Add the implementation of the Incomplete LU preconditioner with dual threshold (ILUT)

Modify the BiCGSTAB function to check the residual norm of the initial guess
This commit is contained in:
Desire NUENTSA 2012-02-10 10:59:39 +01:00
parent 9ed6a267a3
commit a815d962da
3 changed files with 414 additions and 9 deletions

View File

@ -29,6 +29,7 @@ namespace Eigen {
#include "src/IterativeLinearSolvers/BasicPreconditioners.h"
#include "src/IterativeLinearSolvers/ConjugateGradient.h"
#include "src/IterativeLinearSolvers/BiCGSTAB.h"
#include "src/IterativeLinearSolvers/IncompleteLUT.h"
} // namespace Eigen

View File

@ -53,6 +53,7 @@ void bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
int n = mat.cols();
VectorType r = rhs - mat * x;
VectorType r0 = r;
RealScalar r0_sqnorm = r0.squaredNorm();
Scalar rho = 1;
Scalar alpha = 1;
@ -67,15 +68,17 @@ void bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
RealScalar tol2 = tol*tol;
int i = 0;
do
while ( r.squaredNorm()/r0_sqnorm > tol2 && i<maxIters )
{
Scalar rho_old = rho;
rho = r0.dot(r);
eigen_assert((rho != Scalar(0)) && "BiCGSTAB BROKE DOWN !!!");
Scalar beta = (rho/rho_old) * (alpha / w);
p = r + beta * (p - w * v);
y = precond.solve(p);
v.noalias() = mat * y;
alpha = rho / r0.dot(v);
@ -84,17 +87,12 @@ void bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
z = precond.solve(s);
t.noalias() = mat * z;
kt = precond.solve(t);
ks = precond.solve(s);
w = kt.dot(ks) / kt.squaredNorm();
w = t.dot(s) / t.squaredNorm();
x += alpha * y + w * z;
r = s - w * t;
++i;
} while ( r.squaredNorm()/r0_sqnorm > tol2 && i<maxIters );
}
tol_error = sqrt(r.squaredNorm()/r0_sqnorm);
//tol_error = sqrt(abs(absNew / absInit));
iters = i;
}
@ -233,7 +231,7 @@ public:
template<typename Rhs,typename Dest>
void _solve(const Rhs& b, Dest& x) const
{
x.setOnes();
x.setZero();
_solveWithGuess(b,x);
}

