Initial commit to add a generic indexed-based view of matrices.

This version already works as a read-only expression.
Numerous refactoring, renaming, extension, tuning passes are expected...
This commit is contained in:
Gael Guennebaud 2017-01-06 00:01:44 +01:00
parent f3f026c9aa
commit ac7e4ac9c0
5 changed files with 378 additions and 0 deletions

View File

@ -418,6 +418,7 @@ using std::ptrdiff_t;
// on CUDA devices
#include "src/Core/arch/CUDA/Complex.h"
#include "src/Core/ArithmeticSequence.h"
#include "src/Core/DenseCoeffsBase.h"
#include "src/Core/DenseBase.h"
#include "src/Core/MatrixBase.h"
@ -458,6 +459,7 @@ using std::ptrdiff_t;
#include "src/Core/Ref.h"
#include "src/Core/Block.h"
#include "src/Core/VectorBlock.h"
#include "src/Core/IndexedView.h"
#include "src/Core/Transpose.h"
#include "src/Core/DiagonalMatrix.h"
#include "src/Core/Diagonal.h"

View File

@ -0,0 +1,229 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2017 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ARITHMETIC_SEQUENCE_H
#define EIGEN_ARITHMETIC_SEQUENCE_H
namespace Eigen {
struct all_t { all_t() {} };
static const all_t all;
struct shifted_last {
explicit shifted_last(int o) : offset(o) {}
int offset;
shifted_last operator+ (int x) const { return shifted_last(offset+x); }
shifted_last operator- (int x) const { return shifted_last(offset-x); }
int operator- (shifted_last x) const { return offset-x.offset; }
};
struct last_t {
last_t() {}
shifted_last operator- (int offset) const { return shifted_last(-offset); }
shifted_last operator+ (int offset) const { return shifted_last(+offset); }
int operator- (last_t) const { return 0; }
int operator- (shifted_last x) const { return -x.offset; }
};
static const last_t last;
struct shifted_end {
explicit shifted_end(int o) : offset(o) {}
int offset;
shifted_end operator+ (int x) const { return shifted_end(offset+x); }
shifted_end operator- (int x) const { return shifted_end(offset-x); }
int operator- (shifted_end x) const { return offset-x.offset; }
};
struct end_t {
end_t() {}
shifted_end operator- (int offset) const { return shifted_end (-offset); }
shifted_end operator+ (int offset) const { return shifted_end ( offset); }
int operator- (end_t) const { return 0; }
int operator- (shifted_end x) const { return -x.offset; }
};
static const end_t end;
template<int N> struct Index_c {
static const int value = N;
operator int() const { return value; }
Index_c (Index_c<N> (*)() ) {}
Index_c() {}
// Needed in C++14 to allow c<N>():
Index_c operator() () const { return *this; }
};
//--------------------------------------------------------------------------------
// Range(first,last) and Slice(first,step,last)
//--------------------------------------------------------------------------------
template<typename FirstType=Index,typename LastType=Index,typename StepType=Index_c<1> >
struct Range_t {
Range_t(FirstType f, LastType l) : m_first(f), m_last(l) {}
Range_t(FirstType f, LastType l, StepType s) : m_first(f), m_last(l), m_step(s) {}
FirstType m_first;
LastType m_last;
StepType m_step;
enum { SizeAtCompileTime = -1 };
Index size() const { return (m_last-m_first+m_step)/m_step; }
Index operator[] (Index k) const { return m_first + k*m_step; }
};
template<typename T> struct cleanup_slice_type { typedef Index type; };
template<> struct cleanup_slice_type<last_t> { typedef last_t type; };
template<> struct cleanup_slice_type<shifted_last> { typedef shifted_last type; };
template<> struct cleanup_slice_type<end_t> { typedef end_t type; };
template<> struct cleanup_slice_type<shifted_end> { typedef shifted_end type; };
template<int N> struct cleanup_slice_type<Index_c<N> > { typedef Index_c<N> type; };
template<int N> struct cleanup_slice_type<Index_c<N> (*)() > { typedef Index_c<N> type; };
template<typename FirstType,typename LastType>
Range_t<typename cleanup_slice_type<FirstType>::type,typename cleanup_slice_type<LastType>::type >
range(FirstType f, LastType l) {
return Range_t<typename cleanup_slice_type<FirstType>::type,typename cleanup_slice_type<LastType>::type>(f,l);
}
template<typename FirstType,typename LastType,typename StepType>
Range_t<typename cleanup_slice_type<FirstType>::type,typename cleanup_slice_type<LastType>::type,typename cleanup_slice_type<StepType>::type >
range(FirstType f, LastType l, StepType s) {
return Range_t<typename cleanup_slice_type<FirstType>::type,typename cleanup_slice_type<LastType>::type,typename cleanup_slice_type<StepType>::type>(f,l,typename cleanup_slice_type<StepType>::type(s));
}
template<typename T, int Default=-1> struct get_compile_time {
enum { value = Default };
};
