mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-01 17:50:40 +08:00
add a geometry unit test and fix a couple of typo in Quaternion.h
This commit is contained in:
parent
8de4d92b70
commit
a9cf229e15
@ -555,10 +555,15 @@ template<typename Derived> class MatrixBase : public ArrayBase<Derived>
|
|||||||
/////////// QR module ///////////
|
/////////// QR module ///////////
|
||||||
|
|
||||||
const QR<typename ei_eval<Derived>::type> qr() const;
|
const QR<typename ei_eval<Derived>::type> qr() const;
|
||||||
|
|
||||||
EigenvaluesReturnType eigenvalues() const;
|
EigenvaluesReturnType eigenvalues() const;
|
||||||
RealScalar matrixNorm() const;
|
RealScalar matrixNorm() const;
|
||||||
|
|
||||||
|
/////////// Geometry module ///////////
|
||||||
|
|
||||||
|
template<typename OtherDerived>
|
||||||
|
const Cross<Derived,OtherDerived> cross(const MatrixBase<OtherDerived>& other) const;
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
#endif // EIGEN_MATRIXBASE_H
|
#endif // EIGEN_MATRIXBASE_H
|
||||||
|
@ -51,6 +51,8 @@ template<int Direction, typename UnaryOp, typename MatrixType> class PartialRedu
|
|||||||
template<typename MatrixType, unsigned int Mode> class Part;
|
template<typename MatrixType, unsigned int Mode> class Part;
|
||||||
template<typename MatrixType, unsigned int Mode> class Extract;
|
template<typename MatrixType, unsigned int Mode> class Extract;
|
||||||
template<typename Derived, bool HasArrayFlag = int(ei_traits<Derived>::Flags) & ArrayBit> class ArrayBase {};
|
template<typename Derived, bool HasArrayFlag = int(ei_traits<Derived>::Flags) & ArrayBit> class ArrayBase {};
|
||||||
|
template<typename Lhs, typename Rhs> class Cross;
|
||||||
|
template<typename Scalar> class Quaternion;
|
||||||
|
|
||||||
|
|
||||||
template<typename Scalar> struct ei_scalar_sum_op;
|
template<typename Scalar> struct ei_scalar_sum_op;
|
||||||
|
@ -89,10 +89,10 @@ public:
|
|||||||
// FIXME what is the prefered order: w x,y,z or x,y,z,w ?
|
// FIXME what is the prefered order: w x,y,z or x,y,z,w ?
|
||||||
inline Quaternion(Scalar w = 1.0, Scalar x = 0.0, Scalar y = 0.0, Scalar z = 0.0)
|
inline Quaternion(Scalar w = 1.0, Scalar x = 0.0, Scalar y = 0.0, Scalar z = 0.0)
|
||||||
{
|
{
|
||||||
m_data[0] = _x;
|
m_data[0] = x;
|
||||||
m_data[1] = _y;
|
m_data[1] = y;
|
||||||
m_data[2] = _z;
|
m_data[2] = z;
|
||||||
m_data[3] = _w;
|
m_data[3] = w;
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Constructor copying the value of the expression \a other */
|
/** Constructor copying the value of the expression \a other */
|
||||||
@ -126,8 +126,10 @@ public:
|
|||||||
Matrix3 toRotationMatrix(void) const;
|
Matrix3 toRotationMatrix(void) const;
|
||||||
template<typename Derived>
|
template<typename Derived>
|
||||||
void fromRotationMatrix(const MatrixBase<Derived>& m);
|
void fromRotationMatrix(const MatrixBase<Derived>& m);
|
||||||
|
|
||||||
template<typename Derived>
|
template<typename Derived>
|
||||||
void fromAngleAxis (const Scalar& angle, const MatrixBase<Derived>& axis);
|
Quaternion& fromAngleAxis (const Scalar& angle, const MatrixBase<Derived>& axis);
|
||||||
|
|
||||||
template<typename Derived1, typename Derived2>
|
template<typename Derived1, typename Derived2>
|
||||||
Quaternion& fromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
|
Quaternion& fromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
|
||||||
|
|
||||||
@ -158,10 +160,10 @@ inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other
|
|||||||
{
|
{
|
||||||
return Quaternion
|
return Quaternion
|
||||||
(
|
(
|
||||||
