Improved and cleaned up the 2d patch extraction code

This commit is contained in:
Benoit Steiner 2015-07-07 08:52:14 -07:00
parent fa17358c4b
commit a93af65938
4 changed files with 212 additions and 105 deletions

View File

@ -10,6 +10,8 @@
#ifndef EIGEN_CXX11_TENSOR_TENSOR_BASE_H
#define EIGEN_CXX11_TENSOR_TENSOR_BASE_H
// clang-format off
namespace Eigen {
/** \class TensorBase
@ -379,39 +381,28 @@ class TensorBase<Derived, ReadOnlyAccessors>
return TensorPatchOp<const PatchDims, const Derived>(derived(), patch_dims);
}
template <Index Rows, Index Cols> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorImagePatchOp<Rows, Cols, const Derived>
extract_image_patches() const {
return TensorImagePatchOp<Rows, Cols, const Derived>(derived(), Rows, Cols, 1, 1, PADDING_SAME);
}
template <Index Rows, Index Cols> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorImagePatchOp<Rows, Cols, const Derived>
extract_image_patches(const PaddingType padding_type) const {
return TensorImagePatchOp<Rows, Cols, const Derived>(derived(), Rows, Cols, 1, 1, padding_type);
}
template <Index Rows, Index Cols> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorImagePatchOp<Rows, Cols, const Derived>
extract_image_patches(const Index stride, const PaddingType padding_type) const {
return TensorImagePatchOp<Rows, Cols, const Derived>(derived(), Rows, Cols, stride, stride, padding_type);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorImagePatchOp<Dynamic, Dynamic, const Derived>
extract_image_patches(const Index patch_rows, const Index patch_cols,
const Index row_stride = 1, const Index col_stride = 1) const {
extract_image_patches(const Index patch_rows = 1, const Index patch_cols = 1,
const Index row_stride = 1, const Index col_stride = 1,
const Index in_row_stride = 1, const Index in_col_stride = 1,
const PaddingType padding_type = PADDING_SAME, const Scalar padding_value = Scalar(0)) const {
return TensorImagePatchOp<Dynamic, Dynamic, const Derived>(derived(), patch_rows, patch_cols, row_stride, col_stride,
PADDING_SAME);
in_row_stride, in_col_stride, 1, 1, padding_type, padding_value);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorImagePatchOp<Dynamic, Dynamic, const Derived>
extract_image_patches(const Index patch_rows, const Index patch_cols,
const Index row_stride, const Index col_stride,
const PaddingType padding_type) const {
const Index in_row_stride, const Index in_col_stride,
const Index row_inflate_stride, const Index col_inflate_stride,
const Index padding_top, const Index padding_bottom,
const Index padding_left,const Index padding_right,
const Scalar padding_value) const {
return TensorImagePatchOp<Dynamic, Dynamic, const Derived>(derived(), patch_rows, patch_cols, row_stride, col_stride,
padding_type);
in_row_stride, in_col_stride, row_inflate_stride, col_inflate_stride,
padding_top, padding_bottom, padding_left, padding_right, padding_value);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
@ -481,7 +472,7 @@ class TensorBase<Derived, ReadOnlyAccessors>
return TensorStridingOp<const Strides, const Derived>(derived(), strides);
}
// Added support for custom unary and binary operations
// Support for custom unary and binary operations
template <typename CustomUnaryFunc>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorCustomUnaryOp<const CustomUnaryFunc, const Derived> customOp(const CustomUnaryFunc& op) const {

View File

@ -30,7 +30,7 @@ namespace internal {
template<DenseIndex Rows, DenseIndex Cols, typename XprType>
struct traits<TensorImagePatchOp<Rows, Cols, XprType> > : public traits<XprType>
{
typedef typename XprType::Scalar Scalar;
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef traits<XprType> XprTraits;
typedef typename packet_traits<Scalar>::type Packet;
typedef typename XprTraits::StorageKind StorageKind;
@ -70,10 +70,30 @@ class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprT
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols,
DenseIndex row_strides, DenseIndex col_strides,
PaddingType padding_type)
DenseIndex in_row_strides, DenseIndex in_col_strides,
DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
PaddingType padding_type, Scalar padding_value)
: m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
m_row_strides(row_strides), m_col_strides(col_strides),
m_padding_type(padding_type) {}
m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
m_padding_explicit(false), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0),
m_padding_type(padding_type), m_padding_value(padding_value) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols,
DenseIndex row_strides, DenseIndex col_strides,
DenseIndex in_row_strides, DenseIndex in_col_strides,
DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
DenseIndex padding_top, DenseIndex padding_bottom,
DenseIndex padding_left, DenseIndex padding_right,
Scalar padding_value)
: m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
m_row_strides(row_strides), m_col_strides(col_strides),
m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
m_padding_explicit(true), m_padding_top(padding_top), m_padding_bottom(padding_bottom),
m_padding_left(padding_left), m_padding_right(padding_right),
m_padding_type(PADDING_VALID), m_padding_value(padding_value) {}
EIGEN_DEVICE_FUNC
DenseIndex patch_rows() const { return m_patch_rows; }
@ -84,7 +104,27 @@ class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprT
EIGEN_DEVICE_FUNC
DenseIndex col_strides() const { return m_col_strides; }
EIGEN_DEVICE_FUNC
DenseIndex in_row_strides() const { return m_in_row_strides; }
EIGEN_DEVICE_FUNC
DenseIndex in_col_strides() const { return m_in_col_strides; }
EIGEN_DEVICE_FUNC
DenseIndex row_inflate_strides() const { return m_row_inflate_strides; }
EIGEN_DEVICE_FUNC
DenseIndex col_inflate_strides() const { return m_col_inflate_strides; }
EIGEN_DEVICE_FUNC
bool padding_explicit() const { return m_padding_explicit; }
EIGEN_DEVICE_FUNC
DenseIndex padding_top() const { return m_padding_top; }
EIGEN_DEVICE_FUNC
DenseIndex padding_bottom() const { return m_padding_bottom; }
EIGEN_DEVICE_FUNC
DenseIndex padding_left() const { return m_padding_left; }
EIGEN_DEVICE_FUNC
DenseIndex padding_right() const { return m_padding_right; }
EIGEN_DEVICE_FUNC
PaddingType padding_type() const { return m_padding_type; }
EIGEN_DEVICE_FUNC
Scalar padding_value() const { return m_padding_value; }
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename XprType::Nested>::type&
@ -96,10 +136,19 @@ class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprT
const DenseIndex m_patch_cols;
const DenseIndex m_row_strides;
const DenseIndex m_col_strides;
const DenseIndex m_in_row_strides;
const DenseIndex m_in_col_strides;
const DenseIndex m_row_inflate_strides;
const DenseIndex m_col_inflate_strides;
const bool m_padding_explicit;
const DenseIndex m_padding_top;
const DenseIndex m_padding_bottom;
const DenseIndex m_padding_left;
const DenseIndex m_padding_right;
const PaddingType m_padding_type;
const Scalar m_padding_value;
};
// Eval as rvalue
template<DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device>
struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
@ -109,7 +158,10 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
static const int NumDims = NumInputDims + 1;
typedef DSizes<Index, NumDims> Dimensions;
typedef typename XprType::Scalar Scalar;
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>,
Device> Self;
typedef TensorEvaluator<ArgType, Device> Impl;
enum {
IsAligned = false,
@ -123,13 +175,17 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
{
EIGEN_STATIC_ASSERT(NumDims >= 4, YOU_MADE_A_PROGRAMMING_MISTAKE);
m_paddingValue = op.padding_value();
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
// Caches a few variables.