template<int N,int Default> struct get_compile_time<Index_c<N>,Default> {
enum { value = N };
};
template<typename T> struct is_compile_time { enum { value = false }; };
template<int N> struct is_compile_time<Index_c<N> > { enum { value = true }; };
template<typename FirstType=Index,typename SizeType=Index,typename StepType=Index_c<1> >
struct Span_t {
Span_t(FirstType first, SizeType size) : m_first(first), m_size(size) {}
Span_t(FirstType first, SizeType size, StepType step) : m_first(first), m_size(size), m_step(step) {}
FirstType m_first;
SizeType m_size;
StepType m_step;
enum { SizeAtCompileTime = get_compile_time<SizeType>::value };
Index size() const { return m_size; }
Index operator[] (Index k) const { return m_first + k*m_step; }
};
template<typename FirstType,typename SizeType,typename StepType>
Span_t<typename cleanup_slice_type<FirstType>::type,typename cleanup_slice_type<SizeType>::type,typename cleanup_slice_type<StepType>::type >
span(FirstType first, SizeType size, StepType step) {
return Span_t<typename cleanup_slice_type<FirstType>::type,typename cleanup_slice_type<SizeType>::type,typename cleanup_slice_type<StepType>::type>(first,size,step);
}
template<typename FirstType,typename SizeType>
Span_t<typename cleanup_slice_type<FirstType>::type,typename cleanup_slice_type<SizeType>::type >
span(FirstType first, SizeType size) {
return Span_t<typename cleanup_slice_type<FirstType>::type,typename cleanup_slice_type<SizeType>::type>(first,size);
}
#if __cplusplus > 201103L
template<int N>
static const Index_c<N> c{};
#else
template<int N>
inline Index_c<N> c() { return Index_c<N>(); }
#endif
namespace internal {
// MakeIndexing/make_indexing turn an arbitrary object of type T into something usable by MatrixSlice
template<typename T,typename EnableIf=void>
struct MakeIndexing {
typedef T type;
};
template<typename T>
const T& make_indexing(const T& x, Index size) { return x; }
struct IntAsArray {
IntAsArray(Index val) : m_value(val) {}
Index operator[](Index) const { return m_value; }
Index size() const { return 1; }
Index m_value;
};
// Turn a single index into something that looks like an array (i.e., that exposes a .size(), and operatro[](int) methods)
template<typename T>
struct MakeIndexing<T,typename internal::enable_if<internal::is_integral<T>::value>::type> {
// Here we could simply use Array, but maybe it's less work for the compiler to use
// a simpler wrapper as IntAsArray
//typedef Eigen::Array<Index,1,1> type;
typedef IntAsArray type;
};
// Replace symbolic last/end "keywords" by their true runtime value
Index symbolic2value(Index x, Index /* size */) { return x; }
Index symbolic2value(last_t, Index size) { return size-1; }
Index symbolic2value(shifted_last x, Index size) { return size+x.offset-1; }
Index symbolic2value(end_t, Index size) { return size; }
Index symbolic2value(shifted_end x, Index size) { return size+x.offset; }
// Convert a symbolic range into a usable one (i.e., remove last/end "keywords")
template<typename FirstType,typename LastType,typename StepType>
struct MakeIndexing<Range_t<FirstType,LastType,StepType> > {
typedef Range_t<Index,Index,StepType> type;
};
template<typename FirstType,typename LastType,typename StepType>
Range_t<Index,Index,StepType> make_indexing(const Range_t<FirstType,LastType,StepType>& ids, Index size) {
return Range_t<Index,Index,StepType>(symbolic2value(ids.m_first,size),symbolic2value(ids.m_last,size),ids.m_step);
}
// Convert a symbolic span into a usable one (i.e., remove last/end "keywords")
template<typename FirstType,typename SizeType,typename StepType>
struct MakeIndexing<Span_t<FirstType,SizeType,StepType> > {
typedef Span_t<Index,SizeType,StepType> type;
};
template<typename FirstType,typename SizeType,typename StepType>
Span_t<Index,SizeType,StepType> make_indexing(const Span_t<FirstType,SizeType,StepType>& ids, Index size) {
return Span_t<Index,SizeType,StepType>(symbolic2value(ids.m_first,size),ids.m_size,ids.m_step);
}
// Convert a symbolic 'all' into a usable range
// Implementation-wise, it would be more efficient to not having to store m_size since
// this information is already in the nested expression. To this end, we would need a
// get_size(indices, underlying_size); function returning indices.size() by default.
struct AllRange {
AllRange(Index size) : m_size(size) {}
Index operator[](Index i) const { return i; }
Index size() const { return m_size; }
Index m_size;
};
template<>
struct MakeIndexing<all_t> {
typedef AllRange type;
};
AllRange make_indexing(all_t , Index size) {
return AllRange(size);
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_ARITHMETIC_SEQUENCE_H

