mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
blas: fix most of level1 functions
This commit is contained in:
parent
bca04bd983
commit
a76c296e7f
@ -24,6 +24,7 @@
|
||||
|
||||
#define SCALAR std::complex<double>
|
||||
#define SCALAR_SUFFIX z
|
||||
#define REAL_SCALAR_SUFFIX d
|
||||
#define ISCOMPLEX 1
|
||||
|
||||
#include "level1_impl.h"
|
||||
|
@ -24,6 +24,7 @@
|
||||
|
||||
#define SCALAR std::complex<float>
|
||||
#define SCALAR_SUFFIX c
|
||||
#define REAL_SCALAR_SUFFIX s
|
||||
#define ISCOMPLEX 1
|
||||
|
||||
#include "level1_impl.h"
|
||||
|
@ -30,52 +30,111 @@ int EIGEN_BLAS_FUNC(axpy)(int *n, RealScalar *palpha, RealScalar *px, int *incx,
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
||||
|
||||
if(*incx==1 && *incy==1)
|
||||
vector(y,*n) += alpha * vector(x,*n);
|
||||
else
|
||||
vector(y,*n,*incy) += alpha * vector(x,*n,*incx);
|
||||
// std::cerr << "axpy " << *n << " " << alpha << " " << *incx << " " << *incy << "\n";
|
||||
|
||||
return 1;
|
||||
if(*incx==1 && *incy==1) vector(y,*n) += alpha * vector(x,*n);
|
||||
else if(*incx>0 && *incy>0) vector(y,*n,*incy) += alpha * vector(x,*n,*incx);
|
||||
else if(*incx>0 && *incy<0) vector(y,*n,-*incy).reverse() += alpha * vector(x,*n,*incx);
|
||||
else if(*incx<0 && *incy>0) vector(y,*n,*incy) += alpha * vector(x,*n,-*incx).reverse();
|
||||
else if(*incx<0 && *incy<0) vector(y,*n,-*incy).reverse() += alpha * vector(x,*n,-*incx).reverse();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#if !ISCOMPLEX
|
||||
// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
|
||||
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
|
||||
RealScalar EIGEN_BLAS_FUNC(asum)(int *n, RealScalar *px, int *incx)
|
||||
{
|
||||
int size = IsComplex ? 2* *n : *n;
|
||||
// std::cerr << "_asum " << *n << " " << *incx << "\n";
|
||||
|
||||
if(*incx==1)
|
||||
return vector(px,size).cwiseAbs().sum();
|
||||
else
|
||||
return vector(px,size,*incx).cwiseAbs().sum();
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
|
||||
return 1;
|
||||
if(*n<=0) return 0;
|
||||
|
||||
if(*incx==1) return vector(x,*n).cwiseAbs().sum();
|
||||
else return vector(x,*n,std::abs(*incx)).cwiseAbs().sum();
|
||||
}
|
||||
#else
|
||||
|
||||
struct ei_scalar_norm1_op {
|
||||
typedef RealScalar result_type;
|
||||
EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_norm1_op)
|
||||
inline RealScalar operator() (const Scalar& a) const { return ei_norm1(a); }
|
||||
};
|
||||
namespace Eigen {
|
||||
template<> struct ei_functor_traits<ei_scalar_norm1_op >
|
||||
{
|
||||
enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
|
||||
};
|
||||
}
|
||||
|
||||
RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx)
|
||||
{
|
||||
// std::cerr << "__asum " << *n << " " << *incx << "\n";
|
||||
|
||||
Complex* x = reinterpret_cast<Complex*>(px);
|
||||
|
||||
if(*n<=0) return 0;
|
||||
|
||||
if(*incx==1) return vector(x,*n).unaryExpr<ei_scalar_norm1_op>().sum();
|
||||
else return vector(x,*n,std::abs(*incx)).unaryExpr<ei_scalar_norm1_op>().sum();
|
||||
}
|
||||
#endif
|
||||
|
||||
int EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
||||
{
|
||||
int size = IsComplex ? 2* *n : *n;
|
||||
// std::cerr << "_copy " << *n << " " << *incx << " " << *incy << "\n";
|
||||
|
||||
if(*incx==1 && *incy==1)
|
||||
vector(py,size) = vector(px,size);
|
||||
else
|
||||
vector(py,size,*incy) = vector(px,size,*incx);
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
|
||||
return 1;
|
||||
if(*incx==1 && *incy==1) vector(y,*n) = vector(x,*n);
|
||||
else if(*incx>0 && *incy>0) vector(y,*n,*incy) = vector(x,*n,*incx);
|
||||
else if(*incx>0 && *incy<0) vector(y,*n,-*incy).reverse() = vector(x,*n,*incx);
|
||||
else if(*incx<0 && *incy>0) vector(y,*n,*incy) = vector(x,*n,-*incx).reverse();
|
||||
else if(*incx<0 && *incy<0) vector(y,*n,-*incy).reverse() = vector(x,*n,-*incx).reverse();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// computes a vector-vector dot product.