View File

@ -0,0 +1,406 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_INCOMPLETE_LUT_H
#define EIGEN_INCOMPLETE_LUT_H
#include <bench/btl/generic_bench/utils/utilities.h>
#include <Eigen/src/OrderingMethods/Amd.h>
/**
* \brief Incomplete LU factorization with dual-threshold strategy
* During the numerical factorization, two dropping rules are used :
* 1) any element whose magnitude is less than some tolerance is dropped.
* This tolerance is obtained by multiplying the input tolerance @p droptol
* by the average magnitude of all the original elements in the current row.
* 2) After the elimination of the row, only the @p fill largest elements in
* the L part and the @p fill largest elements in the U part are kept
* (in addition to the diagonal element ). Note that @p fill is computed from
* the input parameter @p fillfactor which is used the ratio to control the fill_in
* relatively to the initial number of nonzero elements.
*
* The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
* and when @p fill=n/2 with @p droptol being different to zero.
*
* References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
* Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
*
* NOTE : The following implementation is derived from the ILUT implementation
* in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
* released under the terms of the GNU LGPL;
* see http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README for more details.
*/
template <typename _Scalar>
class IncompleteLUT
{
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar,Dynamic,1> Vector;
typedef SparseMatrix<Scalar,RowMajor> FactorType;
typedef SparseMatrix<Scalar,ColMajor> PermutType;
typedef typename FactorType::Index Index;
public:
typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
IncompleteLUT() : m_droptol(NumTraits<Scalar>::dummy_precision()),m_fillfactor(50),m_isInitialized(false) {};
template<typename MatrixType>
IncompleteLUT(const MatrixType& mat, RealScalar droptol, int fillfactor)
: m_droptol(droptol),m_fillfactor(fillfactor),m_isInitialized(false)
{
compute(mat);
}
Index rows() const { return m_lu.rows(); }
Index cols() const { return m_lu.cols(); }
/**
* Compute an incomplete LU factorization with dual threshold on the matrix mat
* No pivoting is done in this version
*
**/
template<typename MatrixType>
IncompleteLUT<Scalar>& compute(const MatrixType& amat)
{
int n = amat.cols(); /* Size of the matrix */
m_lu.resize(n,n);
int fill_in; /* Number of largest elements to keep in each row */
int nnzL, nnzU; /* Number of largest nonzero elements to keep in the L and the U part of the current row */
/* Declare Working vectors and variables */
int sizeu; /* number of nonzero elements in the upper part of the current row */
int sizel; /* number of nonzero elements in the lower part of the current row */
Vector u(n) ; /* real values of the row -- maximum size is n -- */
VectorXi ju(n); /*column position of the values in u -- maximum size is n*/
VectorXi jr(n); /* Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1*/
int j, k, ii, jj, jpos, minrow, len;
Scalar fact, prod;
RealScalar rownorm;
/* Compute the Fill-reducing permutation */
SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 * mat1; /* Symmetrize the pattern */
AtA.prune(keep_diag());
internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); /* Then compute the AMD ordering... */
m_Pinv = m_P.inverse(); /* ... and the inverse permutation */
// m_Pinv.indices().setLinSpaced(0,n);
// m_P.indices().setLinSpaced(0,n);
SparseMatrix<Scalar,RowMajor, Index> mat;
mat = amat.twistedBy(m_Pinv);
/* Initialization */
fact = 0;
jr.fill(-1);
ju.fill(0);
u.fill(0);
fill_in = static_cast<int> (amat.nonZeros()*m_fillfactor)/n+1;
if (fill_in > n) fill_in = n;
nnzL = fill_in/2;
nnzU = nnzL;
m_lu.reserve(n * (nnzL + nnzU + 1));
for (int ii = 0; ii < n; ii++)
{ /* global loop over the rows of the sparse matrix */
/* Copy the lower and the upper part of the row i of mat in the working vector u */
sizeu = 1;
sizel = 0;
ju(ii) = ii;
u(ii) = 0;
jr(ii) = ii;
rownorm = 0;
typename FactorType::InnerIterator j_it(mat, ii); /* Iterate through the current row ii */
for (; j_it; ++j_it)
{
k = j_it.index();
if (k < ii)
{ /* Copy the lower part */
ju(sizel) = k;
u(sizel) = j_it.value();
jr(k) = sizel;
++sizel;
}
else if (k == ii)
{
u(ii) = j_it.value();
}
else
{ /* Copy the upper part */
jpos = ii + sizeu;
ju(jpos) = k;
u(jpos) = j_it.value();
jr(k) = jpos;
++sizeu;
}
rownorm += internal::abs2(j_it.value());
} /* end copy of the row */
/* detect possible zero row */
if (rownorm == 0) eigen_internal_assert(false);
rownorm = std::sqrt(rownorm); /* Take the 2-norm of the current row as a relative tolerance */
/* Now, eliminate the previous nonzero rows */
jj = 0; len = 0;
while (jj < sizel)
{ /* In order to eliminate in the correct order, we must select first the smallest column index among ju(jj:sizel) */
minrow = ju.segment(jj,sizel-jj).minCoeff(&k); /* k est relatif au segment */
k += jj;
if (minrow != ju(jj)) { /* swap the two locations */
j = ju(jj);
std::swap(ju(jj), ju(k));
jr(minrow) = jj; jr(j) = k;
std::swap(u(jj), u(k));
}
/* Reset this location to zero */
jr(minrow) = -1;
/* Start elimination */
typename FactorType::InnerIterator ki_it(m_lu, minrow);
while (ki_it && ki_it.index() < minrow) ++ki_it;
if(ki_it && ki_it.col()==minrow) fact = u(jj) / ki_it.value();
