blas: fix most of level1 functions

This commit is contained in:
Gael Guennebaud 2010-03-02 14:45:43 +01:00
parent bca04bd983
commit a76c296e7f
3 changed files with 175 additions and 59 deletions

View File

@ -24,6 +24,7 @@
#define SCALAR std::complex<double>
#define SCALAR_SUFFIX z
#define REAL_SCALAR_SUFFIX d
#define ISCOMPLEX 1
#include "level1_impl.h"

View File

@ -24,6 +24,7 @@
#define SCALAR std::complex<float>
#define SCALAR_SUFFIX c
#define REAL_SCALAR_SUFFIX s
#define ISCOMPLEX 1
#include "level1_impl.h"

View File

@ -30,52 +30,111 @@ int EIGEN_BLAS_FUNC(axpy)(int *n, RealScalar *palpha, RealScalar *px, int *incx,
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
if(*incx==1 && *incy==1)
vector(y,*n) += alpha * vector(x,*n);
else
vector(y,*n,*incy) += alpha * vector(x,*n,*incx);
// std::cerr << "axpy " << *n << " " << alpha << " " << *incx << " " << *incy << "\n";
return 1;
if(*incx==1 && *incy==1) vector(y,*n) += alpha * vector(x,*n);
else if(*incx>0 && *incy>0) vector(y,*n,*incy) += alpha * vector(x,*n,*incx);
else if(*incx>0 && *incy<0) vector(y,*n,-*incy).reverse() += alpha * vector(x,*n,*incx);
else if(*incx<0 && *incy>0) vector(y,*n,*incy) += alpha * vector(x,*n,-*incx).reverse();
else if(*incx<0 && *incy<0) vector(y,*n,-*incy).reverse() += alpha * vector(x,*n,-*incx).reverse();
return 0;
}
#if !ISCOMPLEX
// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
RealScalar EIGEN_BLAS_FUNC(asum)(int *n, RealScalar *px, int *incx)
{
int size = IsComplex ? 2* *n : *n;
// std::cerr << "_asum " << *n << " " << *incx << "\n";
if(*incx==1)
return vector(px,size).cwiseAbs().sum();
else
return vector(px,size,*incx).cwiseAbs().sum();
Scalar* x = reinterpret_cast<Scalar*>(px);
return 1;
if(*n<=0) return 0;
if(*incx==1) return vector(x,*n).cwiseAbs().sum();
else return vector(x,*n,std::abs(*incx)).cwiseAbs().sum();
}
#else
struct ei_scalar_norm1_op {
typedef RealScalar result_type;
EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_norm1_op)
inline RealScalar operator() (const Scalar& a) const { return ei_norm1(a); }
};
namespace Eigen {
template<> struct ei_functor_traits<ei_scalar_norm1_op >
{
enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
};
}
RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx)
{
// std::cerr << "__asum " << *n << " " << *incx << "\n";
Complex* x = reinterpret_cast<Complex*>(px);
if(*n<=0) return 0;
if(*incx==1) return vector(x,*n).unaryExpr<ei_scalar_norm1_op>().sum();
else return vector(x,*n,std::abs(*incx)).unaryExpr<ei_scalar_norm1_op>().sum();
}
#endif
int EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
int size = IsComplex ? 2* *n : *n;
// std::cerr << "_copy " << *n << " " << *incx << " " << *incy << "\n";
if(*incx==1 && *incy==1)
vector(py,size) = vector(px,size);
else
vector(py,size,*incy) = vector(px,size,*incx);
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
return 1;
if(*incx==1 && *incy==1) vector(y,*n) = vector(x,*n);
else if(*incx>0 && *incy>0) vector(y,*n,*incy) = vector(x,*n,*incx);
else if(*incx>0 && *incy<0) vector(y,*n,-*incy).reverse() = vector(x,*n,*incx);
else if(*incx<0 && *incy>0) vector(y,*n,*incy) = vector(x,*n,-*incx).reverse();
else if(*incx<0 && *incy<0) vector(y,*n,-*incy).reverse() = vector(x,*n,-*incx).reverse();
return 0;
}
// computes a vector-vector dot product.
Scalar EIGEN_BLAS_FUNC(dot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
// std::cerr << "_dot " << *n << " " << *incx << " " << *incy << "\n";
if(*n<=0)
return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
if(*incx==1 && *incy==1)
return (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
if(*incx==1 && *incy==1) return (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
else if(*incx>0 && *incy>0) return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
else if(*incx<0 && *incy>0) return (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,*incy))).sum();
else if(*incx>0 && *incy<0) return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
else if(*incx<0 && *incy<0) return (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
else return 0;
}
int EIGEN_CAT(EIGEN_CAT(i,SCALAR_SUFFIX),amax_)(int *n, RealScalar *px, int *incx)
{
// std::cerr << "i_amax " << *n << " " << *incx << "\n";
Scalar* x = reinterpret_cast<Scalar*>(px);
if(*n<=0)
return 0;
int ret;
if(*incx==1) vector(x,*n).cwiseAbs().maxCoeff(&ret);
else vector(x,*n,std::abs(*incx)).cwiseAbs().maxCoeff(&ret);
return ret+1;
}
/*
// computes a vector-vector dot product with extended precision.
@ -96,53 +155,95 @@ Scalar EIGEN_BLAS_FUNC(sdot)(int *n, RealScalar *px, int *incx, RealScalar *py,
#if ISCOMPLEX
// computes a dot product of a conjugated vector with another vector.
Scalar EIGEN_BLAS_FUNC(dotc)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