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_inputDepth = input_dims[0];
m_inputRows = input_dims[1];
m_inputCols = input_dims[2];
} else {
m_inputDepth = input_dims[NumInputDims-1];
m_inputRows = input_dims[NumInputDims-2];
m_inputCols = input_dims[NumInputDims-3];
}
@ -137,27 +193,57 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
m_row_strides = op.row_strides();
m_col_strides = op.col_strides();
// We only support same strides for both dimensions and square patches.
eigen_assert(m_row_strides == m_col_strides);
// Input strides and effective input/patch size
m_in_row_strides = op.in_row_strides();
m_in_col_strides = op.in_col_strides();
m_row_inflate_strides = op.row_inflate_strides();
m_col_inflate_strides = op.col_inflate_strides();
// The "effective" input rows and input cols are the input rows and cols
// after inflating them with zeros.
// For examples, a 2x3 matrix with row_inflate_strides and
// col_inflate_strides of 2 comes from:
// A B C
// D E F
//
// to a matrix is 3 x 5:
//
// A . B . C
// . . . . .
// D . E . F
switch (op.padding_type()) {
case PADDING_VALID:
m_outputRows = numext::ceil((m_inputRows - op.patch_rows() + 1.f) / static_cast<float>(m_row_strides));
m_outputCols = numext::ceil((m_inputCols - op.patch_cols() + 1.f) / static_cast<float>(m_col_strides));
// Calculate the padding
m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + op.patch_rows() - m_inputRows) / 2;
m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + op.patch_cols() - m_inputCols) / 2;
break;
case PADDING_SAME:
m_outputRows = numext::ceil(m_inputRows / static_cast<float>(m_row_strides));
m_outputCols = numext::ceil(m_inputCols / static_cast<float>(m_col_strides));
// Calculate the padding
m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + op.patch_rows() - m_inputRows) / 2;
m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + op.patch_cols() - m_inputCols) / 2;
break;
default:
eigen_assert(false && "unexpected padding");
m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1);
m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1);
if (op.padding_explicit()) {
m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
m_rowPaddingTop = op.padding_top();
m_colPaddingLeft = op.padding_left();
} else {
// Computing padding from the type
switch (op.padding_type()) {
case PADDING_VALID:
m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
// Calculate the padding
m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2;
m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2;
break;
case PADDING_SAME:
m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides));
m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides));
// Calculate the padding
m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2;
m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2;
break;
default:
eigen_assert(false && "unexpected padding");
}
}
eigen_assert(m_outputRows > 0);
eigen_assert(m_outputCols > 0);
// Dimensions for result of extraction.
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
@ -202,26 +288,24 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
}
// Strides for navigating through the input tensor.
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_rowInputStride = input_dims[0];
m_colInputStride = input_dims[0] * input_dims[1];
m_patchInputStride = input_dims[0] * input_dims[1] * input_dims[2];
} else {
m_rowInputStride = input_dims[NumInputDims-1];
m_colInputStride = input_dims[NumInputDims-1] * input_dims[NumInputDims-2];
m_patchInputStride = input_dims[NumInputDims-1] * input_dims[NumInputDims-2] * input_dims[NumInputDims-3];
}
m_rowInputStride = m_inputDepth;
m_colInputStride = m_inputDepth * m_inputRows;
m_patchInputStride = m_inputDepth * m_inputRows * m_inputCols;
// Fast representations of different variables.
m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
m_fastInputRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides);
m_fastInputColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides);
m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
// Number of patches in the width dimension.
m_fastOutputRows = internal::TensorIntDivisor<Index>(m_outputRows);
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_fastDimZero = internal::TensorIntDivisor<Index>(m_dimensions[0]);
m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
} else {
m_fastDimZero = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
}
}
@ -244,33 +328,36 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
// Patch index corresponding to the passed in index.
const Index patchIndex = index / m_fastPatchStride;
// Find the offset of the element wrt the location of the first element.
const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastDimZero;
const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth;
// Other ways to index this element.
const Index otherIndex = (NumDims == 4) ? 0 : index / m_fastOtherStride;
const Index patch2DIndex = (NumDims == 4) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
// Calculate col index in the input original tensor.