else { eigen_internal_assert(false); }
if( std::abs(fact) <= m_droptol ) {
jj++;
continue ; /* This element is been dropped */
}
/* linear combination of the current row ii and the row minrow */
++ki_it;
for (; ki_it; ++ki_it) {
prod = fact * ki_it.value();
j = ki_it.index();
jpos = jr(j);
if (j >= ii) { /* Dealing with the upper part */
if (jpos == -1) { /* Fill-in element */
int newpos = ii + sizeu;
ju(newpos) = j;
u(newpos) = - prod;
jr(j) = newpos;
sizeu++;
if (sizeu > n) { eigen_internal_assert(false);}
}
else { /* Not a fill_in element */
u(jpos) -= prod;
}
}
else { /* Dealing with the lower part */
if (jpos == -1) { /* Fill-in element */
ju(sizel) = j;
jr(j) = sizel;
u(sizel) = - prod;
sizel++;
if(sizel > n) { eigen_internal_assert(false);}
}
else {
u(jpos) -= prod;
}
}
}
/* Store the pivot element */
u(len) = fact;
ju(len) = minrow;
++len;
jj++;
} /* End While loop -- end of the elimination on the row ii*/
/* Reset the upper part of the pointer jr to zero */
for (k = 0; k <sizeu; k++){
jr(ju(ii+k)) = -1;
}
/* Sort the L-part of the row --use Quicksplit()*/
sizel = len;
len = std::min(sizel, nnzL );
typename Vector::SegmentReturnType ul(u.segment(0, len));
typename VectorXi::SegmentReturnType jul(ju.segment(0, len));
QuickSplit(ul, jul, len);
/* Store the largest m_fill elements of the L part */
m_lu.startVec(ii);
for (k = 0; k < len; k++){
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
}
/* Store the diagonal element */
if (u(ii) == Scalar(0))
u(ii) = std::sqrt(m_droptol ) * rownorm ; /* NOTE This is used to avoid a zero pivot, because we are doing an incomplete factorization */
m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
/* Sort the U-part of the row -- Use Quicksplit() */
len = 0;
for (k = 1; k < sizeu; k++) { /* First, drop any element that is below a relative tolerance */
if ( std::abs(u(ii+k)) > m_droptol * rownorm ) {
++len;
u(ii + len) = u(ii + k);
ju(ii + len) = ju(ii + k);
}
}
sizeu = len + 1; /* To take into account the diagonal element */
len = std::min(sizeu, nnzU);
typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
QuickSplit(uu, juu, len);
/* Store the largest <fill> elements of the U part */
for (k = ii + 1; k < ii + len; k++){
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
}
} /* End global for-loop */
m_lu.finalize();
m_lu.makeCompressed(); /* NOTE To save the extra space */
m_isInitialized = true;
return *this;
}
void setDroptol(RealScalar droptol);
void setFill(int fillfactor);
template<typename Rhs, typename Dest>
void _solve(const Rhs& b, Dest& x) const
{
x = m_Pinv * b;
x = m_lu.template triangularView<UnitLower>().solve(x);/* Compute L*x = P*b for x */
x = m_lu.template triangularView<Upper>().solve(x); /* Compute U * z = y for z */
x = m_P * x;
}
template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
eigen_assert(cols()==b.rows()
&& "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
}
protected:
FactorType m_lu;
RealScalar m_droptol;
int m_fillfactor;
bool m_isInitialized;
template <typename VectorV, typename VectorI>
int QuickSplit(VectorV &row, VectorI &ind, int ncut);
PermutationMatrix<Dynamic,Dynamic,Index> m_P; /* Fill-reducing permutation */
PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; /* Inverse permutation */
/** keeps off-diagonal entries; drops diagonal entries */
struct keep_diag {
inline bool operator() (const Index& row, const Index& col, const Scalar&) const
{
return row!=col;
}
};
};
/**
* Set control parameter droptol
* \param droptol Drop any element whose magnitude is less than this tolerance
**/
template<typename Scalar>
void IncompleteLUT<Scalar>::setDroptol(RealScalar droptol)
{
this->m_droptol = droptol;
}
/**
* Set control parameter fillfactor
* \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row.
**/
template<typename Scalar>
void IncompleteLUT<Scalar>::setFill(int fillfactor)
{
this->m_fillfactor = fillfactor;
}
/**
* Compute a quick-sort split of a vector
* On output, the vector row is permuted such that its elements satisfy
* abs(row(i)) >= abs(row(ncut)) if i<ncut
* abs(row(i)) <= abs(row(ncut)) if i>ncut
* \param row The vector of values
* \param ind The array of index for the elements in @p row
* \param ncut The number of largest elements to keep
**/
template <typename Scalar>
template <typename VectorV, typename VectorI>
int IncompleteLUT<Scalar>::QuickSplit(VectorV &row, VectorI &ind, int ncut)
{
int i,j,mid;
Scalar d;
int n = row.size(); /* lenght of the vector */
int first, last ;
ncut--; /* to fit the zero-based indices */
first = 0;
last = n-1;
if (ncut < first || ncut > last ) return 0;
do {
mid = first;
RealScalar abskey = std::abs(row(mid));
for (j = first + 1; j <= last; j++) {
if ( std::abs(row(j)) > abskey) {
++mid;
std::swap(row(mid), row(j));
std::swap(ind(mid), ind(j));
}
}
/* Interchange for the pivot element */
std::swap(row(mid), row(first));
std::swap(ind(mid), ind(first));
if (mid > ncut) last = mid - 1;
else if (mid < ncut ) first = mid + 1;
} while (mid != ncut );
return 0; /* mid is equal to ncut */
}
namespace internal {
template<typename _MatrixType, typename Rhs>
struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
: solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
{
typedef IncompleteLUT<_MatrixType> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
}
};
}
#endif // EIGEN_INCOMPLETE_LUT_H