mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-15 17:41:48 +08:00
Reduce tensor_contract_gpu test.
The original test times out after 60 minutes on Windows, even when setting flags to optimize for speed. Reducing the number of contractions performed from 3600->27 for subtests 8,9 allow the two to run in just over a minute each. (cherry picked from commit be9e7d205f38e3e8effdfdded88817b371673930)
This commit is contained in:
parent
554982beef
commit
ac561cd038
@ -25,10 +25,6 @@ typedef Tensor<float, 1>::DimensionPair DimPair;
|
|||||||
template<int DataLayout>
|
template<int DataLayout>
|
||||||
void test_gpu_contraction(int m_size, int k_size, int n_size)
|
void test_gpu_contraction(int m_size, int k_size, int n_size)
|
||||||
{
|
{
|
||||||
std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl;
|
|
||||||
// with these dimensions, the output has 300 * 140 elements, which is
|
|
||||||
// more than 30 * 1024, which is the number of threads in blocks on
|
|
||||||
// a 15 SM GK110 GPU
|
|
||||||
Tensor<float, 2, DataLayout> t_left(m_size, k_size);
|
Tensor<float, 2, DataLayout> t_left(m_size, k_size);
|
||||||
Tensor<float, 2, DataLayout> t_right(k_size, n_size);
|
Tensor<float, 2, DataLayout> t_right(k_size, n_size);
|
||||||
Tensor<float, 2, DataLayout> t_result(m_size, n_size);
|
Tensor<float, 2, DataLayout> t_result(m_size, n_size);
|
||||||
@ -171,25 +167,45 @@ void test_gpu_contraction_n() {
|
|||||||
|
|
||||||
template<int DataLayout>
|
template<int DataLayout>
|
||||||
void test_gpu_contraction_sizes() {
|
void test_gpu_contraction_sizes() {
|
||||||
int m_sizes[] = { 31, 39, 63, 64, 65,
|
int m_sizes[3][5] = {{ 31, 39, 63, 64, 65},
|
||||||
127, 129, 255, 257 , 511,
|
{127, 129, 255, 257 , 511},
|
||||||
512, 513, 1023, 1024, 1025};
|
{512, 513, 1023, 1024, 1025}};
|
||||||
|
|
||||||
int n_sizes[] = { 31, 39, 63, 64, 65,
|
int n_sizes[3][5] = {{ 31, 39, 63, 64, 65},
|
||||||
127, 129, 255, 257, 511,
|
{127, 129, 255, 257, 511},
|
||||||
512, 513, 1023, 1024, 1025};
|
{512, 513, 1023, 1024, 1025}};
|
||||||
|
|
||||||
int k_sizes[] = { 31, 39, 63, 64, 65,
|
int k_sizes[3][6] = {{ 31, 39, 63, 64, 65, 95},
|
||||||
95, 96, 127, 129, 255,
|
{ 96, 127, 129, 255, 257, 511},
|
||||||
257, 511, 512, 513, 1023,
|
{512, 513, 725, 1023, 1024, 1025}};
|
||||||
1024, 1025};
|
|
||||||
|
|
||||||
for (int i = 0; i < 15; i++) {
|
// Some selection of specific cases.
|
||||||
for (int j = 0; j < 15; j++) {
|
// - m changes rows each iteration
|
||||||
for (int k = 0; k < 17; k++) {
|
// - n changes rows each 3 iterations
|
||||||
test_gpu_contraction<DataLayout>(m_sizes[i], n_sizes[j], k_sizes[k]);
|
// - k changes rows each 9 iterations
|
||||||
|
// - within a row, advance once column each iteration
|
||||||
|
const int m_cols = 5;
|
||||||
|
const int n_cols = 5;
|
||||||
|
const int k_cols = 6;
|
||||||
|
int m_offset = 0;
|
||||||
|
int n_offset = 1;
|
||||||
|
int k_offset = 2;
|
||||||
|
for (int i = 0; i < 3; ++i) {
|
||||||
|
for (int j = 0; j < 3; ++j) {
|
||||||
|
for (int l = 0; l < 3; ++l) {
|
||||||
|
int m = m_sizes[l][m_offset];
|
||||||
|
int n = n_sizes[j][n_offset];
|
||||||
|
int k = k_sizes[i][k_offset];
|
||||||
|
test_gpu_contraction<DataLayout>(m, n, k);
|
||||||
|
n_offset = (n_offset + 1) % n_cols;
|
||||||
|
k_offset = (k_offset + 1) % k_cols;
|
||||||
|
}
|
||||||
|
m_offset = (m_offset + 1) % m_cols;
|
||||||
|
if (j < 2) {
|
||||||
|
n_offset = (n_offset + n_cols - 3) % n_cols; // Rewind 3.
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
k_offset = (k_offset + 2 * k_cols - 9) % k_cols; // Rewind 9.
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user