mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
Added a new operation to enable more powerful tensorindexing.
This commit is contained in:
parent
5707537592
commit
abc815798b
@ -676,6 +676,12 @@ class TensorBase<Derived, ReadOnlyAccessors>
|
||||
slice(const StartIndices& startIndices, const Sizes& sizes) const {
|
||||
return TensorSlicingOp<const StartIndices, const Sizes, const Derived>(derived(), startIndices, sizes);
|
||||
}
|
||||
template <typename StartIndices, typename StopIndices, typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, const Derived>
|
||||
stridedSlice(const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) const {
|
||||
return TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides,
|
||||
const Derived>(derived(), startIndices, stopIndices, strides);
|
||||
}
|
||||
template <Index DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorChippingOp<DimId, const Derived>
|
||||
chip(const Index offset) const {
|
||||
@ -851,6 +857,19 @@ class TensorBase<Derived, WriteAccessors> : public TensorBase<Derived, ReadOnlyA
|
||||
return TensorSlicingOp<const StartIndices, const Sizes, Derived>(derived(), startIndices, sizes);
|
||||
}
|
||||
|
||||
template <typename StartIndices, typename StopIndices, typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, const Derived>
|
||||
stridedSlice(const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) const {
|
||||
return TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides,
|
||||
const Derived>(derived(), startIndices, stopIndices, strides);
|
||||
}
|
||||
template <typename StartIndices, typename StopIndices, typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, Derived>
|
||||
stridedSlice(const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) {
|
||||
return TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides,
|
||||
Derived>(derived(), startIndices, stopIndices, strides);
|
||||
}
|
||||
|
||||
template <DenseIndex DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorChippingOp<DimId, const Derived>
|
||||
chip(const Index offset) const {
|
||||
|
@ -42,6 +42,7 @@ template<typename ReverseDimensions, typename XprType> class TensorReverseOp;
|
||||
template<typename PaddingDimensions, typename XprType> class TensorPaddingOp;
|
||||
template<typename Shuffle, typename XprType> class TensorShufflingOp;
|
||||
template<typename Strides, typename XprType> class TensorStridingOp;
|
||||
template<typename StartIndices, typename StopIndices, typename Strides, typename XprType> class TensorStridingSlicingOp;
|
||||
template<typename Strides, typename XprType> class TensorInflationOp;
|
||||
template<typename Generator, typename XprType> class TensorGeneratorOp;
|
||||
template<typename LeftXprType, typename RightXprType> class TensorAssignOp;
|
||||
|
@ -603,6 +603,285 @@ struct TensorEvaluator<TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
|
||||
};
|
||||
|
||||
|
||||
|
||||
namespace internal {
|
||||
template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
|
||||
struct traits<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> > : public traits<XprType>
|
||||
{
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef traits<XprType> XprTraits;
|
||||
typedef typename XprTraits::StorageKind StorageKind;
|
||||
typedef typename XprTraits::Index Index;
|
||||
typedef typename XprType::Nested Nested;
|
||||
typedef typename remove_reference<Nested>::type _Nested;
|
||||
static const int NumDimensions = array_size<StartIndices>::value;
|
||||
static const int Layout = XprTraits::Layout;
|
||||
};
|
||||
|
||||
template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
|
||||
struct eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, Eigen::Dense>
|
||||
{
|
||||
typedef const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>& type;
|
||||
};
|
||||
|
||||
template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
|
||||
struct nested<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, 1, typename eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> >::type>
|
||||
{
|
||||
typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> type;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
|
||||
template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
|
||||
class TensorStridingSlicingOp : public TensorBase<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> >
|
||||
{
|
||||
public:
|
||||
typedef typename internal::traits<TensorStridingSlicingOp>::Scalar Scalar;
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
typedef typename internal::nested<TensorStridingSlicingOp>::type Nested;
|
||||
typedef typename internal::traits<TensorStridingSlicingOp>::StorageKind StorageKind;