this->w() * other.w() - this->x() * other.x() - this->y() * other.y() - this->z() * rkQ.z(),
|
this->w() * other.w() - this->x() * other.x() - this->y() * other.y() - this->z() * other.z(),
|
||||||
this->w() * other.x() + this->x() * other.w() + this->y() * other.z() - this->z() * rkQ.y(),
|
this->w() * other.x() + this->x() * other.w() + this->y() * other.z() - this->z() * other.y(),
|
||||||
this->w() * other.y() + this->y() * other.w() + this->z() * other.x() - this->x() * rkQ.z(),
|
this->w() * other.y() + this->y() * other.w() + this->z() * other.x() - this->x() * other.z(),
|
||||||
this->w() * other.z() + this->z() * other.w() + this->x() * other.y() - this->y() * rkQ.x()
|
this->w() * other.z() + this->z() * other.w() + this->x() * other.y() - this->y() * other.x()
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -172,8 +174,9 @@ inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& oth
|
|||||||
}
|
}
|
||||||
|
|
||||||
template <typename Scalar>
|
template <typename Scalar>
|
||||||
|
template<typename Derived>
|
||||||
inline typename Quaternion<Scalar>::Vector3
|
inline typename Quaternion<Scalar>::Vector3
|
||||||
Quaternion<Scalar>::operator* (const Vector3& v) const
|
Quaternion<Scalar>::operator* (const MatrixBase<Derived>& v) const
|
||||||
{
|
{
|
||||||
// Note that this algorithm comes from the optimization by hand
|
// Note that this algorithm comes from the optimization by hand
|
||||||
// of the conversion to a Matrix followed by a Matrix/Vector product.
|
// of the conversion to a Matrix followed by a Matrix/Vector product.
|
||||||
@ -181,8 +184,8 @@ Quaternion<Scalar>::operator* (const Vector3& v) const
|
|||||||
// in the litterature (30 versus 39 flops). On the other hand it
|
// in the litterature (30 versus 39 flops). On the other hand it
|
||||||
// requires two Vector3 as temporaries.
|
// requires two Vector3 as temporaries.
|
||||||
Vector3 uv;
|
Vector3 uv;
|
||||||
uv = 2 * start<3>().cross(v);
|
uv = 2 * this->template start<3>().cross(v);
|
||||||
return v + this->w() * uv + start<3>().cross(uv);
|
return v + this->w() * uv + this->template start<3>().cross(uv);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename Scalar>
|
template<typename Scalar>
|
||||||
@ -205,9 +208,9 @@ Quaternion<Scalar>::toRotationMatrix(void) const
|
|||||||
Scalar tzz = tz*this->z();
|
Scalar tzz = tz*this->z();
|
||||||
|
|
||||||
res(0,0) = 1-(tyy+tzz);
|
res(0,0) = 1-(tyy+tzz);
|
||||||
res(0,1) = fTxy-twz;
|
res(0,1) = txy-twz;
|
||||||
res(0,2) = fTxz+twy;
|
res(0,2) = txz+twy;
|
||||||
res(1,0) = fTxy+twz;
|
res(1,0) = txy+twz;
|
||||||
res(1,1) = 1-(txx+tzz);
|
res(1,1) = 1-(txx+tzz);
|
||||||
res(1,2) = tyz-twx;
|
res(1,2) = tyz-twx;
|
||||||
res(2,0) = txz-twy;
|
res(2,0) = txz-twy;
|
||||||
@ -255,11 +258,13 @@ void Quaternion<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& m)
|
|||||||
|
|
||||||
template<typename Scalar>
|
template<typename Scalar>
|
||||||
template<typename Derived>
|
template<typename Derived>
|
||||||
inline void Quaternion<Scalar>::fromAngleAxis (const Scalar& angle, const MatrixBase<Derived>& axis)
|
inline Quaternion<Scalar>& Quaternion<Scalar>
|
||||||
|
::fromAngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis)
|
||||||
{
|
{
|
||||||
Scalar ha = 0.5*angle;
|
Scalar ha = 0.5*angle;
|
||||||
this->w() = ei_cos(ha);
|
this->w() = ei_cos(ha);
|
||||||
this->start<3>() = ei_sin(ha) * axis;
|
this->template start<3>() = ei_sin(ha) * axis;
|
||||||
|
return *this;
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Makes a quaternion representing the rotation between two vectors \a a and \a b.
