Create class MatrixPowerBase for further extension (like specialization for triangular or self-adjoint matrices)

This commit is contained in:
Chen-Pang He 2012-09-27 02:20:36 +08:00
parent d387dfa9dc
commit aa5acdb352
2 changed files with 137 additions and 114 deletions

View File

@ -31,57 +31,19 @@ namespace Eigen {
* \include MatrixPower_optimal.cpp
* Output: \verbinclude MatrixPower_optimal.out
*/
template<typename MatrixType> class MatrixPower
template<typename MatrixType>
class MatrixPower : public MatrixPowerBase<MatrixPower<MatrixType>,MatrixType>
{
private:
static const int Rows = MatrixType::RowsAtCompileTime;
static const int Cols = MatrixType::ColsAtCompileTime;
static const int Options = MatrixType::Options;
static const int MaxRows = MatrixType::MaxRowsAtCompileTime;
static const int MaxCols = MatrixType::MaxColsAtCompileTime;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef Matrix<std::complex<RealScalar>,Rows,Cols,Options,MaxRows,MaxCols> ComplexMatrix;
const MatrixType* m_A;
MatrixType m_tmp1, m_tmp2;
ComplexMatrix m_T, m_U, m_fT;
char m_flag;
RealScalar modfAndInit(RealScalar, RealScalar*);
template<typename Derived, typename ResultType>
void apply(const Derived&, ResultType&, bool&);
template<typename ResultType>
void computeIntPower(ResultType&, RealScalar);
template<typename Derived, typename ResultType>
void computeIntPower(const Derived&, ResultType&, RealScalar);
template<typename ResultType>
void computeFracPower(ResultType&, RealScalar);
public:
/**
* \brief Constructor.
*
* \param[in] A the base of the matrix power.
*/
explicit MatrixPower(const MatrixType& A);
EIGEN_MATRIX_POWER_PUBLIC_INTERFACE(MatrixPower)
/**
* \brief Constructor.
*
* \param[in] A the base of the matrix power.
*/
template<typename Derived>
explicit MatrixPower(const MatrixBase<Derived>& A);
/** \brief Destructor. */
~MatrixPower();
template<typename MatrixExpression>
explicit MatrixPower(const MatrixExpression& A);
/**
* \brief Return the expression \f$ A^p \f$.
@ -111,40 +73,47 @@ template<typename MatrixType> class MatrixPower
*/
template<typename Derived, typename ResultType>
void compute(const Derived& b, ResultType& res, RealScalar p);
Index rows() const { return m_A->rows(); }
Index cols() const { return m_A->cols(); }
private:
using Base::m_A;
MatrixType m_tmp1, m_tmp2;
ComplexMatrix m_T, m_U, m_fT;
bool m_init;
RealScalar modfAndInit(RealScalar, RealScalar*);
template<typename Derived, typename ResultType>
void apply(const Derived&, ResultType&, bool&);
template<typename ResultType>
void computeIntPower(ResultType&, RealScalar);
template<typename Derived, typename ResultType>
void computeIntPower(const Derived&, ResultType&, RealScalar);
template<typename ResultType>
void computeFracPower(ResultType&, RealScalar);
};
template<typename MatrixType>
MatrixPower<MatrixType>::MatrixPower(const MatrixType& A) :
m_A(&A),
m_flag(0)
template<typename MatrixExpression>
MatrixPower<MatrixType>::MatrixPower(const MatrixExpression& A) :
Base(A),
m_init(false)
{ /* empty body */ }
template<typename MatrixType>
template<typename Derived>
MatrixPower<MatrixType>::MatrixPower(const MatrixBase<Derived>& A) :
m_A(new MatrixType(A)),
m_flag(2)
{ /* empty body */ }
template<typename MatrixType>
MatrixPower<MatrixType>::~MatrixPower()
{ if (m_flag & 2) delete m_A; }
template<typename MatrixType>
void MatrixPower<MatrixType>::compute(MatrixType& res, RealScalar p)
{
switch (m_A->cols()) {
switch (m_A.cols()) {
case 0:
break;
case 1:
res(0,0) = std::pow(m_A->coeff(0,0), p);
res(0,0) = std::pow(m_A.coeff(0,0), p);
break;
default:
RealScalar intpart, x = modfAndInit(p, &intpart);
res = MatrixType::Identity(m_A->rows(), m_A->cols());
res = MatrixType::Identity(m_A.rows(), m_A.cols());
computeIntPower(res, intpart);
computeFracPower(res, x);
}
@ -154,11 +123,11 @@ template<typename MatrixType>
template<typename Derived, typename ResultType>
void MatrixPower<MatrixType>::compute(const Derived& b, ResultType& res, RealScalar p)
{
switch (m_A->cols()) {
switch (m_A.cols()) {
case 0:
break;
