Added a new operation to enable more powerful tensorindexing.

This commit is contained in:
Benoit Steiner 2016-05-27 12:22:25 -07:00
parent 5707537592
commit abc815798b
4 changed files with 429 additions and 0 deletions

View File

@ -676,6 +676,12 @@ class TensorBase<Derived, ReadOnlyAccessors>
slice(const StartIndices& startIndices, const Sizes& sizes) const {
return TensorSlicingOp<const StartIndices, const Sizes, const Derived>(derived(), startIndices, sizes);
}
template <typename StartIndices, typename StopIndices, typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, const Derived>
stridedSlice(const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) const {
return TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides,
const Derived>(derived(), startIndices, stopIndices, strides);
}
template <Index DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorChippingOp<DimId, const Derived>
chip(const Index offset) const {
@ -851,6 +857,19 @@ class TensorBase<Derived, WriteAccessors> : public TensorBase<Derived, ReadOnlyA
return TensorSlicingOp<const StartIndices, const Sizes, Derived>(derived(), startIndices, sizes);
}
template <typename StartIndices, typename StopIndices, typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, const Derived>
stridedSlice(const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) const {
return TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides,
const Derived>(derived(), startIndices, stopIndices, strides);
}
template <typename StartIndices, typename StopIndices, typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, Derived>
stridedSlice(const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) {
return TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides,
Derived>(derived(), startIndices, stopIndices, strides);
}
template <DenseIndex DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorChippingOp<DimId, const Derived>
chip(const Index offset) const {

View File

@ -42,6 +42,7 @@ template<typename ReverseDimensions, typename XprType> class TensorReverseOp;
template<typename PaddingDimensions, typename XprType> class TensorPaddingOp;
template<typename Shuffle, typename XprType> class TensorShufflingOp;
template<typename Strides, typename XprType> class TensorStridingOp;
template<typename StartIndices, typename StopIndices, typename Strides, typename XprType> class TensorStridingSlicingOp;
template<typename Strides, typename XprType> class TensorInflationOp;
template<typename Generator, typename XprType> class TensorGeneratorOp;
template<typename LeftXprType, typename RightXprType> class TensorAssignOp;