|
/** Makes a quaternion representing the rotation between two vectors \a a and \a b.
|
||||||
@ -268,26 +273,22 @@ inline void Quaternion<Scalar>::fromAngleAxis (const Scalar& angle, const Matrix
|
|||||||
*/
|
*/
|
||||||
template<typename Scalar>
|
template<typename Scalar>
|
||||||
template<typename Derived1, typename Derived2>
|
template<typename Derived1, typename Derived2>
|
||||||
Quaternion<Scalar>& Quaternion<Scalar>::fromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
|
inline Quaternion<Scalar>& Quaternion<Scalar>::fromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
|
||||||
{
|
{
|
||||||
Vector3 v0 = a.normalized();
|
Vector3 v0 = a.normalized();
|
||||||
Vector3 v1 = a.normalized();
|
Vector3 v1 = b.normalized();
|
||||||
Vector3 c = v0.cross(v1);
|
Vector3 axis = v0.cross(v1);
|
||||||
|
Scalar c = v0.dot(v1);
|
||||||
// if the magnitude of the cross product approaches zero,
|
|
||||||
// we get unstable because ANY axis will do when a == +/- b
|
|
||||||
Scalar d = v0.dot(v1);
|
|
||||||
|
|
||||||
// if dot == 1, vectors are the same
|
// if dot == 1, vectors are the same
|
||||||
if (ei_isApprox(d,1))
|
if (ei_isApprox(c,Scalar(1)))
|
||||||
{
|
{
|
||||||
// set to identity
|
// set to identity
|
||||||
this->w() = 1; this->start<3>().setZero();
|
this->w() = 1; this->template start<3>().setZero();
|
||||||
}
|
}
|
||||||
Scalar s = ei_sqrt((1+d)*2);
|
Scalar s = ei_sqrt((1+c)*2);
|
||||||
Scalar invs = 1./s;
|
Scalar invs = 1./s;
|
||||||
|
this->template start<3>() = axis * invs;
|
||||||
this->start<3>() = c * invs;
|
|
||||||
this->w() = s * 0.5;
|
this->w() = s * 0.5;
|
||||||
|
|
||||||
return *this;
|
return *this;
|
||||||
@ -299,7 +300,6 @@ inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const
|
|||||||
Scalar n2 = this->norm2();
|
Scalar n2 = this->norm2();
|
||||||
if (n2 > 0)
|
if (n2 > 0)
|
||||||
return (*this) / norm;
|
return (*this) / norm;
|
||||||
}
|
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
// return an invalid result to flag the error
|
// return an invalid result to flag the error
|
||||||
|
@ -85,5 +85,6 @@ EI_ADD_TEST(cholesky)
|
|||||||
EI_ADD_TEST(inverse)
|
EI_ADD_TEST(inverse)
|
||||||
EI_ADD_TEST(qr)
|
EI_ADD_TEST(qr)
|
||||||
EI_ADD_TEST(eigensolver)
|
EI_ADD_TEST(eigensolver)
|
||||||
|
EI_ADD_TEST(geometry)
|
||||||
|
|
||||||
ENDIF(BUILD_TESTS)
|
ENDIF(BUILD_TESTS)
|
||||||
|
74
test/geometry.cpp
Normal file
74
test/geometry.cpp
Normal file
@ -0,0 +1,74 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra. Eigen itself is part of the KDE project.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||||
|
//
|
||||||
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
// License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Alternatively, you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU General Public License as
|
||||||
|
// published by the Free Software Foundation; either version 2 of
|
||||||
|
// the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||||
|
// GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// You should have received a copy of the GNU Lesser General Public
|
||||||
|
// License and a copy of the GNU General Public License along with
|
||||||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
#include "main.h"
|
||||||
|
#include <Eigen/Geometry>
|
||||||
|
|
||||||
|
template<typename Scalar> void geometry(void)
|
||||||
|
{
|
||||||
|
/* this test covers the following files:
|
||||||
|
Cross.h Quaternion.h
|
||||||
|
*/
|
||||||
|
|
||||||
|
typedef Matrix<Scalar,3,3> Matrix3;
|
||||||
|
typedef Matrix<Scalar,4,4> Matrix4;
|
||||||
|
typedef Matrix<Scalar,3,1> Vector3;
|
||||||
|
typedef Matrix<Scalar,4,1> Vector4;
|
||||||
|
typedef Quaternion<Scalar> Quaternion;
|
||||||
|
|
||||||
|
Quaternion q1, q2, q3;
|
||||||
|
Vector3 v0 = Vector3::random(),
|
||||||
|
v1 = Vector3::random(),
|
||||||
|
v2 = Vector3::random();
|
||||||
|
|
||||||
|
q1.fromAngleAxis(ei_random<Scalar>(-M_PI, M_PI), v0.normalized());
|
||||||
|
q2.fromAngleAxis(ei_random<Scalar>(-M_PI, M_PI), v1.normalized());
|
||||||
|
|
||||||
|
VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
|
||||||
|
VERIFY_IS_APPROX(q1 * q2 * v2,
|
||||||
|
q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
|
||||||
|
VERIFY_IS_NOT_APPROX(q2 * q1 * v2,
|
||||||
|
q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
|
||||||
|
|
||||||
|
q2.fromRotationMatrix(q1.toRotationMatrix());
|
||||||
|
VERIFY_IS_APPROX(q1*v1,q2*v1);
|
||||||
|
|
||||||
|
VERIFY_IS_APPROX(v2.normalized(),(q2.fromTwoVectors(v1,v2)*v1).normalized());
|
||||||
|
|
||||||
|
VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v1), Scalar(1));
|
||||||
|
|
||||||
|
Matrix3 m;
|
||||||
|
m << v0.normalized(),
|
||||||
|
(v0.cross(v1)).normalized(),
|
||||||
|
(v0.cross(v1).cross(v0)).normalized();
|
||||||
|
VERIFY(m.isOrtho());
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_geometry()
|
||||||
|
{
|
||||||
|
for(int i = 0; i < g_repeat; i++) {
|
||||||
|
// CALL_SUBTEST( geometry<float>() );
|
||||||
|
CALL_SUBTEST( geometry<double>() );
|
||||||
|
}
|
||||||
|
}
|
@ -165,7 +165,7 @@ namespace Eigen {
|
|||||||
|
|
||||||
template<typename T> inline typename NumTraits<T>::Real test_precision();
|
template<typename T> inline typename NumTraits<T>::Real test_precision();
|
||||||
template<> inline int test_precision<int>() { return 0; }
|
template<> inline int test_precision<int>() { return 0; }
|
||||||
template<> inline float test_precision<float>() { return 1e-2f; }
|
template<> inline float test_precision<float>() { return 1e-3f; }
|
||||||
template<> inline double test_precision<double>() { return 1e-5; }
|
template<> inline double test_precision<double>() { return 1e-5; }
|
||||||
template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }
|
template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }
|
||||||
template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); }
|
template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); }
|
||||||
|
Loading…
x
Reference in New Issue
Block a user