonZerosPerCol[k]++;
|
||||||
Li[p] = k; /* store L(k,k) = sqrt (d) in column k */
|
Li[p] = k; /* store L(k,k) = sqrt (d) in column k */
|
||||||
if (NonHermitian ? d == RealScalar(0) : numext::real(d) <= RealScalar(0)) {
|
if (NonHermitian ? d == RealScalar(0) : numext::real(d) <= RealScalar(0)) {
|
||||||
ok = false; /* failure, matrix is not positive definite */
|
ok = false; /* failure, matrix is not positive definite */
|
||||||
|
Loading…
x
Reference in New Issue
Block a user