|
||||
Scalar EIGEN_BLAS_FUNC(dot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
||||
{
|
||||
// std::cerr << "_dot " << *n << " " << *incx << " " << *incy << "\n";
|
||||
|
||||
if(*n<=0)
|
||||
return 0;
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
|
||||
if(*incx==1 && *incy==1)
|
||||
return (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
|
||||
|
||||
return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
|
||||
if(*incx==1 && *incy==1) return (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
|
||||
else if(*incx>0 && *incy>0) return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
|
||||
else if(*incx<0 && *incy>0) return (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,*incy))).sum();
|
||||
else if(*incx>0 && *incy<0) return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
|
||||
else if(*incx<0 && *incy<0) return (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
|
||||
else return 0;
|
||||
}
|
||||
|
||||
int EIGEN_CAT(EIGEN_CAT(i,SCALAR_SUFFIX),amax_)(int *n, RealScalar *px, int *incx)
|
||||
{
|
||||
// std::cerr << "i_amax " << *n << " " << *incx << "\n";
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
|
||||
if(*n<=0)
|
||||
return 0;
|
||||
|
||||
int ret;
|
||||
|
||||
if(*incx==1) vector(x,*n).cwiseAbs().maxCoeff(&ret);
|
||||
else vector(x,*n,std::abs(*incx)).cwiseAbs().maxCoeff(&ret);
|
||||
|
||||
return ret+1;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
|
||||
// computes a vector-vector dot product with extended precision.
|
||||
@ -96,53 +155,95 @@ Scalar EIGEN_BLAS_FUNC(sdot)(int *n, RealScalar *px, int *incx, RealScalar *py,
|
||||
#if ISCOMPLEX
|
||||
|
||||
// computes a dot product of a conjugated vector with another vector.
|
||||
Scalar EIGEN_BLAS_FUNC(dotc)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
||||
void EIGEN_BLAS_FUNC(dotc)(RealScalar* dot, int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
||||
{
|
||||
return;
|
||||
|
||||
// TODO: find how to return a complex to fortran
|
||||
|
||||
// std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
|
||||
if(*incx==1 && *incy==1)
|
||||
return vector(x,*n).dot(vector(y,*n));
|
||||
|
||||
return vector(x,*n,*incx).dot(vector(y,*n,*incy));
|
||||
*reinterpret_cast<Scalar*>(dot) = vector(x,*n).dot(vector(y,*n));
|
||||
else
|
||||
*reinterpret_cast<Scalar*>(dot) = vector(x,*n,*incx).dot(vector(y,*n,*incy));
|
||||
}
|
||||
|
||||
// computes a vector-vector dot product without complex conjugation.
|
||||
Scalar EIGEN_BLAS_FUNC(dotu)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
||||
void EIGEN_BLAS_FUNC(dotu)(RealScalar* dot, int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
||||
{
|
||||
return;
|
||||
|
||||
// TODO: find how to return a complex to fortran
|
||||
|
||||
// std::cerr << "_dotu " << *n << " " << *incx << " " << *incy << "\n";
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
|
||||
if(*incx==1 && *incy==1)
|
||||
return (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
|
||||
|
||||
return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
|
||||
*reinterpret_cast<Scalar*>(dot) = (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
|
||||
else
|
||||
*reinterpret_cast<Scalar*>(dot) = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
|
||||
}
|
||||
|
||||
#endif // ISCOMPLEX
|
||||
|
||||
#if !ISCOMPLEX
|
||||
// computes the Euclidean norm of a vector.