|
||||
typedef typename internal::traits<TensorStridingSlicingOp>::Index Index;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingSlicingOp(
|
||||
const XprType& expr, const StartIndices& startIndices,
|
||||
const StopIndices& stopIndices, const Strides& strides)
|
||||
: m_xpr(expr), m_startIndices(startIndices), m_stopIndices(stopIndices),
|
||||
m_strides(strides) {}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const StartIndices& startIndices() const { return m_startIndices; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
const StartIndices& stopIndices() const { return m_stopIndices; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
const StartIndices& strides() const { return m_strides; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const typename internal::remove_all<typename XprType::Nested>::type&
|
||||
expression() const { return m_xpr; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE TensorStridingSlicingOp& operator = (const TensorStridingSlicingOp& other)
|
||||
{
|
||||
typedef TensorAssignOp<TensorStridingSlicingOp, const TensorStridingSlicingOp> Assign;
|
||||
Assign assign(*this, other);
|
||||
internal::TensorExecutor<const Assign, DefaultDevice>::run(
|
||||
assign, DefaultDevice());
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE TensorStridingSlicingOp& operator = (const OtherDerived& other)
|
||||
{
|
||||
typedef TensorAssignOp<TensorStridingSlicingOp, const OtherDerived> Assign;
|
||||
Assign assign(*this, other);
|
||||
internal::TensorExecutor<const Assign, DefaultDevice>::run(
|
||||
assign, DefaultDevice());
|
||||
return *this;
|
||||
}
|
||||
|
||||
protected:
|
||||
typename XprType::Nested m_xpr;
|
||||
const StartIndices m_startIndices;
|
||||
const StopIndices m_stopIndices;
|
||||
const Strides m_strides;
|
||||
};
|
||||
|
||||
// Eval as rvalue
|
||||
template<typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device>
|
||||
struct TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
|
||||
{
|
||||
typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType;
|
||||
static const int NumDims = internal::array_size<Strides>::value;
|
||||
|
||||
enum {
|
||||
// Alignment can't be guaranteed at compile time since it depends on the
|
||||
// slice offsets and sizes.
|
||||
IsAligned = false,
|
||||
PacketAccess = false,
|
||||
BlockAccess = false,
|
||||
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||
RawAccess = false
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||
: m_impl(op.expression(), device), m_device(device), m_strides(op.strides())
|
||||
{
|
||||
auto clamp = [](Index value, Index min, Index max){
|
||||
return numext::maxi(min,numext::mini(max,value));
|
||||
};
|
||||
// Handle degenerate intervals by gracefully clamping and allowing m_dimensions to be zero
|
||||
DSizes<Index,NumDims> startIndicesClamped, stopIndicesClamped;
|
||||
for (int i = 0; i < internal::array_size<Dimensions>::value; ++i) {
|
||||
eigen_assert(m_strides[i] != 0 && "0 stride is invalid");
|
||||
if(m_strides[i]>0){
|
||||
startIndicesClamped[i] = clamp(op.startIndices()[i], 0, m_impl.dimensions()[i]);
|
||||
stopIndicesClamped[i] = clamp(op.stopIndices()[i], 0, m_impl.dimensions()[i]);
|
||||
}else{
|
||||
/* implies m_strides[i]<0 by assert */
|
||||
startIndicesClamped[i] = clamp(op.startIndices()[i], -1, m_impl.dimensions()[i] - 1);
|
||||
stopIndicesClamped[i] = clamp(op.stopIndices()[i], -1, m_impl.dimensions()[i] - 1);
|
||||
}
|
||||
m_startIndices[i] = startIndicesClamped[i];
|
||||
}
|
||||
|
||||
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
||||
|
||||
// check for degenerate intervals and compute output tensor shape
|
||||
bool degenerate = false;;
|
||||
for(int i = 0; i < NumDims; i++){
|
||||
Index interval = stopIndicesClamped[i] - startIndicesClamped[i];
|
||||
if(interval == 0 || ((interval<0) != (m_strides[i]<0))){
|
||||
m_dimensions[i] = 0;
|
||||
degenerate = true;
|
||||
}else{
|
||||
m_dimensions[i] = interval / m_strides[i]
|
||||
+ (interval % m_strides[i] != 0 ? 1 : 0);
|
||||
eigen_assert(m_dimensions[i] >= 0);
|
||||
}
|
||||
}
|
||||
Strides output_dims = m_dimensions;
|
||||
|
||||
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
||||
m_inputStrides[0] = m_strides[0];
|
||||
m_offsets[0] = startIndicesClamped[0];
|
||||
Index previousDimProduct = 1;
|
||||
for (int i = 1; i < NumDims; ++i) {
|
||||
previousDimProduct *= input_dims[i-1];
|
||||
m_inputStrides[i] = previousDimProduct * m_strides[i];
|
||||
m_offsets[i] = startIndicesClamped[i] * previousDimProduct;
|
||||
}
|
||||
|
||||
// Don't initialize m_fastOutputStrides[0] since it won't ever be accessed.