const Index colIndex = patch2DIndex / m_fastOutputRows;
const Index colOffset = patchOffset / m_fastColStride;
// Calculate col index in the input original tensor.
const Index inputCol = colIndex * m_col_strides + colOffset - m_colPaddingLeft;
if (inputCol < 0 || inputCol >= m_inputCols) {
return Scalar(0);
const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0);
if (inputCol < 0 || inputCol >= m_input_cols_eff ||
((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
return Scalar(m_paddingValue);
}
const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
const Index rowOffset = patchOffset - colOffset * m_colStride;
// Calculate row index in the original input tensor.
const Index inputRow = rowIndex * m_row_strides + rowOffset - m_rowPaddingTop;
if (inputRow < 0 || inputRow >= m_inputRows) {
return Scalar(0);
const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
const Index rowOffset = patchOffset - colOffset * m_colStride;
const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0);
if (inputRow < 0 || inputRow >= m_input_rows_eff ||
((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
return Scalar(m_paddingValue);
}
const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
const Index depth = index - (index / m_fastDimZero) * m_dimensions[depth_index];
const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
const Index inputIndex = depth + inputRow * m_rowInputStride + inputCol * m_colInputStride + otherIndex * m_patchInputStride;
const Index inputIndex = depth + origInputRow * m_rowInputStride + origInputCol * m_colInputStride + otherIndex * m_patchInputStride;
return m_impl.coeff(inputIndex);
}
@ -281,6 +368,10 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
eigen_assert(index+packetSize-1 < dimensions().TotalSize());
if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1) {
return packetWithPossibleZero(index);
}
const Index indices[2] = {index, index + packetSize - 1};
const Index patchIndex = indices[0] / m_fastPatchStride;
if (patchIndex != indices[1] / m_fastPatchStride) {
@ -290,8 +381,8 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
eigen_assert(otherIndex == indices[1] / m_fastOtherStride);
// Find the offset of the element wrt the location of the first element.
const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastDimZero,
(indices[1] - patchIndex * m_patchStride) / m_fastDimZero};
const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth,
(indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth};
const Index patch2DIndex = (NumDims == 4) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
eigen_assert(patch2DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
@ -303,8 +394,7 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
const Index inputCols[2] = {colIndex * m_col_strides + colOffsets[0] -
m_colPaddingLeft, colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
// all zeros
return internal::pset1<PacketReturnType>(Scalar(0));
return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
}
if (inputCols[0] == inputCols[1]) {
@ -316,14 +406,13 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
m_rowPaddingTop, rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
// all zeros
return internal::pset1<PacketReturnType>(Scalar(0));
return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
}
if (inputRows[0] >= 0 && inputRows[1] < m_inputRows) {
// no padding
const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
const Index depth = index - (index / m_fastDimZero) * m_dimensions[depth_index];
const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride + otherIndex * m_patchInputStride;
return m_impl.template packet<Unaligned>(inputIndex);
}
@ -342,6 +431,10 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
Index outputCols() const { return m_outputCols; }
Index userRowStride() const { return m_row_strides; }
Index userColStride() const { return m_col_strides; }
Index userInRowStride() const { return m_in_row_strides; }
Index userInColStride() const { return m_in_col_strides; }
Index rowInflateStride() const { return m_row_inflate_strides; }
Index colInflateStride() const { return m_col_inflate_strides; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<Index, NumDims>& coords) const
{
@ -350,24 +443,30 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
// 0: d, 1: patch_rows, 2: patch_cols, 3: number of patches, 4: number of batches
// RowMajor
// 0: number of batches, 1: number of patches, 2: patch_cols , 3: patch_rows, 4: d
const Index patchIndex = coords[static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 3 : 1];
const Index patch2DIndex = coords[static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 3 : 1];
array<Index, NumDims-1> inputCoords;
Index input_col_idx = patch2DIndex / m_fastInputColsEff;
Index inputCol = input_col_idx + coords[1] * m_in_row_strides - m_rowPaddingTop;
Index inputRow = patch2DIndex - input_col_idx * m_input_cols_eff + coords[2] * m_in_col_strides - m_colPaddingLeft;
const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0);
const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0);
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
inputCoords[0] = coords[0]; // depth
inputCoords[1] = patchIndex / m_inputCols + coords[1] - m_rowPaddingTop;
inputCoords[2] = patchIndex - patchIndex / m_inputCols * m_inputCols + coords[2] - m_colPaddingLeft;
inputCoords[1] = origInputCol;
inputCoords[2] = origInputRow;
inputCoords[3] = coords[4]; // batch
} else {
inputCoords[3] = coords[4]; // depth
inputCoords[2] = patchIndex / m_inputCols + coords[3] - m_rowPaddingTop;
inputCoords[1] = patchIndex - patchIndex / m_inputCols * m_inputCols + coords[2] - m_colPaddingLeft;
inputCoords[2] = origInputCol;
inputCoords[1] = origInputRow;
inputCoords[0] = coords[0]; // batch
}
// If the computed coordinates are outside the original image perimeter, return 0.