|
||||
Scalar EIGEN_BLAS_FUNC(nrm2)(int *n, RealScalar *px, int *incx)
|
||||
{
|
||||
// std::cerr << "_nrm2 " << *n << " " << *incx << "\n";
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
|
||||
if(*n<=0)
|
||||
return 0;
|
||||
|
||||
if(*incx==1) return vector(x,*n).norm();
|
||||
else return vector(x,*n,std::abs(*incx)).norm();
|
||||
}
|
||||
#else
|
||||
RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx)
|
||||
{
|
||||
// std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
|
||||
if(*n<=0)
|
||||
return 0;
|
||||
|
||||
if(*incx==1)
|
||||
return vector(x,*n).norm();
|
||||
|
||||
return vector(x,*n,*incx).norm();
|
||||
}
|
||||
#endif
|
||||
|
||||
int EIGEN_BLAS_FUNC(rot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
|
||||
{
|
||||
// std::cerr << "_rot " << *n << " " << *incx << " " << *incy << "\n";
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
Scalar c = *reinterpret_cast<Scalar*>(pc);
|
||||
Scalar s = *reinterpret_cast<Scalar*>(ps);
|
||||
|
||||
StridedVectorType vx(vector(x,*n,*incx));
|
||||
StridedVectorType vy(vector(y,*n,*incy));
|
||||
ei_apply_rotation_in_the_plane(vx, vy, PlanarRotation<Scalar>(c,s));
|
||||
return 1;
|
||||
if(*n<=0)
|
||||
return 0;
|
||||
|
||||
StridedVectorType vx(vector(x,*n,std::abs(*incx)));
|
||||
StridedVectorType vy(vector(y,*n,std::abs(*incy)));
|
||||
|
||||
Reverse<StridedVectorType> rvx(vx);
|
||||
Reverse<StridedVectorType> rvy(vy);
|
||||
|
||||
if(*incx<0 && *incy>0) ei_apply_rotation_in_the_plane(rvx, vy, PlanarRotation<Scalar>(c,s));
|
||||
else if(*incx>0 && *incy<0) ei_apply_rotation_in_the_plane(vx, rvy, PlanarRotation<Scalar>(c,s));
|
||||
else ei_apply_rotation_in_the_plane(vx, vy, PlanarRotation<Scalar>(c,s));
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps)
|
||||
@ -157,7 +258,7 @@ int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealSc
|
||||
*c = r.c();
|
||||
*s = r.s();
|
||||
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#if !ISCOMPLEX
|
||||
@ -183,43 +284,56 @@ int EIGEN_BLAS_FUNC(rotmg)(RealScalar *d1, RealScalar *d2, RealScalar *x1, RealS
|
||||
*/
|
||||
#endif // !ISCOMPLEX
|
||||
|
||||
int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *px, int *incx, RealScalar *palpha)
|
||||
int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
|
||||
{
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
||||
|
||||
if(*incx==1)
|
||||
vector(x,*n) *= alpha;
|
||||
std::cerr << "_scal " << *n << " " << alpha << " " << *incx << "\n";
|
||||
|
||||
vector(x,*n,*incx) *= alpha;
|
||||
if(*n<=0)
|
||||
return 0;
|
||||
|
||||
return 1;
|
||||
if(*incx==1) vector(x,*n) *= alpha;
|
||||
else vector(x,*n,std::abs(*incx)) *= alpha;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#if ISCOMPLEX
|
||||
int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
|
||||
{
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
RealScalar alpha = *palpha;
|
||||
|
||||
std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";
|
||||
|
||||
if(*n<=0)
|
||||
return 0;
|
||||
|
||||
if(*incx==1) vector(x,*n) *= alpha;
|
||||
else vector(x,*n,std::abs(*incx)) *= alpha;
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif // ISCOMPLEX
|
||||
|
||||
int EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
||||
{
|
||||
int size = IsComplex ? 2* *n : *n;
|
||||
std::cerr << "_swap " << *n << " " << *incx << " " << *incy << "\n";
|
||||
|
||||
if(*incx==1 && *incy==1)
|
||||
vector(py,size).swap(vector(px,size));
|
||||
else
|
||||
vector(py,size,*incy).swap(vector(px,size,*incx));
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
|
||||
if(*n<=0)
|
||||
return 0;
|
||||
|
||||
if(*incx==1 && *incy==1) vector(y,*n).swap(vector(x,*n));
|
||||
else if(*incx>0 && *incy>0) vector(y,*n,*incy).swap(vector(x,*n,*incx));
|
||||
else if(*incx>0 && *incy<0) vector(y,*n,-*incy).reverse().swap(vector(x,*n,*incx));
|
||||
else if(*incx<0 && *incy>0) vector(y,*n,*incy).swap(vector(x,*n,-*incx).reverse());
|
||||
else if(*incx<0 && *incy<0) vector(y,*n,-*incy).reverse().swap(vector(x,*n,-*incx).reverse());
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
#if !ISCOMPLEX
|
||||
|
||||
RealScalar EIGEN_BLAS_FUNC(casum)(int *n, RealScalar *px, int *incx)
|
||||
{
|
||||
Complex* x = reinterpret_cast<Complex*>(px);
|
||||
|
||||
if(*incx==1)
|
||||
return vector(x,*n).cwiseAbs().sum();
|
||||
else
|
||||
return vector(x,*n,*incx).cwiseAbs().sum();
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
#endif // ISCOMPLEX
|
||||
|
Loading…
x
Reference in New Issue
Block a user