|
||||
m_outputStrides[0] = 1;
|
||||
for (int i = 1; i < NumDims; ++i) {
|
||||
m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1];
|
||||
// NOTE: if tensor is degenerate, we send 1 to prevent TensorIntDivisor constructor crash
|
||||
m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(degenerate ? 1 : m_outputStrides[i]);
|
||||
}
|
||||
} else {
|
||||
m_inputStrides[NumDims-1] = m_strides[NumDims-1];
|
||||
m_offsets[NumDims-1] = startIndicesClamped[NumDims-1];
|
||||
Index previousDimProduct = 1;
|
||||
for (int i = NumDims - 2; i >= 0; --i) {
|
||||
previousDimProduct *= input_dims[i+1];
|
||||
m_inputStrides[i] = previousDimProduct * m_strides[i];
|
||||
m_offsets[i] = startIndicesClamped[i] * previousDimProduct;
|
||||
}
|
||||
|
||||
m_outputStrides[NumDims-1] = 1;
|
||||
for (int i = NumDims - 2; i >= 0; --i) {
|
||||
m_outputStrides[i] = m_outputStrides[i+1] * output_dims[i+1];
|
||||
// NOTE: if tensor is degenerate, we send 1 to prevent TensorIntDivisor constructor crash
|
||||
m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(degenerate ? 1 : m_outputStrides[i]);
|
||||
}
|
||||
}
|
||||
m_block_total_size_max = numext::maxi(static_cast<std::size_t>(1),
|
||||
device.lastLevelCacheSize() /
|
||||
sizeof(Scalar));
|
||||
}
|
||||
|
||||
typedef typename XprType::Index Index;
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename internal::remove_const<Scalar>::type ScalarNonConst;
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
|
||||
typedef Strides Dimensions;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
||||
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
|
||||
m_impl.evalSubExprsIfNeeded(NULL);
|
||||
return true;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
||||
m_impl.cleanup();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
||||
{
|
||||
return m_impl.coeff(srcCoeff(index));
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
|
||||
return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, NumDims);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
protected:
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
|
||||
{
|
||||
Index inputIndex = 0;
|
||||
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
||||
for (int i = NumDims - 1; i >= 0; --i) {
|
||||
const Index idx = index / m_fastOutputStrides[i];
|
||||
inputIndex += idx * m_inputStrides[i] + m_offsets[i];
|
||||
index -= idx * m_outputStrides[i];
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < NumDims; ++i) {
|
||||
const Index idx = index / m_fastOutputStrides[i];
|
||||
inputIndex += idx * m_inputStrides[i] + m_offsets[i];
|
||||
index -= idx * m_outputStrides[i];
|
||||
}
|
||||
}
|
||||
return inputIndex;
|
||||
}
|
||||
|
||||
array<Index, NumDims> m_outputStrides;
|
||||
array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides;
|
||||
array<Index, NumDims> m_inputStrides;
|
||||
TensorEvaluator<ArgType, Device> m_impl;
|
||||
const Device& m_device;
|
||||
DSizes<Index, NumDims> m_startIndices; // clamped startIndices
|
||||
DSizes<Index, NumDims> m_dimensions;
|
||||