View File

@ -603,6 +603,285 @@ struct TensorEvaluator<TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
};
namespace internal {
template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
struct traits<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> > : public traits<XprType>
{
typedef typename XprType::Scalar Scalar;
typedef traits<XprType> XprTraits;
typedef typename XprTraits::StorageKind StorageKind;
typedef typename XprTraits::Index Index;
typedef typename XprType::Nested Nested;
typedef typename remove_reference<Nested>::type _Nested;
static const int NumDimensions = array_size<StartIndices>::value;
static const int Layout = XprTraits::Layout;
};
template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
struct eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, Eigen::Dense>
{
typedef const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>& type;
};
template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
struct nested<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, 1, typename eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> >::type>
{
typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> type;
};
} // end namespace internal
template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
class TensorStridingSlicingOp : public TensorBase<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> >
{
public:
typedef typename internal::traits<TensorStridingSlicingOp>::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename internal::nested<TensorStridingSlicingOp>::type Nested;
typedef typename internal::traits<TensorStridingSlicingOp>::StorageKind StorageKind;
typedef typename internal::traits<TensorStridingSlicingOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingSlicingOp(
const XprType& expr, const StartIndices& startIndices,
const StopIndices& stopIndices, const Strides& strides)
: m_xpr(expr), m_startIndices(startIndices), m_stopIndices(stopIndices),
m_strides(strides) {}
EIGEN_DEVICE_FUNC
const StartIndices& startIndices() const { return m_startIndices; }
EIGEN_DEVICE_FUNC
const StartIndices& stopIndices() const { return m_stopIndices; }
EIGEN_DEVICE_FUNC
const StartIndices& strides() const { return m_strides; }
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename XprType::Nested>::type&
expression() const { return m_xpr; }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorStridingSlicingOp& operator = (const TensorStridingSlicingOp& other)
{
typedef TensorAssignOp<TensorStridingSlicingOp, const TensorStridingSlicingOp> Assign;
Assign assign(*this, other);
internal::TensorExecutor<const Assign, DefaultDevice>::run(
assign, DefaultDevice());
return *this;
}
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorStridingSlicingOp& operator = (const OtherDerived& other)
{
typedef TensorAssignOp<TensorStridingSlicingOp, const OtherDerived> Assign;
Assign assign(*this, other);
internal::TensorExecutor<const Assign, DefaultDevice>::run(
assign, DefaultDevice());
return *this;
}
protected:
typename XprType::Nested m_xpr;
const StartIndices m_startIndices;
const StopIndices m_stopIndices;
const Strides m_strides;
};
// Eval as rvalue
template<typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device>
struct TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
{
typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType;
static const int NumDims = internal::array_size<Strides>::value;
enum {
// Alignment can't be guaranteed at compile time since it depends on the
// slice offsets and sizes.
IsAligned = false,
PacketAccess = false,
BlockAccess = false,
Layout = TensorEvaluator<ArgType, Device>::Layout,
RawAccess = false
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device), m_device(device), m_strides(op.strides())
{
auto clamp = [](Index value, Index min, Index max){
return numext::maxi(min,numext::mini(max,value));
};
// Handle degenerate intervals by gracefully clamping and allowing m_dimensions to be zero
DSizes<Index,NumDims> startIndicesClamped, stopIndicesClamped;
for (int i = 0; i < internal::array_size<Dimensions>::value; ++i) {
eigen_assert(m_strides[i] != 0 && "0 stride is invalid");
if(m_strides[i]>0){
startIndicesClamped[i] = clamp(op.startIndices()[i], 0, m_impl.dimensions()[i]);
stopIndicesClamped[i] = clamp(op.stopIndices()[i], 0, m_impl.dimensions()[i]);
}else{
/* implies m_strides[i]<0 by assert */
startIndicesClamped[i] = clamp(op.startIndices()[i], -1, m_impl.dimensions()[i] - 1);
stopIndicesClamped[i] = clamp(op.stopIndices()[i], -1, m_impl.dimensions()[i] - 1);
}
m_startIndices[i] = startIndicesClamped[i];
}