if (inputCoords[1] < 0 || inputCoords[1] >= m_inputRows ||
inputCoords[2] < 0 || inputCoords[2] >= m_inputCols) {
return Scalar(0);
if (inputCol < 0 || inputCol >= m_input_cols_eff || inputRow < 0 || inputRow >= m_input_rows_eff ||
((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides)) ||
((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
return Scalar(m_paddingValue);
}
if (TensorEvaluator<ArgType, Device>::CoordAccess) {
return m_impl.coeff(inputCoords);
@ -409,14 +508,29 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
Index m_colStride;
Index m_row_strides;
Index m_col_strides;
Index m_in_row_strides;
Index m_in_col_strides;
Index m_row_inflate_strides;
Index m_col_inflate_strides;
Index m_input_rows_eff;
Index m_input_cols_eff;
Index m_patch_rows_eff;
Index m_patch_cols_eff;
internal::TensorIntDivisor<Index> m_fastOtherStride;
internal::TensorIntDivisor<Index> m_fastPatchStride;
internal::TensorIntDivisor<Index> m_fastColStride;
internal::TensorIntDivisor<Index> m_fastInputRowStride;
internal::TensorIntDivisor<Index> m_fastInputColStride;
internal::TensorIntDivisor<Index> m_fastInputColsEff;
Index m_rowInputStride;
Index m_colInputStride;
Index m_patchInputStride;
Index m_inputDepth;
Index m_inputRows;
Index m_inputCols;
@ -427,7 +541,9 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
Index m_colPaddingLeft;
internal::TensorIntDivisor<Index> m_fastOutputRows;
internal::TensorIntDivisor<Index> m_fastDimZero;
internal::TensorIntDivisor<Index> m_fastOutputDepth;
Scalar m_paddingValue;
TensorEvaluator<ArgType, Device> m_impl;
};

View File

@ -75,7 +75,7 @@ struct TensorIntDivisor {
eigen_assert(numerator >= 0);
eigen_assert(static_cast<unsigned long long>(numerator) <= (1ull<<N) - 1);
uint32_t t1 = (multiplier * numerator) >> 32;
uint32_t t1 = (multiplier * numerator) >> N;
uint32_t t = (static_cast<uint32_t>(numerator) - t1) >> shift1;
return (t1 + t) >> shift2;
}

View File

@ -25,7 +25,7 @@ static void test_simple_patch()
// Single pixel patch: ColMajor
Tensor<float, 5> single_pixel_patch;
single_pixel_patch = tensor.extract_image_patches<1, 1>();
single_pixel_patch = tensor.extract_image_patches(1, 1);
VERIFY_IS_EQUAL(single_pixel_patch.dimension(0), 2);
VERIFY_IS_EQUAL(single_pixel_patch.dimension(1), 1);
VERIFY_IS_EQUAL(single_pixel_patch.dimension(2), 1);
@ -34,7 +34,7 @@ static void test_simple_patch()
// Single pixel patch: RowMajor
Tensor<float, 5, RowMajor> single_pixel_patch_row_major;
single_pixel_patch_row_major = tensor_row_major.extract_image_patches<1, 1>();
single_pixel_patch_row_major = tensor_row_major.extract_image_patches(1, 1);
VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(0), 7);
VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(1), 3*5);
VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(2), 1);
@ -64,7 +64,7 @@ static void test_simple_patch()
// Entire image patch: ColMajor
Tensor<float, 5> entire_image_patch;
entire_image_patch = tensor.extract_image_patches<3, 5>();
entire_image_patch = tensor.extract_image_patches(3, 5);
VERIFY_IS_EQUAL(entire_image_patch.dimension(0), 2);