DSizes<Index, NumDims> m_offsets; // offset in a flattened shape
|
||||
const Strides m_strides;
|
||||
std::size_t m_block_total_size_max;
|
||||
};
|
||||
|
||||
// Eval as lvalue
|
||||
template<typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device>
|
||||
struct TensorEvaluator<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
|
||||
: public TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
|
||||
{
|
||||
typedef TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> Base;
|
||||
typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType;
|
||||
static const int NumDims = internal::array_size<Strides>::value;
|
||||
|
||||
enum {
|
||||
IsAligned = false,
|
||||
PacketAccess = false,
|
||||
BlockAccess = false,
|
||||
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||
CoordAccess = TensorEvaluator<ArgType, Device>::CoordAccess,
|
||||
RawAccess = false
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||
: Base(op, device)
|
||||
{ }
|
||||
|
||||
typedef typename XprType::Index Index;
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename internal::remove_const<Scalar>::type ScalarNonConst;
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
|
||||
typedef Strides Dimensions;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
|
||||
{
|
||||
return this->m_impl.coeffRef(this->srcCoeff(index));
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H
|
||||
|
@ -315,6 +315,131 @@ static void test_slice_raw_data()
|
||||
VERIFY_IS_EQUAL(slice6.data(), tensor.data());
|
||||
}
|
||||
|
||||
|
||||
template<int DataLayout>
|
||||
static void test_strided_slice()
|
||||
{
|
||||
typedef Tensor<float, 5, DataLayout> Tensor5f;
|
||||
typedef Eigen::DSizes<Eigen::DenseIndex, 5> Index5;
|
||||
typedef Tensor<float, 2, DataLayout> Tensor2f;
|
||||
typedef Eigen::DSizes<Eigen::DenseIndex, 2> Index2;
|
||||
Tensor<float, 5, DataLayout> tensor(2,3,5,7,11);
|
||||
tensor.setRandom();
|
||||
|
||||
if(true) {
|
||||
Tensor<float, 2, DataLayout> tensor(7,11);
|
||||
tensor.setRandom();
|
||||
Tensor2f slice(2,3);
|
||||
Index2 strides(-2,-1);
|
||||
Index2 indicesStart(5,7);
|
||||
Index2 indicesStop(0,4);
|
||||
slice = tensor.stridedSlice(indicesStart, indicesStop, strides);
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
for (int k = 0; k < 3; ++k) {
|
||||
VERIFY_IS_EQUAL(slice(j,k), tensor(5-2*j,7-k));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(true) {
|
||||
Tensor<float, 2, DataLayout> tensor(7,11);
|
||||
tensor.setRandom();
|
||||
Tensor2f slice(0,1);
|
||||
Index2 strides(1,1);
|
||||
Index2 indicesStart(5,4);
|
||||
Index2 indicesStop(5,5);
|
||||
slice = tensor.stridedSlice(indicesStart, indicesStop, strides);
|
||||
}
|
||||
|
||||
if(true) { // test clamped degenerate interavls
|
||||
Tensor<float, 2, DataLayout> tensor(7,11);
|
||||
tensor.setRandom();
|
||||
Tensor2f slice(7,11);
|
||||
Index2 strides(1,-1);
|
||||
Index2 indicesStart(-3,20); // should become 0,10
|
||||
Index2 indicesStop(20,-11); // should become 11, -1
|
||||
slice = tensor.stridedSlice(indicesStart, indicesStop, strides);
|
||||
for (int j = 0; j < 7; ++j) {