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
// check for degenerate intervals and compute output tensor shape
bool degenerate = false;;
for(int i = 0; i < NumDims; i++){
Index interval = stopIndicesClamped[i] - startIndicesClamped[i];
if(interval == 0 || ((interval<0) != (m_strides[i]<0))){
m_dimensions[i] = 0;
degenerate = true;
}else{
m_dimensions[i] = interval / m_strides[i]
+ (interval % m_strides[i] != 0 ? 1 : 0);
eigen_assert(m_dimensions[i] >= 0);
}
}
Strides output_dims = m_dimensions;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_inputStrides[0] = m_strides[0];
m_offsets[0] = startIndicesClamped[0];
Index previousDimProduct = 1;
for (int i = 1; i < NumDims; ++i) {
previousDimProduct *= input_dims[i-1];
m_inputStrides[i] = previousDimProduct * m_strides[i];
m_offsets[i] = startIndicesClamped[i] * previousDimProduct;
}
// Don't initialize m_fastOutputStrides[0] since it won't ever be accessed.
m_outputStrides[0] = 1;
for (int i = 1; i < NumDims; ++i) {
m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1];
// NOTE: if tensor is degenerate, we send 1 to prevent TensorIntDivisor constructor crash
m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(degenerate ? 1 : m_outputStrides[i]);
}
} else {
m_inputStrides[NumDims-1] = m_strides[NumDims-1];
m_offsets[NumDims-1] = startIndicesClamped[NumDims-1];
Index previousDimProduct = 1;
for (int i = NumDims - 2; i >= 0; --i) {
previousDimProduct *= input_dims[i+1];
m_inputStrides[i] = previousDimProduct * m_strides[i];
m_offsets[i] = startIndicesClamped[i] * previousDimProduct;
}
m_outputStrides[NumDims-1] = 1;
for (int i = NumDims - 2; i >= 0; --i) {
m_outputStrides[i] = m_outputStrides[i+1] * output_dims[i+1];
// NOTE: if tensor is degenerate, we send 1 to prevent TensorIntDivisor constructor crash
m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(degenerate ? 1 : m_outputStrides[i]);
}
}
m_block_total_size_max = numext::maxi(static_cast<std::size_t>(1),
device.lastLevelCacheSize() /
sizeof(Scalar));
}
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename internal::remove_const<Scalar>::type ScalarNonConst;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
typedef Strides Dimensions;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
m_impl.evalSubExprsIfNeeded(NULL);
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_impl.cleanup();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
return m_impl.coeff(srcCoeff(index));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, NumDims);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const {
return nullptr;
}
protected:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
{
Index inputIndex = 0;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = NumDims - 1; i >= 0; --i) {
const Index idx = index / m_fastOutputStrides[i];
inputIndex += idx * m_inputStrides[i] + m_offsets[i];
index -= idx * m_outputStrides[i];
}
} else {
for (int i = 0; i < NumDims; ++i) {
const Index idx = index / m_fastOutputStrides[i];
inputIndex += idx * m_inputStrides[i] + m_offsets[i];
index -= idx * m_outputStrides[i];
}
}
return inputIndex;
}
array<Index, NumDims> m_outputStrides;
array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides;
array<Index, NumDims> m_inputStrides;
TensorEvaluator<ArgType, Device> m_impl;
const Device& m_device;
DSizes<Index, NumDims> m_startIndices; // clamped startIndices
DSizes<Index, NumDims> m_dimensions;
DSizes<Index, NumDims> m_offsets; // offset in a flattened shape
const Strides m_strides;
std::size_t m_block_total_size_max;
};
// Eval as lvalue
template<typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device>
struct TensorEvaluator<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
: public TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
{
typedef TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> Base;
typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType;
static const int NumDims = internal::array_size<Strides>::value;
enum {
IsAligned = false,
PacketAccess = false,
BlockAccess = false,
Layout = TensorEvaluator<ArgType, Device>::Layout,
CoordAccess = TensorEvaluator<ArgType, Device>::CoordAccess,
RawAccess = false
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: Base(op, device)
{ }
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename internal::remove_const<Scalar>::type ScalarNonConst;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
typedef Strides Dimensions;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
{
return this->m_impl.coeffRef(this->srcCoeff(index));
}
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H