case 1:
res = std::pow(m_A->coeff(0,0), p) * b;
res = std::pow(m_A.coeff(0,0), p) * b;
break;
default:
RealScalar intpart, x = modfAndInit(p, &intpart);
@ -168,20 +137,19 @@ void MatrixPower<MatrixType>::compute(const Derived& b, ResultType& res, RealSca
}
template<typename MatrixType>
typename MatrixType::RealScalar MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
typename MatrixPower<MatrixType>::Base::RealScalar MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
{
static RealScalar maxAbsEival, minAbsEival;
*intpart = std::floor(x);
RealScalar res = x - *intpart;
if (!(m_flag & 1) && res) {
const ComplexSchur<MatrixType> schurOfA(*m_A);
if (!m_init && res) {
const ComplexSchur<MatrixType> schurOfA(m_A);
m_T = schurOfA.matrixT();
m_U = schurOfA.matrixU();
m_flag |= 1;
m_init = true;
const Array<RealScalar,EIGEN_SIZE_MIN_PREFER_FIXED(Rows,Cols),1,ColMajor,EIGEN_SIZE_MIN_PREFER_FIXED(MaxRows,MaxCols)>
absTdiag = m_T.diagonal().array().abs();
const RealArray absTdiag = m_T.diagonal().array().abs();
maxAbsEival = absTdiag.maxCoeff();
minAbsEival = absTdiag.minCoeff();
}
@ -211,8 +179,8 @@ void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
{
RealScalar pp = std::abs(p);
if (p<0) m_tmp1 = m_A->inverse();
else m_tmp1 = *m_A;
if (p<0) m_tmp1 = m_A.inverse();
else m_tmp1 = m_A;
while (pp >= 1) {
if (std::fmod(pp, 2) >= 1)
@ -226,8 +194,8 @@ template<typename MatrixType>
template<typename Derived, typename ResultType>
void MatrixPower<MatrixType>::computeIntPower(const Derived& b, ResultType& res, RealScalar p)
{
if (b.cols() >= m_A->cols()) {
m_tmp2 = MatrixType::Identity(m_A->rows(), m_A->cols());
if (b.cols() >= m_A.cols()) {
m_tmp2 = MatrixType::Identity(m_A.rows(), m_A.cols());
computeIntPower(m_tmp2, p);
res.noalias() = m_tmp2 * b;
}
@ -241,20 +209,20 @@ void MatrixPower<MatrixType>::computeIntPower(const Derived& b, ResultType& res,
return;
}
else if (p>0) {
m_tmp1 = *m_A;
m_tmp1 = m_A;
}
else if (m_A->cols() > 2 && b.cols()*(pp-applyings) <= m_A->cols()*squarings) {
PartialPivLU<MatrixType> A(*m_A);
else if (m_A.cols() > 2 && b.cols()*(pp-applyings) <= m_A.cols()*squarings) {
PartialPivLU<MatrixType> A(m_A);
res = A.solve(b);
for (--pp; pp >= 1; --pp)
res = A.solve(res);
return;
}
else {
m_tmp1 = m_A->inverse();
m_tmp1 = m_A.inverse();
}
while (b.cols()*(pp-applyings) > m_A->cols()*squarings) {
while (b.cols()*(pp-applyings) > m_A.cols()*squarings) {
if (std::fmod(pp, 2) >= 1) {
apply(b, res, init);
--applyings;
@ -330,13 +298,13 @@ class MatrixPowerReturnValue : public ReturnByValue<MatrixPowerReturnValue<Deriv
* \param[in] p scalar, the exponent of the matrix power.
*/
MatrixPowerReturnValue(const Derived& A, RealScalar p)
: m_pow(new MatrixPower<PlainObject>(A)), m_p(p), m_del(true) { }
: m_pow(*new MatrixPower<PlainObject>(A)), m_p(p), m_del(true) { }
MatrixPowerReturnValue(MatrixPower<PlainObject>& pow, RealScalar p)
: m_pow(&pow), m_p(p), m_del(false) { }
: m_pow(pow), m_p(p), m_del(false) { }
~MatrixPowerReturnValue()
{ if (m_del) delete m_pow; }
{ if (m_del) delete &m_pow; }
/**
* \brief Compute the matrix power.
@ -346,17 +314,17 @@ class MatrixPowerReturnValue : public ReturnByValue<MatrixPowerReturnValue<Deriv
*/
template<typename ResultType>
inline void evalTo(ResultType& res) const
{ m_pow->compute(res, m_p); }
{ m_pow.compute(res, m_p); }
template<typename OtherDerived>
const MatrixPowerMatrixProduct<PlainObject,OtherDerived> operator*(const MatrixBase<OtherDerived>& b) const
{ return MatrixPowerMatrixProduct<PlainObject,OtherDerived>(*m_pow, b.derived(), m_p); }
{ return MatrixPowerMatrixProduct<PlainObject,OtherDerived>(m_pow, b.derived(), m_p); }
Index rows() const { return m_pow->rows(); }
Index cols() const { return m_pow->cols(); }
Index rows() const { return m_pow.rows(); }
Index cols() const { return m_pow.cols(); }
private:
MatrixPower<PlainObject>* m_pow;
MatrixPower<PlainObject>& m_pow;
const RealScalar m_p;
const bool m_del; // whether to delete the pointer at destruction
MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&);