|
||||
for (int k = 0; k < 11; ++k) {
|
||||
VERIFY_IS_EQUAL(slice(j,k), tensor(j,10-k));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(true) {
|
||||
Tensor5f slice1(1,1,1,1,1);
|
||||
Eigen::DSizes<Eigen::DenseIndex, 5> indicesStart(1, 2, 3, 4, 5);
|
||||
Eigen::DSizes<Eigen::DenseIndex, 5> indicesStop(2, 3, 4, 5, 6);
|
||||
Eigen::DSizes<Eigen::DenseIndex, 5> strides(1, 1, 1, 1, 1);
|
||||
slice1 = tensor.stridedSlice(indicesStart, indicesStop, strides);
|
||||
VERIFY_IS_EQUAL(slice1(0,0,0,0,0), tensor(1,2,3,4,5));
|
||||
}
|
||||
|
||||
if(true) {
|
||||
Tensor5f slice(1,1,2,2,3);
|
||||
Index5 start(1, 1, 3, 4, 5);
|
||||
Index5 stop(2, 2, 5, 6, 8);
|
||||
Index5 strides(1, 1, 1, 1, 1);
|
||||
slice = tensor.stridedSlice(start, stop, strides);
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
for (int k = 0; k < 3; ++k) {
|
||||
VERIFY_IS_EQUAL(slice(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if(true) {
|
||||
Tensor5f slice(1,1,2,2,3);
|
||||
Index5 strides3(1, 1, -2, 1, -1);
|
||||
Index5 indices3Start(1, 1, 4, 4, 7);
|
||||
Index5 indices3Stop(2, 2, 0, 6, 4);
|
||||
slice = tensor.stridedSlice(indices3Start, indices3Stop, strides3);
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
for (int k = 0; k < 3; ++k) {
|
||||
VERIFY_IS_EQUAL(slice(0,0,i,j,k), tensor(1,1,4-2*i,4+j,7-k));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(false) { // tests degenerate interval
|
||||
Tensor5f slice(1,1,2,2,3);
|
||||
Index5 strides3(1, 1, 2, 1, 1);
|
||||
Index5 indices3Start(1, 1, 4, 4, 7);
|
||||
Index5 indices3Stop(2, 2, 0, 6, 4);
|
||||
slice = tensor.stridedSlice(indices3Start, indices3Stop, strides3);
|
||||
}
|
||||
}
|
||||
|
||||
template<int DataLayout>
|
||||
static void test_strided_slice_write()
|
||||
{
|
||||
typedef Tensor<float, 2, DataLayout> Tensor2f;
|
||||
typedef Eigen::DSizes<Eigen::DenseIndex, 2> Index2;
|
||||
|
||||
Tensor<float, 2, DataLayout> tensor(7,11),tensor2(7,11);
|
||||
tensor.setRandom();
|
||||
tensor2=tensor;
|
||||
Tensor2f slice(2,3);
|
||||
|
||||
slice.setRandom();
|
||||
|
||||
Index2 strides(1,1);
|
||||
Index2 indicesStart(3,4);
|
||||
Index2 indicesStop(5,7);
|
||||
Index2 lengths(2,3);
|
||||
|
||||
tensor.slice(indicesStart,lengths)=slice;
|
||||
tensor2.stridedSlice(indicesStart,indicesStop,strides)=slice;
|
||||
|
||||
for(int i=0;i<7;i++) for(int j=0;j<11;j++){
|
||||
VERIFY_IS_EQUAL(tensor(i,j), tensor2(i,j));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<int DataLayout>
|
||||
static void test_composition()
|
||||
{
|
||||
@ -351,6 +476,11 @@ void test_cxx11_tensor_morphing()
|
||||
CALL_SUBTEST(test_slice_raw_data<ColMajor>());
|
||||
CALL_SUBTEST(test_slice_raw_data<RowMajor>());
|
||||
|
||||
CALL_SUBTEST(test_strided_slice_write<ColMajor>());
|
||||
CALL_SUBTEST(test_strided_slice<ColMajor>());
|
||||
CALL_SUBTEST(test_strided_slice_write<RowMajor>());
|
||||
CALL_SUBTEST(test_strided_slice<RowMajor>());
|
||||
|
||||
CALL_SUBTEST(test_composition<ColMajor>());
|
||||
CALL_SUBTEST(test_composition<RowMajor>());
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user