View File

@ -557,6 +557,15 @@ template<typename Derived> class DenseBase
}
EIGEN_DEVICE_FUNC void reverseInPlace();
template<typename RowIndices, typename ColIndices>
typename internal::enable_if<
!(internal::is_integral<RowIndices>::value && internal::is_integral<ColIndices>::value),
IndexedView<const Derived,typename internal::MakeIndexing<RowIndices>::type,typename internal::MakeIndexing<ColIndices>::type> >::type
operator()(const RowIndices& rowIndices, const ColIndices& colIndices) const {
return IndexedView<const Derived,typename internal::MakeIndexing<RowIndices>::type,typename internal::MakeIndexing<ColIndices>::type>(
derived(), internal::make_indexing(rowIndices,derived().rows()), internal::make_indexing(colIndices,derived().cols()));
}
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::DenseBase
#define EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL
#define EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(COND)

View File

@ -0,0 +1,137 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2017 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_INDEXED_VIEW_H
#define EIGEN_INDEXED_VIEW_H
namespace Eigen {
namespace internal {
template<typename XprType, typename RowIndices, typename ColIndices>
struct traits<IndexedView<XprType, RowIndices, ColIndices> >
: traits<XprType>
{
enum {
FlagsLvalueBit = is_lvalue<XprType>::value ? LvalueBit : 0,
Flags = traits<XprType>::Flags & (RowMajorBit | FlagsLvalueBit /*| DirectAccessBit*/),
//MatrixTypeInnerStride = inner_stride_at_compile_time<XprType>::ret,
InnerStrideAtCompileTime = int(Dynamic),
OuterStrideAtCompileTime = int(Dynamic)
};
};
}
template<typename XprType, typename RowIndices, typename ColIndices, typename StorageKind>
class IndexedViewImpl;
// Expression of a generic slice
template<typename XprType, typename RowIndices, typename ColIndices>
class IndexedView : public IndexedViewImpl<XprType, RowIndices, ColIndices, typename internal::traits<XprType>::StorageKind>
{
public:
typedef typename IndexedViewImpl<XprType, RowIndices, ColIndices, typename internal::traits<XprType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(IndexedView)
typedef typename internal::ref_selector<XprType>::non_const_type MatrixTypeNested;
typedef typename internal::remove_all<XprType>::type NestedExpression;
template<typename T0, typename T1>
IndexedView(XprType& xpr, const T0& rowIndices, const T1& colIndices)
: m_xpr(xpr), m_rowIndices(rowIndices), m_colIndices(colIndices)
{}
Index rows() const { return m_rowIndices.size(); }
Index cols() const { return m_colIndices.size(); }
/** \returns the nested expression */
const typename internal::remove_all<XprType>::type&
nestedExpression() const { return m_xpr; }
/** \returns the nested expression */
typename internal::remove_reference<XprType>::type&
nestedExpression() { return m_xpr.const_cast_derived(); }
const RowIndices& rowIndices() const { return m_rowIndices; }
const ColIndices& colIndices() const { return m_colIndices; }
// std::pair<Index,Index> index(Index i, Index j) const {
// return std::pair<Index,Index>(m_rowIndices[i], m_colIndices[j]);
// }
//
// void print() const {
// for(Index i=0; i<rows(); ++i)
// {
// for(Index j=0; j<cols(); ++j)
// {
// std::pair<Index,Index> k = index(i,j);
// std::cout << '(' << k.first << ',' << k.second << ") ";
// }
// std::cout << '\n';
// }
// }
protected:
MatrixTypeNested m_xpr;
RowIndices m_rowIndices;
ColIndices m_colIndices;
};
// Generic API dispatcher
template<typename XprType, typename RowIndices, typename ColIndices, typename StorageKind>
class IndexedViewImpl
: public internal::generic_xpr_base<IndexedView<XprType, RowIndices, ColIndices> >::type
{
public:
typedef typename internal::generic_xpr_base<IndexedView<XprType, RowIndices, ColIndices> >::type Base;
};
namespace internal {
template<typename ArgType, typename RowIndices, typename ColIndices>
struct unary_evaluator<IndexedView<ArgType, RowIndices, ColIndices>, IndexBased>
: evaluator_base<IndexedView<ArgType, RowIndices, ColIndices> >
{
typedef IndexedView<ArgType, RowIndices, ColIndices> XprType;
enum {
CoeffReadCost = evaluator<ArgType>::CoeffReadCost /* + cost of row/col index */,
Flags = (evaluator<ArgType>::Flags & (HereditaryBits /*| LinearAccessBit | DirectAccessBit*/)),
Alignment = 0
};
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_xpr(xpr)
{
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_argImpl.coeff(m_xpr.rowIndices()[row], m_xpr.colIndices()[col]);
}
protected:
evaluator<ArgType> m_argImpl;
const XprType& m_xpr;
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_INDEXED_VIEW_H

View File

@ -83,6 +83,7 @@ template<typename ExpressionType> class ForceAlignedAccess;
template<typename ExpressionType> class SwapWrapper;
template<typename XprType, int BlockRows=Dynamic, int BlockCols=Dynamic, bool InnerPanel = false> class Block;
template<typename XprType, typename RowIndices, typename ColIndices> class IndexedView;
template<typename MatrixType, int Size=Dynamic> class VectorBlock;
template<typename MatrixType> class Transpose;