View File

@ -29,30 +29,6 @@ struct recompose_complex_schur<0>
{ res = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
};
template<typename Derived, typename _Lhs, typename _Rhs>
struct traits<MatrixPowerProductBase<Derived,_Lhs,_Rhs> >
{
typedef MatrixXpr XprKind;
typedef typename remove_all<_Lhs>::type Lhs;
typedef typename remove_all<_Rhs>::type Rhs;
typedef typename remove_all<Derived>::type PlainObject;
typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
typename traits<Rhs>::StorageKind>::ret StorageKind;
typedef typename promote_index_type<typename traits<Lhs>::Index,
typename traits<Rhs>::Index>::type Index;
enum {
RowsAtCompileTime = traits<Lhs>::RowsAtCompileTime,
ColsAtCompileTime = traits<Rhs>::ColsAtCompileTime,
MaxRowsAtCompileTime = traits<Lhs>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = traits<Rhs>::MaxColsAtCompileTime,
Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0)
| EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit,
CoeffReadCost = 0
};
};
template<typename T>
inline int binary_powering_cost(T p, int* squarings)
{
@ -121,7 +97,8 @@ inline int matrix_power_get_pade_degree(long double normIminusT)
}
} // namespace internal
template<typename MatrixType, int UpLo=Upper> class MatrixPowerTriangularAtomic
template<typename MatrixType, int UpLo=Upper>
class MatrixPowerTriangularAtomic
{
private:
typedef typename MatrixType::Scalar Scalar;
@ -239,10 +216,88 @@ void MatrixPowerTriangularAtomic<MatrixType,UpLo>::computeBig(MatrixType& res, R
compute2x2(res, p);
}
#define EIGEN_MATRIX_POWER_PUBLIC_INTERFACE(Derived) \
typedef MatrixPowerBase<Derived<MatrixType>,MatrixType> Base; \
using typename Base::Scalar; \
using typename Base::RealScalar; \
using typename Base::ComplexMatrix; \
using typename Base::RealArray;
#define EIGEN_MATRIX_POWER_PRODUCT_PUBLIC_INTERFACE(Derived) \
typedef MatrixPowerProductBase<Derived, Lhs, Rhs > Base; \
typedef MatrixPowerProductBase<Derived, Lhs, Rhs> Base; \
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
namespace internal {
template<typename Derived, typename _Lhs, typename _Rhs>
struct traits<MatrixPowerProductBase<Derived,_Lhs,_Rhs> >
{
typedef MatrixXpr XprKind;
typedef typename remove_all<_Lhs>::type Lhs;
typedef typename remove_all<_Rhs>::type Rhs;
typedef typename remove_all<Derived>::type PlainObject;
typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
typename traits<Rhs>::StorageKind>::ret StorageKind;
typedef typename promote_index_type<typename traits<Lhs>::Index,
typename traits<Rhs>::Index>::type Index;
enum {
RowsAtCompileTime = traits<Lhs>::RowsAtCompileTime,
ColsAtCompileTime = traits<Rhs>::ColsAtCompileTime,
MaxRowsAtCompileTime = traits<Lhs>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = traits<Rhs>::MaxColsAtCompileTime,
Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0)
| EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit,
CoeffReadCost = 0
};
};
} // namespace internal
template<typename Derived, typename MatrixType>
class MatrixPowerBase
{
protected:
static const int Rows = MatrixType::RowsAtCompileTime;
static const int Cols = MatrixType::ColsAtCompileTime;
static const int Options = MatrixType::Options;
static const int MaxRows = MatrixType::MaxRowsAtCompileTime;
static const int MaxCols = MatrixType::MaxColsAtCompileTime;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef Matrix<std::complex<RealScalar>,Rows,Cols,Options,MaxRows,MaxCols> ComplexMatrix;
typedef Array<RealScalar,Rows,1,ColMajor,MaxRows> RealArray;
const MatrixType& m_A;
const bool m_del; // whether to delete the pointer at destruction
public:
explicit MatrixPowerBase(const MatrixType& A) :
m_A(A),
m_del(false)
{ /* empty body */ }
template<typename OtherDerived>
explicit MatrixPowerBase(const MatrixBase<OtherDerived>& A) :
m_A(*new MatrixType(A)),
m_del(true)
{ /* empty body */ }
~MatrixPowerBase()
{ if (m_del) delete &m_A; }
void compute(MatrixType& res, RealScalar p)
{ static_cast<Derived*>(this)->compute(res,p); }
template<typename OtherDerived, typename ResultType>
void compute(const OtherDerived& b, ResultType& res, RealScalar p)
{ static_cast<Derived*>(this)->compute(b,res,p); }
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
};
template<typename Derived, typename Lhs, typename Rhs>
class MatrixPowerProductBase : public MatrixBase<Derived>
{