mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-06 19:29:08 +08:00
cleaning
This commit is contained in:
parent
91561cded4
commit
a3034ee079
@ -25,119 +25,90 @@ void ei_r1updt(int m, int n, Matrix< Scalar, Dynamic, Dynamic > &s, const Scalar
|
||||
|
||||
/* rotate the vector v into a multiple of the n-th unit vector */
|
||||
/* in such a way that a spike is introduced into w. */
|
||||
|
||||
nm1 = n - 1;
|
||||
if (nm1 < 1) {
|
||||
goto L70;
|
||||
}
|
||||
for (nmj = 1; nmj <= nm1; ++nmj) {
|
||||
j = n - nmj;
|
||||
w[j] = 0.;
|
||||
if (v[j] == 0.) {
|
||||
goto L50;
|
||||
if (nm1 >= 1)
|
||||
for (nmj = 1; nmj <= nm1; ++nmj) {
|
||||
j = n - nmj;
|
||||
w[j] = 0.;
|
||||
if (v[j] != 0.) {
|
||||
/* determine a givens rotation which eliminates the */
|
||||
/* j-th element of v. */
|
||||
if (ei_abs(v[n]) < ei_abs(v[j])) {
|
||||
cotan = v[n] / v[j];
|
||||
/* Computing 2nd power */
|
||||
sin__ = Scalar(.5) / ei_sqrt(Scalar(0.25) + Scalar(0.25) * ei_abs2(cotan));
|
||||
cos__ = sin__ * cotan;
|
||||
tau = 1.;
|
||||
if (ei_abs(cos__) * giant > 1.) {
|
||||
tau = 1. / cos__;
|
||||
}
|
||||
} else {
|
||||
tan__ = v[j] / v[n];
|
||||
/* Computing 2nd power */
|
||||
cos__ = Scalar(.5) / ei_sqrt(Scalar(0.25) + Scalar(0.25) * ei_abs2(tan__));
|
||||
sin__ = cos__ * tan__;
|
||||
tau = sin__;
|
||||
}
|
||||
|
||||
/* apply the transformation to v and store the information */
|
||||
/* necessary to recover the givens rotation. */
|
||||
v[n] = sin__ * v[j] + cos__ * v[n];
|
||||
v[j] = tau;
|
||||
|
||||
/* apply the transformation to s and extend the spike in w. */
|
||||
for (i = j; i <= m; ++i) {
|
||||
temp = cos__ * s(j-1,i-1) - sin__ * w[i];
|
||||
w[i] = sin__ * s(j-1,i-1) + cos__ * w[i];
|
||||
s(j-1,i-1) = temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* determine a givens rotation which eliminates the */
|
||||
/* j-th element of v. */
|
||||
|
||||
if (ei_abs(v[n]) >= ei_abs(v[j]))
|
||||
goto L20;
|
||||
cotan = v[n] / v[j];
|
||||
/* Computing 2nd power */
|
||||
sin__ = Scalar(.5) / ei_sqrt(Scalar(0.25) + Scalar(0.25) * ei_abs2(cotan));
|
||||
cos__ = sin__ * cotan;
|
||||
tau = 1.;
|
||||
if (ei_abs(cos__) * giant > 1.) {
|
||||
tau = 1. / cos__;
|
||||
}
|
||||
goto L30;
|
||||
L20:
|
||||
tan__ = v[j] / v[n];
|
||||
/* Computing 2nd power */
|
||||
cos__ = Scalar(.5) / ei_sqrt(Scalar(0.25) + Scalar(0.25) * ei_abs2(tan__));
|
||||
sin__ = cos__ * tan__;
|
||||
tau = sin__;
|
||||
L30:
|
||||
|
||||
/* apply the transformation to v and store the information */
|
||||
/* necessary to recover the givens rotation. */
|
||||
|
||||
v[n] = sin__ * v[j] + cos__ * v[n];
|
||||
v[j] = tau;
|
||||
|
||||
/* apply the transformation to s and extend the spike in w. */
|
||||
|
||||
for (i = j; i <= m; ++i) {
|
||||
temp = cos__ * s(j-1,i-1) - sin__ * w[i];
|
||||
w[i] = sin__ * s(j-1,i-1) + cos__ * w[i];
|
||||
s(j-1,i-1) = temp;
|
||||
}
|
||||
L50:
|
||||
;
|
||||
}
|
||||
L70:
|
||||
|
||||