VERIFY_IS_EQUAL(entire_image_patch.dimension(1), 3);
VERIFY_IS_EQUAL(entire_image_patch.dimension(2), 5);
@ -73,7 +73,7 @@ static void test_simple_patch()
// Entire image patch: RowMajor
Tensor<float, 5, RowMajor> entire_image_patch_row_major;
entire_image_patch_row_major = tensor_row_major.extract_image_patches<3, 5>();
entire_image_patch_row_major = tensor_row_major.extract_image_patches(3, 5);
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(0), 7);
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(1), 3*5);
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(2), 5);
@ -118,7 +118,7 @@ static void test_simple_patch()
// 2D patch: ColMajor
Tensor<float, 5> twod_patch;
twod_patch = tensor.extract_image_patches<2, 2>();
twod_patch = tensor.extract_image_patches(2, 2);
VERIFY_IS_EQUAL(twod_patch.dimension(0), 2);
VERIFY_IS_EQUAL(twod_patch.dimension(1), 2);
VERIFY_IS_EQUAL(twod_patch.dimension(2), 2);
@ -127,7 +127,7 @@ static void test_simple_patch()
// 2D patch: RowMajor
Tensor<float, 5, RowMajor> twod_patch_row_major;
twod_patch_row_major = tensor_row_major.extract_image_patches<2, 2>();
twod_patch_row_major = tensor_row_major.extract_image_patches(2, 2);
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(0), 7);
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(1), 3*5);
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(2), 2);
@ -194,7 +194,7 @@ static void test_patch_padding_valid()
tensor.data()[i] = i + 1;
}
// ColMajor
Tensor<float, 5> result = tensor.extract_image_patches(ksize, ksize, stride, stride, PADDING_VALID);
Tensor<float, 5> result = tensor.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID);
VERIFY_IS_EQUAL(result.dimension(0), input_depth); // depth
VERIFY_IS_EQUAL(result.dimension(1), ksize); // kernel rows
@ -209,7 +209,7 @@ static void test_patch_padding_valid()
VERIFY_IS_EQUAL(tensor.dimension(2), tensor_row_major.dimension(1));
VERIFY_IS_EQUAL(tensor.dimension(3), tensor_row_major.dimension(0));
Tensor<float, 5, RowMajor> result_row_major = tensor_row_major.extract_image_patches(ksize, ksize, stride, stride, PADDING_VALID);
Tensor<float, 5, RowMajor> result_row_major = tensor_row_major.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID);
VERIFY_IS_EQUAL(result.dimension(0), result_row_major.dimension(4));
VERIFY_IS_EQUAL(result.dimension(1), result_row_major.dimension(3));
VERIFY_IS_EQUAL(result.dimension(2), result_row_major.dimension(2));
@ -267,7 +267,7 @@ static void test_patch_padding_valid_same_value()
// ColMajor
Tensor<float, 4> tensor(input_depth, input_rows, input_cols, input_batches);
tensor = tensor.constant(11.0f);
Tensor<float, 5> result = tensor.extract_image_patches(ksize, ksize, stride, stride, PADDING_VALID);
Tensor<float, 5> result = tensor.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID);
VERIFY_IS_EQUAL(result.dimension(0), input_depth); // depth
VERIFY_IS_EQUAL(result.dimension(1), ksize); // kernel rows
@ -282,7 +282,7 @@ static void test_patch_padding_valid_same_value()
VERIFY_IS_EQUAL(tensor.dimension(2), tensor_row_major.dimension(1));