View File

@ -315,6 +315,131 @@ static void test_slice_raw_data()
VERIFY_IS_EQUAL(slice6.data(), tensor.data());
}
template<int DataLayout>
static void test_strided_slice()
{
typedef Tensor<float, 5, DataLayout> Tensor5f;
typedef Eigen::DSizes<Eigen::DenseIndex, 5> Index5;
typedef Tensor<float, 2, DataLayout> Tensor2f;
typedef Eigen::DSizes<Eigen::DenseIndex, 2> Index2;
Tensor<float, 5, DataLayout> tensor(2,3,5,7,11);
tensor.setRandom();
if(true) {
Tensor<float, 2, DataLayout> tensor(7,11);
tensor.setRandom();
Tensor2f slice(2,3);
Index2 strides(-2,-1);
Index2 indicesStart(5,7);
Index2 indicesStop(0,4);
slice = tensor.stridedSlice(indicesStart, indicesStop, strides);
for (int j = 0; j < 2; ++j) {
for (int k = 0; k < 3; ++k) {
VERIFY_IS_EQUAL(slice(j,k), tensor(5-2*j,7-k));
}
}
}
if(true) {
Tensor<float, 2, DataLayout> tensor(7,11);
tensor.setRandom();
Tensor2f slice(0,1);
Index2 strides(1,1);
Index2 indicesStart(5,4);
Index2 indicesStop(5,5);
slice = tensor.stridedSlice(indicesStart, indicesStop, strides);
}
if(true) { // test clamped degenerate interavls
Tensor<float, 2, DataLayout> tensor(7,11);
tensor.setRandom();
Tensor2f slice(7,11);
Index2 strides(1,-1);
Index2 indicesStart(-3,20); // should become 0,10
Index2 indicesStop(20,-11); // should become 11, -1
slice = tensor.stridedSlice(indicesStart, indicesStop, strides);
for (int j = 0; j < 7; ++j) {
for (int k = 0; k < 11; ++k) {
VERIFY_IS_EQUAL(slice(j,k), tensor(j,10-k));
}
}
}
if(true) {
Tensor5f slice1(1,1,1,1,1);
Eigen::DSizes<Eigen::DenseIndex, 5> indicesStart(1, 2, 3, 4, 5);
Eigen::DSizes<Eigen::DenseIndex, 5> indicesStop(2, 3, 4, 5, 6);
Eigen::DSizes<Eigen::DenseIndex, 5> strides(1, 1, 1, 1, 1);
slice1 = tensor.stridedSlice(indicesStart, indicesStop, strides);
VERIFY_IS_EQUAL(slice1(0,0,0,0,0), tensor(1,2,3,4,5));
}
if(true) {
Tensor5f slice(1,1,2,2,3);
Index5 start(1, 1, 3, 4, 5);
Index5 stop(2, 2, 5, 6, 8);
Index5 strides(1, 1, 1, 1, 1);
slice = tensor.stridedSlice(start, stop, strides);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
for (int k = 0; k < 3; ++k) {
VERIFY_IS_EQUAL(slice(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k));
}
}
}
}
if(true) {
Tensor5f slice(1,1,2,2,3);
Index5 strides3(1, 1, -2, 1, -1);
Index5 indices3Start(1, 1, 4, 4, 7);
Index5 indices3Stop(2, 2, 0, 6, 4);
slice = tensor.stridedSlice(indices3Start, indices3Stop, strides3);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
for (int k = 0; k < 3; ++k) {
VERIFY_IS_EQUAL(slice(0,0,i,j,k), tensor(1,1,4-2*i,4+j,7-k));
}
}
}
}
if(false) { // tests degenerate interval
Tensor5f slice(1,1,2,2,3);
Index5 strides3(1, 1, 2, 1, 1);
Index5 indices3Start(1, 1, 4, 4, 7);
Index5 indices3Stop(2, 2, 0, 6, 4);
slice = tensor.stridedSlice(indices3Start, indices3Stop, strides3);
}
}
template<int DataLayout>
static void test_strided_slice_write()
{
typedef Tensor<float, 2, DataLayout> Tensor2f;
typedef Eigen::DSizes<Eigen::DenseIndex, 2> Index2;
Tensor<float, 2, DataLayout> tensor(7,11),tensor2(7,11);
tensor.setRandom();
tensor2=tensor;
Tensor2f slice(2,3);
slice.setRandom();
Index2 strides(1,1);
Index2 indicesStart(3,4);
Index2 indicesStop(5,7);
Index2 lengths(2,3);
tensor.slice(indicesStart,lengths)=slice;
tensor2.stridedSlice(indicesStart,indicesStop,strides)=slice;
for(int i=0;i<7;i++) for(int j=0;j<11;j++){
VERIFY_IS_EQUAL(tensor(i,j), tensor2(i,j));
}
}
template<int DataLayout>
static void test_composition()
{
@ -351,6 +476,11 @@ void test_cxx11_tensor_morphing()
CALL_SUBTEST(test_slice_raw_data<ColMajor>());
CALL_SUBTEST(test_slice_raw_data<RowMajor>());
CALL_SUBTEST(test_strided_slice_write<ColMajor>());
CALL_SUBTEST(test_strided_slice<ColMajor>());
CALL_SUBTEST(test_strided_slice_write<RowMajor>());
CALL_SUBTEST(test_strided_slice<RowMajor>());
CALL_SUBTEST(test_composition<ColMajor>());
CALL_SUBTEST(test_composition<RowMajor>());
}