From abac563f5dac59b88e4f354e7b092c9cae3871fc Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Antonio=20S=C3=A1nchez?= Date: Thu, 16 Jan 2025 00:52:40 +0000 Subject: [PATCH] Update documentation to clarify cross product for complex numbers. --- Eigen/src/Geometry/OrthoMethods.h | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/Eigen/src/Geometry/OrthoMethods.h b/Eigen/src/Geometry/OrthoMethods.h index a8e050236..317045672 100644 --- a/Eigen/src/Geometry/OrthoMethods.h +++ b/Eigen/src/Geometry/OrthoMethods.h @@ -78,8 +78,10 @@ struct cross_impl { * spanned by the two vectors. * * \note With complex numbers, the cross product is implemented as - * \f$ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times - * \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c})\f$ + * \f[ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times + * \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c}).\f] + * This definition preserves the orthogonality condition that \f$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = + * \mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0\f$. * * \sa MatrixBase::cross3() */