mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
Fix shadow variable, and indexing.
This commit is contained in:
parent
0beabb4776
commit
a20d2ec1c0
@ -339,17 +339,17 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
|
||||
RealScalar e = m_matS.coeff(i, i), f = m_matS.coeff(i, i+1), g = m_matS.coeff(i+1, i), h = m_matS.coeff(i+1, i+1);
|
||||
RealScalar d = c-a;
|
||||
RealScalar gb = g*b;
|
||||
Matrix<RealScalar,2,2> A;
|
||||
A << (e*d-gb)*c, ((e*b+f*d-h*b)*d-gb*b)*a,
|
||||
g*c , (gb+h*d)*a;
|
||||
Matrix<RealScalar,2,2> S2;
|
||||
S2 << (e*d-gb)*c, ((e*b+f*d-h*b)*d-gb*b)*a,
|
||||
g*c , (gb+h*d)*a;
|
||||
|
||||
// NOTE, we could also compute the SVD of T's block during the QZ factorization so that the respective T block is guaranteed to be diagonal,
|
||||
// and then we could directly apply the formula below (while taking care of scaling S columns by T11,T00):
|
||||
|
||||
Scalar p = Scalar(0.5) * (A.coeff(i, i) - A.coeff(i+1, i+1));
|
||||
Scalar z = sqrt(abs(p * p + A.coeff(i+1, i) * A.coeff(i, i+1)));
|
||||
m_alphas.coeffRef(i) = ComplexScalar(A.coeff(i+1, i+1) + p, z);
|
||||
m_alphas.coeffRef(i+1) = ComplexScalar(A.coeff(i+1, i+1) + p, -z);
|
||||
Scalar p = Scalar(0.5) * (S2.coeff(0,0) - S2.coeff(1,1));
|
||||
Scalar z = sqrt(abs(p * p + S2.coeff(1,0) * S2.coeff(0,1)));
|
||||
m_alphas.coeffRef(i) = ComplexScalar(S2.coeff(1,1) + p, z);
|
||||
m_alphas.coeffRef(i+1) = ComplexScalar(S2.coeff(1,1) + p, -z);
|
||||
|
||||
m_betas.coeffRef(i) =
|
||||
m_betas.coeffRef(i+1) = a*c*d;
|
||||
|
Loading…
x
Reference in New Issue
Block a user