void EIGEN_BLAS_FUNC(dotc)(RealScalar* dot, int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
return;
// TODO: find how to return a complex to fortran
// std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
if(*incx==1 && *incy==1)
return vector(x,*n).dot(vector(y,*n));
return vector(x,*n,*incx).dot(vector(y,*n,*incy));
*reinterpret_cast<Scalar*>(dot) = vector(x,*n).dot(vector(y,*n));
else
*reinterpret_cast<Scalar*>(dot) = vector(x,*n,*incx).dot(vector(y,*n,*incy));
}
// computes a vector-vector dot product without complex conjugation.
Scalar EIGEN_BLAS_FUNC(dotu)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
void EIGEN_BLAS_FUNC(dotu)(RealScalar* dot, int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
return;
// TODO: find how to return a complex to fortran
// std::cerr << "_dotu " << *n << " " << *incx << " " << *incy << "\n";
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
if(*incx==1 && *incy==1)
return (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
*reinterpret_cast<Scalar*>(dot) = (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
else
*reinterpret_cast<Scalar*>(dot) = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
}
#endif // ISCOMPLEX
#if !ISCOMPLEX
// computes the Euclidean norm of a vector.
Scalar EIGEN_BLAS_FUNC(nrm2)(int *n, RealScalar *px, int *incx)
{
// std::cerr << "_nrm2 " << *n << " " << *incx << "\n";
Scalar* x = reinterpret_cast<Scalar*>(px);
if(*n<=0)
return 0;
if(*incx==1) return vector(x,*n).norm();
else return vector(x,*n,std::abs(*incx)).norm();
}
#else
RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx)
{
// std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
Scalar* x = reinterpret_cast<Scalar*>(px);
if(*n<=0)
return 0;
if(*incx==1)
return vector(x,*n).norm();
return vector(x,*n,*incx).norm();
}
#endif
int EIGEN_BLAS_FUNC(rot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
{
// std::cerr << "_rot " << *n << " " << *incx << " " << *incy << "\n";
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar c = *reinterpret_cast<Scalar*>(pc);
Scalar s = *reinterpret_cast<Scalar*>(ps);
StridedVectorType vx(vector(x,*n,*incx));
StridedVectorType vy(vector(y,*n,*incy));
ei_apply_rotation_in_the_plane(vx, vy, PlanarRotation<Scalar>(c,s));
return 1;
if(*n<=0)
return 0;
StridedVectorType vx(vector(x,*n,std::abs(*incx)));
StridedVectorType vy(vector(y,*n,std::abs(*incy)));
Reverse<StridedVectorType> rvx(vx);
Reverse<StridedVectorType> rvy(vy);
if(*incx<0 && *incy>0) ei_apply_rotation_in_the_plane(rvx, vy, PlanarRotation<Scalar>(c,s));
else if(*incx>0 && *incy<0) ei_apply_rotation_in_the_plane(vx, rvy, PlanarRotation<Scalar>(c,s));
else ei_apply_rotation_in_the_plane(vx, vy, PlanarRotation<Scalar>(c,s));
return 0;
}
int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps)
@ -157,7 +258,7 @@ int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealSc
*c = r.c();
*s = r.s();
return 1;
return 0;
}
#if !ISCOMPLEX
@ -183,43 +284,56 @@ int EIGEN_BLAS_FUNC(rotmg)(RealScalar *d1, RealScalar *d2, RealScalar *x1, RealS
*/
#endif // !ISCOMPLEX
int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *px, int *incx, RealScalar *palpha)
int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
if(*incx==1)
vector(x,*n) *= alpha;
std::cerr << "_scal " << *n << " " << alpha << " " << *incx << "\n";
vector(x,*n,*incx) *= alpha;
if(*n<=0)
return 0;
return 1;
if(*incx==1) vector(x,*n) *= alpha;
else vector(x,*n,std::abs(*incx)) *= alpha;
return 0;
}
#if ISCOMPLEX
int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
RealScalar alpha = *palpha;
std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";
if(*n<=0)
return 0;
if(*incx==1) vector(x,*n) *= alpha;
else vector(x,*n,std::abs(*incx)) *= alpha;
return 0;
}
#endif // ISCOMPLEX
int EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
int size = IsComplex ? 2* *n : *n;
std::cerr << "_swap " << *n << " " << *incx << " " << *incy << "\n";
if(*incx==1 && *incy==1)
vector(py,size).swap(vector(px,size));
else
vector(py,size,*incy).swap(vector(px,size,*incx));
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
if(*n<=0)
return 0;
if(*incx==1 && *incy==1) vector(y,*n).swap(vector(x,*n));
else if(*incx>0 && *incy>0) vector(y,*n,*incy).swap(vector(x,*n,*incx));
else if(*incx>0 && *incy<0) vector(y,*n,-*incy).reverse().swap(vector(x,*n,*incx));
else if(*incx<0 && *incy>0) vector(y,*n,*incy).swap(vector(x,*n,-*incx).reverse());
else if(*incx<0 && *incy<0) vector(y,*n,-*incy).reverse().swap(vector(x,*n,-*incx).reverse());
return 1;
}
#if !ISCOMPLEX
RealScalar EIGEN_BLAS_FUNC(casum)(int *n, RealScalar *px, int *incx)
{
Complex* x = reinterpret_cast<Complex*>(px);
if(*incx==1)
return vector(x,*n).cwiseAbs().sum();
else
return vector(x,*n,*incx).cwiseAbs().sum();
return 1;
}
#endif // ISCOMPLEX