/* add the spike from the rank 1 update to w. */
|
||||
|
||||
for (i = 1; i <= m; ++i) {
|
||||
for (i = 1; i <= m; ++i)
|
||||
w[i] += v[n] * u[i];
|
||||
/* L80: */
|
||||
}
|
||||
|
||||
/* eliminate the spike. */
|
||||
|
||||
*sing = false;
|
||||
if (nm1 < 1) {
|
||||
goto L140;
|
||||
}
|
||||
for (j = 1; j <= nm1; ++j) {
|
||||
if (w[j] == 0.) {
|
||||
goto L120;
|
||||
if (nm1 >= 1)
|
||||
for (j = 1; j <= nm1; ++j) {
|
||||
if (w[j] != 0.) {
|
||||
/* determine a givens rotation which eliminates the */
|
||||
/* j-th element of the spike. */
|
||||
if (ei_abs(s(j-1,j-1)) < ei_abs(w[j])) {
|
||||
cotan = s(j-1,j-1) / w[j];
|
||||
/* Computing 2nd power */
|
||||
sin__ = Scalar(.5) / ei_sqrt(Scalar(0.25) + Scalar(0.25) * ei_abs2(cotan));
|
||||
cos__ = sin__ * cotan;
|
||||
tau = 1.;
|
||||
if (ei_abs(cos__) * giant > 1.) {
|
||||
tau = 1. / cos__;
|
||||
}
|
||||
} else {
|
||||
tan__ = w[j] / s(j-1,j-1);
|
||||
/* Computing 2nd power */
|
||||
cos__ = Scalar(.5) / ei_sqrt(Scalar(0.25) + Scalar(0.25) * ei_abs2(tan__));
|
||||
sin__ = cos__ * tan__;
|
||||
tau = sin__;
|
||||
}
|
||||
|
||||
/* apply the transformation to s and reduce the spike in w. */
|
||||
for (i = j; i <= m; ++i) {
|
||||
temp = cos__ * s(j-1,i-1) + sin__ * w[i];
|
||||
w[i] = -sin__ * s(j-1,i-1) + cos__ * w[i];
|
||||
s(j-1,i-1) = temp;
|
||||
}
|
||||
|
||||
/* store the information necessary to recover the */
|
||||
/* givens rotation. */
|
||||
w[j] = tau;
|
||||
}
|
||||
|
||||
/* test for zero diagonal elements in the output s. */
|
||||
if (s(j-1,j-1) == 0.) {
|
||||
*sing = true;
|
||||
}
|
||||
}
|
||||
|
||||
/* determine a givens rotation which eliminates the */
|
||||
/* j-th element of the spike. */
|
||||
|
||||
if (ei_abs(s(j-1,j-1)) >= ei_abs(w[j]))
|
||||
goto L90;
|
||||
cotan = s(j-1,j-1) / w[j];
|
||||
/* Computing 2nd power */
|
||||
sin__ = Scalar(.5) / ei_sqrt(Scalar(0.25) + Scalar(0.25) * ei_abs2(cotan));
|
||||
cos__ = sin__ * cotan;
|
||||
tau = 1.;
|
||||
if (ei_abs(cos__) * giant > 1.) {
|
||||
tau = 1. / cos__;
|
||||
}
|
||||
goto L100;
|
||||
L90:
|
||||
tan__ = w[j] / s(j-1,j-1);
|
||||
/* Computing 2nd power */
|
||||
cos__ = Scalar(.5) / ei_sqrt(Scalar(0.25) + Scalar(0.25) * ei_abs2(tan__));
|
||||
sin__ = cos__ * tan__;
|
||||
tau = sin__;
|
||||
L100:
|
||||
|
||||
/* apply the transformation to s and reduce the spike in w. */
|
||||
|
||||
for (i = j; i <= m; ++i) {
|
||||
temp = cos__ * s(j-1,i-1) + sin__ * w[i];
|
||||
w[i] = -sin__ * s(j-1,i-1) + cos__ * w[i];
|
||||
s(j-1,i-1) = temp;
|
||||
}
|
||||
|
||||
/* store the information necessary to recover the */
|
||||
/* givens rotation. */
|
||||
|
||||
w[j] = tau;
|
||||
L120:
|
||||
|
||||
/* test for zero diagonal elements in the output s. */
|
||||
|
||||
if (s(j-1,j-1) == 0.) {
|
||||
*sing = true;
|
||||
}
|
||||
}
|
||||
L140:
|
||||
/* move w back into the last column of the output s. */
|
||||
s(n-1,n-1) = w[n];
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user