VERIFY_IS_EQUAL(tensor.dimension(3), tensor_row_major.dimension(0));
Tensor<float, 5, RowMajor> result_row_major = tensor_row_major.extract_image_patches(ksize, ksize, stride, stride, PADDING_VALID);
Tensor<float, 5, RowMajor> result_row_major = tensor_row_major.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID);
VERIFY_IS_EQUAL(result.dimension(0), result_row_major.dimension(4));
VERIFY_IS_EQUAL(result.dimension(1), result_row_major.dimension(3));
VERIFY_IS_EQUAL(result.dimension(2), result_row_major.dimension(2));
@ -416,7 +416,7 @@ static void test_patch_no_extra_dim()
// Single pixel patch: ColMajor
Tensor<float, 4> single_pixel_patch;
single_pixel_patch = tensor.extract_image_patches<1, 1>();
single_pixel_patch = tensor.extract_image_patches(1, 1);
VERIFY_IS_EQUAL(single_pixel_patch.dimension(0), 2);
VERIFY_IS_EQUAL(single_pixel_patch.dimension(1), 1);
VERIFY_IS_EQUAL(single_pixel_patch.dimension(2), 1);
@ -424,7 +424,7 @@ static void test_patch_no_extra_dim()
// Single pixel patch: RowMajor
Tensor<float, 4, RowMajor> single_pixel_patch_row_major;
single_pixel_patch_row_major = tensor_row_major.extract_image_patches<1, 1>();
single_pixel_patch_row_major = tensor_row_major.extract_image_patches(1, 1);
VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(0), 3*5);
VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(1), 1);
VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(2), 1);
@ -451,7 +451,7 @@ static void test_patch_no_extra_dim()
// Entire image patch: ColMajor
Tensor<float, 4> entire_image_patch;
entire_image_patch = tensor.extract_image_patches<3, 5>();
entire_image_patch = tensor.extract_image_patches(3, 5);
VERIFY_IS_EQUAL(entire_image_patch.dimension(0), 2);
VERIFY_IS_EQUAL(entire_image_patch.dimension(1), 3);
VERIFY_IS_EQUAL(entire_image_patch.dimension(2), 5);
@ -459,7 +459,7 @@ static void test_patch_no_extra_dim()
// Entire image patch: RowMajor
Tensor<float, 4, RowMajor> entire_image_patch_row_major;
entire_image_patch_row_major = tensor_row_major.extract_image_patches<3, 5>();
entire_image_patch_row_major = tensor_row_major.extract_image_patches(3, 5);
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(0), 3*5);
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(1), 5);
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(2), 3);
@ -499,7 +499,7 @@ static void test_patch_no_extra_dim()
// 2D patch: ColMajor
Tensor<float, 4> twod_patch;
twod_patch = tensor.extract_image_patches<2, 2>();
twod_patch = tensor.extract_image_patches(2, 2);
VERIFY_IS_EQUAL(twod_patch.dimension(0), 2);
VERIFY_IS_EQUAL(twod_patch.dimension(1), 2);
VERIFY_IS_EQUAL(twod_patch.dimension(2), 2);
@ -507,7 +507,7 @@ static void test_patch_no_extra_dim()
// 2D patch: RowMajor
Tensor<float, 4, RowMajor> twod_patch_row_major;
twod_patch_row_major = tensor_row_major.extract_image_patches<2, 2>();
twod_patch_row_major = tensor_row_major.extract_image_patches(2, 2);
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(0), 3*5);
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(1), 2);
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(2), 2);